/* * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * vineetg: Jan 1011 * -sched_clock( ) no longer jiffies based. Uses the same clocksource * as gtod * * Rajeshwarr/Vineetg: Mar 2008 * -Implemented CONFIG_GENERIC_TIME (rather deleted arch specific code) * for arch independent gettimeofday() * -Implemented CONFIG_GENERIC_CLOCKEVENTS as base for hrtimers * * Vineetg: Mar 2008: Forked off from time.c which now is time-jiff.c */ /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1 * Each can programmed to go from @count to @limit and optionally * interrupt when that happens. * A write to Control Register clears the Interrupt * * We've designated TIMER0 for events (clockevents) * while TIMER1 for free running (clocksource) * * Newer ARC700 cores have 64bit clk fetching RTSC insn, preferred over TIMER1 * which however is currently broken */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Timer related Aux registers */ #define ARC_REG_TIMER0_LIMIT 0x23 /* timer 0 limit */ #define ARC_REG_TIMER0_CTRL 0x22 /* timer 0 control */ #define ARC_REG_TIMER0_CNT 0x21 /* timer 0 count */ #define ARC_REG_TIMER1_LIMIT 0x102 /* timer 1 limit */ #define ARC_REG_TIMER1_CTRL 0x101 /* timer 1 control */ #define ARC_REG_TIMER1_CNT 0x100 /* timer 1 count */ #define TIMER_CTRL_IE (1 << 0) /* Interupt when Count reachs limit */ #define TIMER_CTRL_NH (1 << 1) /* Count only when CPU NOT halted */ #define ARC_TIMER_MAX 0xFFFFFFFF /********** Clock Source Device *********/ /* * set 32bit TIMER1 to keep counting monotonically and wraparound */ int arc_counter_setup(void) { write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMER_MAX); write_aux_reg(ARC_REG_TIMER1_CNT, 0); write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH); /* Not usable in SMP */ return !IS_ENABLED(CONFIG_SMP); } static cycle_t arc_counter_read(struct clocksource *cs) { return (cycle_t) read_aux_reg(ARC_REG_TIMER1_CNT); } static struct clocksource arc_counter = { .name = "ARC Timer1", .rating = 300, .read = arc_counter_read, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; /********** Clock Event Device *********/ /* * Arm the timer to interrupt after @cycles * The distinction for oneshot/periodic is done in arc_event_timer_ack() below */ static void arc_timer_event_setup(unsigned int cycles) { write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles); write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */ write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH); } static int arc_clkevent_set_next_event(unsigned long delta, struct clock_event_device *dev) { arc_timer_event_setup(delta); return 0; } static void arc_clkevent_set_mode(enum clock_event_mode mode, struct clock_event_device *dev) { switch (mode) { case CLOCK_EVT_MODE_PERIODIC: /* * At X Hz, 1 sec = 1000ms -> X cycles; * 10ms -> X / 100 cycles */ arc_timer_event_setup(arc_get_core_freq() / HZ); break; case CLOCK_EVT_MODE_ONESHOT: break; default: break; } return; } static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = { .name = "ARC Timer0", .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .mode = CLOCK_EVT_MODE_UNUSED, .rating = 300, .irq = TIMER0_IRQ, /* hardwired, no need for resources */ .set_next_event = arc_clkevent_set_next_event, .set_mode = arc_clkevent_set_mode, }; static irqreturn_t timer_irq_handler(int irq, void *dev_id) { /* * Note that generic IRQ core could have passed @evt for @dev_id if * irq_set_chip_and_handler() asked for handle_percpu_devid_irq() */ struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); int irq_reenable = evt->mode == CLOCK_EVT_MODE_PERIODIC; /* * Any write to CTRL reg ACks the interrupt, we rewrite the * Count when [N]ot [H]alted bit. * And re-arm it if perioid by [I]nterrupt [E]nable bit */ write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH); evt->event_handler(evt); return IRQ_HANDLED; } /* * Setup the local event timer for @cpu */ void arc_local_timer_setup() { struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); int cpu = smp_processor_id(); evt->cpumask = cpumask_of(cpu); clockevents_config_and_register(evt, arc_get_core_freq(), 0, ARC_TIMER_MAX); /* setup the per-cpu timer IRQ handler - for all cpus */ arc_request_percpu_irq(TIMER0_IRQ, cpu, timer_irq_handler, "Timer0 (per-cpu-tick)", evt); } /* * Called from start_kernel() - boot CPU only * * -Sets up h/w timers as applicable on boot cpu * -Also sets up any global state needed for timer subsystem: * - for "counting" timer, registers a clocksource, usable across CPUs * (provided that underlying counter h/w is synchronized across cores) * - for "event" timer, sets up TIMER0 IRQ (as that is platform agnostic) */ void __init time_init(void) { /* * sets up the timekeeping free-flowing counter which also returns * whether the counter is usable as clocksource */ if (arc_counter_setup()) /* * CLK upto 4.29 GHz can be safely represented in 32 bits * because Max 32 bit number is 4,294,967,295 */ clocksource_register_hz(&arc_counter, arc_get_core_freq()); /* sets up the periodic event timer */ arc_local_timer_setup(); if (machine_desc->init_time) machine_desc->init_time(); }