From 9642d18eee2cd169b60c6ac0f20bda745b5a3d1e Mon Sep 17 00:00:00 2001 From: Vatika Harlalka Date: Tue, 1 Sep 2015 16:50:59 +0200 Subject: nohz: Affine unpinned timers to housekeepers The problem addressed in this patch is about affining unpinned timers. Adaptive or Full Dynticks CPUs are currently disturbed by unnecessary jitter due to firing of such timers on them. This patch will affine timers to online CPUs which are not full dynticks in NOHZ_FULL configured systems. It should not introduce overhead in nohz full off case due to static keys. Signed-off-by: Vatika Harlalka Signed-off-by: Frederic Weisbecker Reviewed-by: Preeti U Murthy Acked-by: Thomas Gleixner Cc: Chris Metcalf Cc: Christoph Lameter Cc: Linus Torvalds Cc: Paul E. McKenney Cc: Peter Zijlstra Link: http://lkml.kernel.org/r/1441119060-2230-2-git-send-email-fweisbec@gmail.com Signed-off-by: Ingo Molnar --- kernel/sched/core.c | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) (limited to 'kernel/sched') diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 8b864ecee0e1..0902e4d72671 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -623,18 +623,21 @@ int get_nohz_timer_target(void) int i, cpu = smp_processor_id(); struct sched_domain *sd; - if (!idle_cpu(cpu)) + if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) return cpu; rcu_read_lock(); for_each_domain(cpu, sd) { for_each_cpu(i, sched_domain_span(sd)) { - if (!idle_cpu(i)) { + if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) { cpu = i; goto unlock; } } } + + if (!is_housekeeping_cpu(cpu)) + cpu = housekeeping_any_cpu(); unlock: rcu_read_unlock(); return cpu; -- cgit v1.2.3 From 5473e0cc37c03c576adbda7591a6cc8e37c1bb7f Mon Sep 17 00:00:00 2001 From: Wanpeng Li Date: Fri, 28 Aug 2015 14:55:56 +0800 Subject: sched: 'Annotate' migrate_tasks() Kernel testing triggered this warning: | WARNING: CPU: 0 PID: 13 at kernel/sched/core.c:1156 do_set_cpus_allowed+0x7e/0x80() | Modules linked in: | CPU: 0 PID: 13 Comm: migration/0 Not tainted 4.2.0-rc1-00049-g25834c7 #2 | Call Trace: | dump_stack+0x4b/0x75 | warn_slowpath_common+0x8b/0xc0 | warn_slowpath_null+0x22/0x30 | do_set_cpus_allowed+0x7e/0x80 | cpuset_cpus_allowed_fallback+0x7c/0x170 | select_fallback_rq+0x221/0x280 | migration_call+0xe3/0x250 | notifier_call_chain+0x53/0x70 | __raw_notifier_call_chain+0x1e/0x30 | cpu_notify+0x28/0x50 | take_cpu_down+0x22/0x40 | multi_cpu_stop+0xd5/0x140 | cpu_stopper_thread+0xbc/0x170 | smpboot_thread_fn+0x174/0x2f0 | kthread+0xc4/0xe0 | ret_from_kernel_thread+0x21/0x30 As Peterz pointed out: | So the normal rules for changing task_struct::cpus_allowed are holding | both pi_lock and rq->lock, such that holding either stabilizes the mask. | | This is so that wakeup can happen without rq->lock and load-balance | without pi_lock. | | From this we already get the relaxation that we can omit acquiring | rq->lock if the task is not on the rq, because in that case | load-balancing will not apply to it. | | ** these are the rules currently tested in do_set_cpus_allowed() ** | | Now, since __set_cpus_allowed_ptr() uses task_rq_lock() which | unconditionally acquires both locks, we could get away with holding just | rq->lock when on_rq for modification because that'd still exclude | __set_cpus_allowed_ptr(), it would also work against | __kthread_bind_mask() because that assumes !on_rq. | | That said, this is all somewhat fragile. | | Now, I don't think dropping rq->lock is quite as disastrous as it | usually is because !cpu_active at this point, which means load-balance | will not interfere, but that too is somewhat fragile. | | So we end up with a choice of two fragile.. This patch fixes it by following the rules for changing task_struct::cpus_allowed with both pi_lock and rq->lock held. Reported-by: kernel test robot Reported-by: Sasha Levin Signed-off-by: Wanpeng Li [ Modified changelog and patch. ] Signed-off-by: Peter Zijlstra (Intel) Cc: Linus Torvalds Cc: Peter Zijlstra Cc: Thomas Gleixner Link: http://lkml.kernel.org/r/BLU436-SMTP1660820490DE202E3934ED3806E0@phx.gbl Signed-off-by: Ingo Molnar --- kernel/sched/core.c | 29 ++++++++++++++++++++++++++--- 1 file changed, 26 insertions(+), 3 deletions(-) (limited to 'kernel/sched') diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 0902e4d72671..9b786704d34b 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -5183,24 +5183,47 @@ static void migrate_tasks(struct rq *dead_rq) break; /* - * Ensure rq->lock covers the entire task selection - * until the migration. + * pick_next_task assumes pinned rq->lock. */ lockdep_pin_lock(&rq->lock); next = pick_next_task(rq, &fake_task); BUG_ON(!next); next->sched_class->put_prev_task(rq, next); + /* + * Rules for changing task_struct::cpus_allowed are holding + * both pi_lock and rq->lock, such that holding either + * stabilizes the mask. + * + * Drop rq->lock is not quite as disastrous as it usually is + * because !cpu_active at this point, which means load-balance + * will not interfere. Also, stop-machine. + */ + lockdep_unpin_lock(&rq->lock); + raw_spin_unlock(&rq->lock); + raw_spin_lock(&next->pi_lock); + raw_spin_lock(&rq->lock); + + /* + * Since we're inside stop-machine, _nothing_ should have + * changed the task, WARN if weird stuff happened, because in + * that case the above rq->lock drop is a fail too. + */ + if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { + raw_spin_unlock(&next->pi_lock); + continue; + } + /* Find suitable destination for @next, with force if needed. */ dest_cpu = select_fallback_rq(dead_rq->cpu, next); - lockdep_unpin_lock(&rq->lock); rq = __migrate_task(rq, next, dest_cpu); if (rq != dead_rq) { raw_spin_unlock(&rq->lock); rq = dead_rq; raw_spin_lock(&rq->lock); } + raw_spin_unlock(&next->pi_lock); } rq->stop = stop; -- cgit v1.2.3