From 234fdce892f905cbc2674349a9eb4873e288e5b3 Mon Sep 17 00:00:00 2001 From: Qian Cai Date: Sun, 6 Oct 2019 17:58:25 -0700 Subject: mm/page_alloc.c: fix a crash in free_pages_prepare() On architectures like s390, arch_free_page() could mark the page unused (set_page_unused()) and any access later would trigger a kernel panic. Fix it by moving arch_free_page() after all possible accessing calls. Hardware name: IBM 2964 N96 400 (z/VM 6.4.0) Krnl PSW : 0404e00180000000 0000000026c2b96e (__free_pages_ok+0x34e/0x5d8) R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3 Krnl GPRS: 0000000088d43af7 0000000000484000 000000000000007c 000000000000000f 000003d080012100 000003d080013fc0 0000000000000000 0000000000100000 00000000275cca48 0000000000000100 0000000000000008 000003d080010000 00000000000001d0 000003d000000000 0000000026c2b78a 000000002717fdb0 Krnl Code: 0000000026c2b95c: ec1100b30659 risbgn %r1,%r1,0,179,6 0000000026c2b962: e32014000036 pfd 2,1024(%r1) #0000000026c2b968: d7ff10001000 xc 0(256,%r1),0(%r1) >0000000026c2b96e: 41101100 la %r1,256(%r1) 0000000026c2b972: a737fff8 brctg %r3,26c2b962 0000000026c2b976: d7ff10001000 xc 0(256,%r1),0(%r1) 0000000026c2b97c: e31003400004 lg %r1,832 0000000026c2b982: ebff1430016a asi 5168(%r1),-1 Call Trace: __free_pages_ok+0x16a/0x5d8) memblock_free_all+0x206/0x290 mem_init+0x58/0x120 start_kernel+0x2b0/0x570 startup_continue+0x6a/0xc0 INFO: lockdep is turned off. Last Breaking-Event-Address: __free_pages_ok+0x372/0x5d8 Kernel panic - not syncing: Fatal exception: panic_on_oops 00: HCPGIR450W CP entered; disabled wait PSW 00020001 80000000 00000000 26A2379C In the past, only kernel_poison_pages() would trigger this but it needs "page_poison=on" kernel cmdline, and I suspect nobody tested that on s390. Recently, kernel_init_free_pages() (commit 6471384af2a6 ("mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options")) was added and could trigger this as well. [akpm@linux-foundation.org: add comment] Link: http://lkml.kernel.org/r/1569613623-16820-1-git-send-email-cai@lca.pw Fixes: 8823b1dbc05f ("mm/page_poison.c: enable PAGE_POISONING as a separate option") Fixes: 6471384af2a6 ("mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options") Signed-off-by: Qian Cai Reviewed-by: Heiko Carstens Acked-by: Christian Borntraeger Acked-by: Michal Hocko Cc: "Kirill A. Shutemov" Cc: Vasily Gorbik Cc: Alexander Duyck Cc: [5.3+] Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- mm/page_alloc.c | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) (limited to 'mm/page_alloc.c') diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 15c2050c629b..c0b2e0306720 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -1175,11 +1175,17 @@ static __always_inline bool free_pages_prepare(struct page *page, debug_check_no_obj_freed(page_address(page), PAGE_SIZE << order); } - arch_free_page(page, order); if (want_init_on_free()) kernel_init_free_pages(page, 1 << order); kernel_poison_pages(page, 1 << order, 0); + /* + * arch_free_page() can make the page's contents inaccessible. s390 + * does this. So nothing which can access the page's contents should + * happen after this. + */ + arch_free_page(page, order); + if (debug_pagealloc_enabled()) kernel_map_pages(page, 1 << order, 0); -- cgit v1.2.3 From 3f36d8669457605910cb7a40089b485949569c41 Mon Sep 17 00:00:00 2001 From: David Rientjes Date: Mon, 14 Oct 2019 14:12:04 -0700 Subject: mm, hugetlb: allow hugepage allocations to reclaim as needed Commit b39d0ee2632d ("mm, page_alloc: avoid expensive reclaim when compaction may not succeed") has chnaged the allocator to bail out from the allocator early to prevent from a potentially excessive memory reclaim. __GFP_RETRY_MAYFAIL is designed to retry the allocation, reclaim and compaction loop as long as there is a reasonable chance to make forward progress. Neither COMPACT_SKIPPED nor COMPACT_DEFERRED at the INIT_COMPACT_PRIORITY compaction attempt gives this feedback. The most obvious affected subsystem is hugetlbfs which allocates huge pages based on an admin request (or via admin configured overcommit). I have done a simple test which tries to allocate half of the memory for hugetlb pages while the memory is full of a clean page cache. This is not an unusual situation because we try to cache as much of the memory as possible and sysctl/sysfs interface to allocate huge pages is there for flexibility to allocate hugetlb pages at any time. System has 1GB of RAM and we are requesting 515MB worth of hugetlb pages after the memory is prefilled by a clean page cache: root@test1:~# cat hugetlb_test.sh set -x echo 0 > /proc/sys/vm/nr_hugepages echo 3 > /proc/sys/vm/drop_caches echo 1 > /proc/sys/vm/compact_memory dd if=/mnt/data/file-1G of=/dev/null bs=$((4<<10)) TS=$(date +%s) echo 256 > /proc/sys/vm/nr_hugepages cat /proc/sys/vm/nr_hugepages The results for 2 consecutive runs on clean 5.3 root@test1:~# sh hugetlb_test.sh + echo 0 + echo 3 + echo 1 + dd if=/mnt/data/file-1G of=/dev/null bs=4096 262144+0 records in 262144+0 records out 1073741824 bytes (1.1 GB) copied, 21.0694 s, 51.0 MB/s + date +%s + TS=1569905284 + echo 256 + cat /proc/sys/vm/nr_hugepages 256 root@test1:~# sh hugetlb_test.sh + echo 0 + echo 3 + echo 1 + dd if=/mnt/data/file-1G of=/dev/null bs=4096 262144+0 records in 262144+0 records out 1073741824 bytes (1.1 GB) copied, 21.7548 s, 49.4 MB/s + date +%s + TS=1569905311 + echo 256 + cat /proc/sys/vm/nr_hugepages 256 Now with b39d0ee2632d applied root@test1:~# sh hugetlb_test.sh + echo 0 + echo 3 + echo 1 + dd if=/mnt/data/file-1G of=/dev/null bs=4096 262144+0 records in 262144+0 records out 1073741824 bytes (1.1 GB) copied, 20.1815 s, 53.2 MB/s + date +%s + TS=1569905516 + echo 256 + cat /proc/sys/vm/nr_hugepages 11 root@test1:~# sh hugetlb_test.sh + echo 0 + echo 3 + echo 1 + dd if=/mnt/data/file-1G of=/dev/null bs=4096 262144+0 records in 262144+0 records out 1073741824 bytes (1.1 GB) copied, 21.9485 s, 48.9 MB/s + date +%s + TS=1569905541 + echo 256 + cat /proc/sys/vm/nr_hugepages 12 The success rate went down by factor of 20! Although hugetlb allocation requests might fail and it is reasonable to expect them to under extremely fragmented memory or when the memory is under a heavy pressure but the above situation is not that case. Fix the regression by reverting back to the previous behavior for __GFP_RETRY_MAYFAIL requests and disable the beail out heuristic for those requests. Mike said: : hugetlbfs allocations are commonly done via sysctl/sysfs shortly after : boot where this may not be as much of an issue. However, I am aware of at : least three use cases where allocations are made after the system has been : up and running for quite some time: : : - DB reconfiguration. If sysctl/sysfs fails to get required number of : huge pages, system is rebooted to perform allocation after boot. : : - VM provisioning. If unable get required number of huge pages, fall : back to base pages. : : - An application that does not preallocate pool, but rather allocates : pages at fault time for optimal NUMA locality. : : In all cases, I would expect b39d0ee2632d to cause regressions and : noticable behavior changes. : : My quick/limited testing in : https://lkml.kernel.org/r/3468b605-a3a9-6978-9699-57c52a90bd7e@oracle.com : was insufficient. It was also mentioned that if something like : b39d0ee2632d went forward, I would like exemptions for __GFP_RETRY_MAYFAIL : requests as in this patch. [mhocko@suse.com: reworded changelog] Link: http://lkml.kernel.org/r/20191007075548.12456-1-mhocko@kernel.org Fixes: b39d0ee2632d ("mm, page_alloc: avoid expensive reclaim when compaction may not succeed") Signed-off-by: David Rientjes Signed-off-by: Michal Hocko Reviewed-by: Mike Kravetz Acked-by: Vlastimil Babka Cc: Mel Gorman Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- mm/page_alloc.c | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) (limited to 'mm/page_alloc.c') diff --git a/mm/page_alloc.c b/mm/page_alloc.c index c0b2e0306720..ecc3dbad606b 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -4473,12 +4473,14 @@ retry_cpuset: if (page) goto got_pg; - if (order >= pageblock_order && (gfp_mask & __GFP_IO)) { + if (order >= pageblock_order && (gfp_mask & __GFP_IO) && + !(gfp_mask & __GFP_RETRY_MAYFAIL)) { /* * If allocating entire pageblock(s) and compaction * failed because all zones are below low watermarks * or is prohibited because it recently failed at this - * order, fail immediately. + * order, fail immediately unless the allocator has + * requested compaction and reclaim retry. * * Reclaim is * - potentially very expensive because zones are far -- cgit v1.2.3