/* * EDMA3 support for DaVinci * * Copyright (C) 2006-2009 Texas Instruments. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Offsets matching "struct edmacc_param" */ #define PARM_OPT 0x00 #define PARM_SRC 0x04 #define PARM_A_B_CNT 0x08 #define PARM_DST 0x0c #define PARM_SRC_DST_BIDX 0x10 #define PARM_LINK_BCNTRLD 0x14 #define PARM_SRC_DST_CIDX 0x18 #define PARM_CCNT 0x1c #define PARM_SIZE 0x20 /* Offsets for EDMA CC global channel registers and their shadows */ #define SH_ER 0x00 /* 64 bits */ #define SH_ECR 0x08 /* 64 bits */ #define SH_ESR 0x10 /* 64 bits */ #define SH_CER 0x18 /* 64 bits */ #define SH_EER 0x20 /* 64 bits */ #define SH_EECR 0x28 /* 64 bits */ #define SH_EESR 0x30 /* 64 bits */ #define SH_SER 0x38 /* 64 bits */ #define SH_SECR 0x40 /* 64 bits */ #define SH_IER 0x50 /* 64 bits */ #define SH_IECR 0x58 /* 64 bits */ #define SH_IESR 0x60 /* 64 bits */ #define SH_IPR 0x68 /* 64 bits */ #define SH_ICR 0x70 /* 64 bits */ #define SH_IEVAL 0x78 #define SH_QER 0x80 #define SH_QEER 0x84 #define SH_QEECR 0x88 #define SH_QEESR 0x8c #define SH_QSER 0x90 #define SH_QSECR 0x94 #define SH_SIZE 0x200 /* Offsets for EDMA CC global registers */ #define EDMA_REV 0x0000 #define EDMA_CCCFG 0x0004 #define EDMA_QCHMAP 0x0200 /* 8 registers */ #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */ #define EDMA_QDMAQNUM 0x0260 #define EDMA_QUETCMAP 0x0280 #define EDMA_QUEPRI 0x0284 #define EDMA_EMR 0x0300 /* 64 bits */ #define EDMA_EMCR 0x0308 /* 64 bits */ #define EDMA_QEMR 0x0310 #define EDMA_QEMCR 0x0314 #define EDMA_CCERR 0x0318 #define EDMA_CCERRCLR 0x031c #define EDMA_EEVAL 0x0320 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/ #define EDMA_QRAE 0x0380 /* 4 registers */ #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */ #define EDMA_QSTAT 0x0600 /* 2 registers */ #define EDMA_QWMTHRA 0x0620 #define EDMA_QWMTHRB 0x0624 #define EDMA_CCSTAT 0x0640 #define EDMA_M 0x1000 /* global channel registers */ #define EDMA_ECR 0x1008 #define EDMA_ECRH 0x100C #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */ #define EDMA_PARM 0x4000 /* 128 param entries */ #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) #define EDMA_DCHMAP 0x0100 /* 64 registers */ /* CCCFG register */ #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */ #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */ #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */ #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */ #define CHMAP_EXIST BIT(24) #define EDMA_MAX_DMACH 64 #define EDMA_MAX_PARAMENTRY 512 /*****************************************************************************/ static void __iomem *edmacc_regs_base[EDMA_MAX_CC]; static inline unsigned int edma_read(unsigned ctlr, int offset) { return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset); } static inline void edma_write(unsigned ctlr, int offset, int val) { __raw_writel(val, edmacc_regs_base[ctlr] + offset); } static inline void edma_modify(unsigned ctlr, int offset, unsigned and, unsigned or) { unsigned val = edma_read(ctlr, offset); val &= and; val |= or; edma_write(ctlr, offset, val); } static inline void edma_and(unsigned ctlr, int offset, unsigned and) { unsigned val = edma_read(ctlr, offset); val &= and; edma_write(ctlr, offset, val); } static inline void edma_or(unsigned ctlr, int offset, unsigned or) { unsigned val = edma_read(ctlr, offset); val |= or; edma_write(ctlr, offset, val); } static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i) { return edma_read(ctlr, offset + (i << 2)); } static inline void edma_write_array(unsigned ctlr, int offset, int i, unsigned val) { edma_write(ctlr, offset + (i << 2), val); } static inline void edma_modify_array(unsigned ctlr, int offset, int i, unsigned and, unsigned or) { edma_modify(ctlr, offset + (i << 2), and, or); } static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or) { edma_or(ctlr, offset + (i << 2), or); } static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j, unsigned or) { edma_or(ctlr, offset + ((i*2 + j) << 2), or); } static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j, unsigned val) { edma_write(ctlr, offset + ((i*2 + j) << 2), val); } static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset) { return edma_read(ctlr, EDMA_SHADOW0 + offset); } static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset, int i) { return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2)); } static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val) { edma_write(ctlr, EDMA_SHADOW0 + offset, val); } static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i, unsigned val) { edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val); } static inline unsigned int edma_parm_read(unsigned ctlr, int offset, int param_no) { return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5)); } static inline void edma_parm_write(unsigned ctlr, int offset, int param_no, unsigned val) { edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val); } static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no, unsigned and, unsigned or) { edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or); } static inline void edma_parm_and(unsigned ctlr, int offset, int param_no, unsigned and) { edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and); } static inline void edma_parm_or(unsigned ctlr, int offset, int param_no, unsigned or) { edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or); } static inline void set_bits(int offset, int len, unsigned long *p) { for (; len > 0; len--) set_bit(offset + (len - 1), p); } static inline void clear_bits(int offset, int len, unsigned long *p) { for (; len > 0; len--) clear_bit(offset + (len - 1), p); } /*****************************************************************************/ /* actual number of DMA channels and slots on this silicon */ struct edma { /* how many dma resources of each type */ unsigned num_channels; unsigned num_region; unsigned num_slots; unsigned num_tc; enum dma_event_q default_queue; /* list of channels with no even trigger; terminated by "-1" */ const s8 *noevent; struct edma_soc_info *info; /* The edma_inuse bit for each PaRAM slot is clear unless the * channel is in use ... by ARM or DSP, for QDMA, or whatever. */ DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY); /* The edma_unused bit for each channel is clear unless * it is not being used on this platform. It uses a bit * of SOC-specific initialization code. */ DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH); unsigned irq_res_start; unsigned irq_res_end; struct dma_interrupt_data { void (*callback)(unsigned channel, unsigned short ch_status, void *data); void *data; } intr_data[EDMA_MAX_DMACH]; }; static struct edma *edma_cc[EDMA_MAX_CC]; static int arch_num_cc; /* dummy param set used to (re)initialize parameter RAM slots */ static const struct edmacc_param dummy_paramset = { .link_bcntrld = 0xffff, .ccnt = 1, }; static const struct of_device_id edma_of_ids[] = { { .compatible = "ti,edma3", }, {} }; /*****************************************************************************/ static void map_dmach_queue(unsigned ctlr, unsigned ch_no, enum dma_event_q queue_no) { int bit = (ch_no & 0x7) * 4; /* default to low priority queue */ if (queue_no == EVENTQ_DEFAULT) queue_no = edma_cc[ctlr]->default_queue; queue_no &= 7; edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3), ~(0x7 << bit), queue_no << bit); } static void assign_priority_to_queue(unsigned ctlr, int queue_no, int priority) { int bit = queue_no * 4; edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); } /** * map_dmach_param - Maps channel number to param entry number * * This maps the dma channel number to param entry numberter. In * other words using the DMA channel mapping registers a param entry * can be mapped to any channel * * Callers are responsible for ensuring the channel mapping logic is * included in that particular EDMA variant (Eg : dm646x) * */ static void map_dmach_param(unsigned ctlr) { int i; for (i = 0; i < EDMA_MAX_DMACH; i++) edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5)); } static inline void setup_dma_interrupt(unsigned lch, void (*callback)(unsigned channel, u16 ch_status, void *data), void *data) { unsigned ctlr; ctlr = EDMA_CTLR(lch); lch = EDMA_CHAN_SLOT(lch); if (!callback) edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5, BIT(lch & 0x1f)); edma_cc[ctlr]->intr_data[lch].callback = callback; edma_cc[ctlr]->intr_data[lch].data = data; if (callback) { edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5, BIT(lch & 0x1f)); edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5, BIT(lch & 0x1f)); } } static int irq2ctlr(int irq) { if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end) return 0; else if (irq >= edma_cc[1]->irq_res_start && irq <= edma_cc[1]->irq_res_end) return 1; return -1; } /****************************************************************************** * * DMA interrupt handler * *****************************************************************************/ static irqreturn_t dma_irq_handler(int irq, void *data) { int ctlr; u32 sh_ier; u32 sh_ipr; u32 bank; ctlr = irq2ctlr(irq); if (ctlr < 0) return IRQ_NONE; dev_dbg(data, "dma_irq_handler\n"); sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 0); if (!sh_ipr) { sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 1); if (!sh_ipr) return IRQ_NONE; sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 1); bank = 1; } else { sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 0); bank = 0; } do { u32 slot; u32 channel; dev_dbg(data, "IPR%d %08x\n", bank, sh_ipr); slot = __ffs(sh_ipr); sh_ipr &= ~(BIT(slot)); if (sh_ier & BIT(slot)) { channel = (bank << 5) | slot; /* Clear the corresponding IPR bits */ edma_shadow0_write_array(ctlr, SH_ICR, bank, BIT(slot)); if (edma_cc[ctlr]->intr_data[channel].callback) edma_cc[ctlr]->intr_data[channel].callback( channel, EDMA_DMA_COMPLETE, edma_cc[ctlr]->intr_data[channel].data); } } while (sh_ipr); edma_shadow0_write(ctlr, SH_IEVAL, 1); return IRQ_HANDLED; } /****************************************************************************** * * DMA error interrupt handler * *****************************************************************************/ static irqreturn_t dma_ccerr_handler(int irq, void *data) { int i; int ctlr; unsigned int cnt = 0; ctlr = irq2ctlr(irq); if (ctlr < 0) return IRQ_NONE; dev_dbg(data, "dma_ccerr_handler\n"); if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) && (edma_read_array(ctlr, EDMA_EMR, 1) == 0) && (edma_read(ctlr, EDMA_QEMR) == 0) && (edma_read(ctlr, EDMA_CCERR) == 0)) return IRQ_NONE; while (1) { int j = -1; if (edma_read_array(ctlr, EDMA_EMR, 0)) j = 0; else if (edma_read_array(ctlr, EDMA_EMR, 1)) j = 1; if (j >= 0) { dev_dbg(data, "EMR%d %08x\n", j, edma_read_array(ctlr, EDMA_EMR, j)); for (i = 0; i < 32; i++) { int k = (j << 5) + i; if (edma_read_array(ctlr, EDMA_EMR, j) & BIT(i)) { /* Clear the corresponding EMR bits */ edma_write_array(ctlr, EDMA_EMCR, j, BIT(i)); /* Clear any SER */ edma_shadow0_write_array(ctlr, SH_SECR, j, BIT(i)); if (edma_cc[ctlr]->intr_data[k]. callback) { edma_cc[ctlr]->intr_data[k]. callback(k, EDMA_DMA_CC_ERROR, edma_cc[ctlr]->intr_data [k].data); } } } } else if (edma_read(ctlr, EDMA_QEMR)) { dev_dbg(data, "QEMR %02x\n", edma_read(ctlr, EDMA_QEMR)); for (i = 0; i < 8; i++) { if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) { /* Clear the corresponding IPR bits */ edma_write(ctlr, EDMA_QEMCR, BIT(i)); edma_shadow0_write(ctlr, SH_QSECR, BIT(i)); /* NOTE: not reported!! */ } } } else if (edma_read(ctlr, EDMA_CCERR)) { dev_dbg(data, "CCERR %08x\n", edma_read(ctlr, EDMA_CCERR)); /* FIXME: CCERR.BIT(16) ignored! much better * to just write CCERRCLR with CCERR value... */ for (i = 0; i < 8; i++) { if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) { /* Clear the corresponding IPR bits */ edma_write(ctlr, EDMA_CCERRCLR, BIT(i)); /* NOTE: not reported!! */ } } } if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) && (edma_read_array(ctlr, EDMA_EMR, 1) == 0) && (edma_read(ctlr, EDMA_QEMR) == 0) && (edma_read(ctlr, EDMA_CCERR) == 0)) break; cnt++; if (cnt > 10) break; } edma_write(ctlr, EDMA_EEVAL, 1); return IRQ_HANDLED; } static int reserve_contiguous_slots(int ctlr, unsigned int id, unsigned int num_slots, unsigned int start_slot) { int i, j; unsigned int count = num_slots; int stop_slot = start_slot; DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY); for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) { j = EDMA_CHAN_SLOT(i); if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) { /* Record our current beginning slot */ if (count == num_slots) stop_slot = i; count--; set_bit(j, tmp_inuse); if (count == 0) break; } else { clear_bit(j, tmp_inuse); if (id == EDMA_CONT_PARAMS_FIXED_EXACT) { stop_slot = i; break; } else { count = num_slots; } } } /* * We have to clear any bits that we set * if we run out parameter RAM slots, i.e we do find a set * of contiguous parameter RAM slots but do not find the exact number * requested as we may reach the total number of parameter RAM slots */ if (i == edma_cc[ctlr]->num_slots) stop_slot = i; j = start_slot; for_each_set_bit_from(j, tmp_inuse, stop_slot) clear_bit(j, edma_cc[ctlr]->edma_inuse); if (count) return -EBUSY; for (j = i - num_slots + 1; j <= i; ++j) memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j), &dummy_paramset, PARM_SIZE); return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1); } static int prepare_unused_channel_list(struct device *dev, void *data) { struct platform_device *pdev = to_platform_device(dev); int i, count, ctlr; struct of_phandle_args dma_spec; if (dev->of_node) { count = of_property_count_strings(dev->of_node, "dma-names"); if (count < 0) return 0; for (i = 0; i < count; i++) { if (of_parse_phandle_with_args(dev->of_node, "dmas", "#dma-cells", i, &dma_spec)) continue; if (!of_match_node(edma_of_ids, dma_spec.np)) { of_node_put(dma_spec.np); continue; } clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]), edma_cc[0]->edma_unused); of_node_put(dma_spec.np); } return 0; } /* For non-OF case */ for (i = 0; i < pdev->num_resources; i++) { if ((pdev->resource[i].flags & IORESOURCE_DMA) && (int)pdev->resource[i].start >= 0) { ctlr = EDMA_CTLR(pdev->resource[i].start); clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start), edma_cc[ctlr]->edma_unused); } } return 0; } /*-----------------------------------------------------------------------*/ static bool unused_chan_list_done; /* Resource alloc/free: dma channels, parameter RAM slots */ /** * edma_alloc_channel - allocate DMA channel and paired parameter RAM * @channel: specific channel to allocate; negative for "any unmapped channel" * @callback: optional; to be issued on DMA completion or errors * @data: passed to callback * @eventq_no: an EVENTQ_* constant, used to choose which Transfer * Controller (TC) executes requests using this channel. Use * EVENTQ_DEFAULT unless you really need a high priority queue. * * This allocates a DMA channel and its associated parameter RAM slot. * The parameter RAM is initialized to hold a dummy transfer. * * Normal use is to pass a specific channel number as @channel, to make * use of hardware events mapped to that channel. When the channel will * be used only for software triggering or event chaining, channels not * mapped to hardware events (or mapped to unused events) are preferable. * * DMA transfers start from a channel using edma_start(), or by * chaining. When the transfer described in that channel's parameter RAM * slot completes, that slot's data may be reloaded through a link. * * DMA errors are only reported to the @callback associated with the * channel driving that transfer, but transfer completion callbacks can * be sent to another channel under control of the TCC field in * the option word of the transfer's parameter RAM set. Drivers must not * use DMA transfer completion callbacks for channels they did not allocate. * (The same applies to TCC codes used in transfer chaining.) * * Returns the number of the channel, else negative errno. */ int edma_alloc_channel(int channel, void (*callback)(unsigned channel, u16 ch_status, void *data), void *data, enum dma_event_q eventq_no) { unsigned i, done = 0, ctlr = 0; int ret = 0; if (!unused_chan_list_done) { /* * Scan all the platform devices to find out the EDMA channels * used and clear them in the unused list, making the rest * available for ARM usage. */ ret = bus_for_each_dev(&platform_bus_type, NULL, NULL, prepare_unused_channel_list); if (ret < 0) return ret; unused_chan_list_done = true; } if (channel >= 0) { ctlr = EDMA_CTLR(channel); channel = EDMA_CHAN_SLOT(channel); } if (channel < 0) { for (i = 0; i < arch_num_cc; i++) { channel = 0; for (;;) { channel = find_next_bit(edma_cc[i]->edma_unused, edma_cc[i]->num_channels, channel); if (channel == edma_cc[i]->num_channels) break; if (!test_and_set_bit(channel, edma_cc[i]->edma_inuse)) { done = 1; ctlr = i; break; } channel++; } if (done) break; } if (!done) return -ENOMEM; } else if (channel >= edma_cc[ctlr]->num_channels) { return -EINVAL; } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) { return -EBUSY; } /* ensure access through shadow region 0 */ edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f)); /* ensure no events are pending */ edma_stop(EDMA_CTLR_CHAN(ctlr, channel)); memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel), &dummy_paramset, PARM_SIZE); if (callback) setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel), callback, data); map_dmach_queue(ctlr, channel, eventq_no); return EDMA_CTLR_CHAN(ctlr, channel); } EXPORT_SYMBOL(edma_alloc_channel); /** * edma_free_channel - deallocate DMA channel * @channel: dma channel returned from edma_alloc_channel() * * This deallocates the DMA channel and associated parameter RAM slot * allocated by edma_alloc_channel(). * * Callers are responsible for ensuring the channel is inactive, and * will not be reactivated by linking, chaining, or software calls to * edma_start(). */ void edma_free_channel(unsigned channel) { unsigned ctlr; ctlr = EDMA_CTLR(channel); channel = EDMA_CHAN_SLOT(channel); if (channel >= edma_cc[ctlr]->num_channels) return; setup_dma_interrupt(channel, NULL, NULL); /* REVISIT should probably take out of shadow region 0 */ memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel), &dummy_paramset, PARM_SIZE); clear_bit(channel, edma_cc[ctlr]->edma_inuse); } EXPORT_SYMBOL(edma_free_channel); /** * edma_alloc_slot - allocate DMA parameter RAM * @slot: specific slot to allocate; negative for "any unused slot" * * This allocates a parameter RAM slot, initializing it to hold a * dummy transfer. Slots allocated using this routine have not been * mapped to a hardware DMA channel, and will normally be used by * linking to them from a slot associated with a DMA channel. * * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific * slots may be allocated on behalf of DSP firmware. * * Returns the number of the slot, else negative errno. */ int edma_alloc_slot(unsigned ctlr, int slot) { if (!edma_cc[ctlr]) return -EINVAL; if (slot >= 0) slot = EDMA_CHAN_SLOT(slot); if (slot < 0) { slot = edma_cc[ctlr]->num_channels; for (;;) { slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse, edma_cc[ctlr]->num_slots, slot); if (slot == edma_cc[ctlr]->num_slots) return -ENOMEM; if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) break; } } else if (slot < edma_cc[ctlr]->num_channels || slot >= edma_cc[ctlr]->num_slots) { return -EINVAL; } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) { return -EBUSY; } memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), &dummy_paramset, PARM_SIZE); return EDMA_CTLR_CHAN(ctlr, slot); } EXPORT_SYMBOL(edma_alloc_slot); /** * edma_free_slot - deallocate DMA parameter RAM * @slot: parameter RAM slot returned from edma_alloc_slot() * * This deallocates the parameter RAM slot allocated by edma_alloc_slot(). * Callers are responsible for ensuring the slot is inactive, and will * not be activated. */ void edma_free_slot(unsigned slot) { unsigned ctlr; ctlr = EDMA_CTLR(slot); slot = EDMA_CHAN_SLOT(slot); if (slot < edma_cc[ctlr]->num_channels || slot >= edma_cc[ctlr]->num_slots) return; memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), &dummy_paramset, PARM_SIZE); clear_bit(slot, edma_cc[ctlr]->edma_inuse); } EXPORT_SYMBOL(edma_free_slot); /** * edma_alloc_cont_slots- alloc contiguous parameter RAM slots * The API will return the starting point of a set of * contiguous parameter RAM slots that have been requested * * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT * @count: number of contiguous Paramter RAM slots * @slot - the start value of Parameter RAM slot that should be passed if id * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT * * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of * contiguous Parameter RAM slots from parameter RAM 64 in the case of * DaVinci SOCs and 32 in the case of DA8xx SOCs. * * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a * set of contiguous parameter RAM slots from the "slot" that is passed as an * argument to the API. * * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries * starts looking for a set of contiguous parameter RAMs from the "slot" * that is passed as an argument to the API. On failure the API will try to * find a set of contiguous Parameter RAM slots from the remaining Parameter * RAM slots */ int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count) { /* * The start slot requested should be greater than * the number of channels and lesser than the total number * of slots */ if ((id != EDMA_CONT_PARAMS_ANY) && (slot < edma_cc[ctlr]->num_channels || slot >= edma_cc[ctlr]->num_slots)) return -EINVAL; /* * The number of parameter RAM slots requested cannot be less than 1 * and cannot be more than the number of slots minus the number of * channels */ if (count < 1 || count > (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels)) return -EINVAL; switch (id) { case EDMA_CONT_PARAMS_ANY: return reserve_contiguous_slots(ctlr, id, count, edma_cc[ctlr]->num_channels); case EDMA_CONT_PARAMS_FIXED_EXACT: case EDMA_CONT_PARAMS_FIXED_NOT_EXACT: return reserve_contiguous_slots(ctlr, id, count, slot); default: return -EINVAL; } } EXPORT_SYMBOL(edma_alloc_cont_slots); /** * edma_free_cont_slots - deallocate DMA parameter RAM slots * @slot: first parameter RAM of a set of parameter RAM slots to be freed * @count: the number of contiguous parameter RAM slots to be freed * * This deallocates the parameter RAM slots allocated by * edma_alloc_cont_slots. * Callers/applications need to keep track of sets of contiguous * parameter RAM slots that have been allocated using the edma_alloc_cont_slots * API. * Callers are responsible for ensuring the slots are inactive, and will * not be activated. */ int edma_free_cont_slots(unsigned slot, int count) { unsigned ctlr, slot_to_free; int i; ctlr = EDMA_CTLR(slot); slot = EDMA_CHAN_SLOT(slot); if (slot < edma_cc[ctlr]->num_channels || slot >= edma_cc[ctlr]->num_slots || count < 1) return -EINVAL; for (i = slot; i < slot + count; ++i) { ctlr = EDMA_CTLR(i); slot_to_free = EDMA_CHAN_SLOT(i); memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free), &dummy_paramset, PARM_SIZE); clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse); } return 0; } EXPORT_SYMBOL(edma_free_cont_slots); /*-----------------------------------------------------------------------*/ /* Parameter RAM operations (i) -- read/write partial slots */ /** * edma_set_src - set initial DMA source address in parameter RAM slot * @slot: parameter RAM slot being configured * @src_port: physical address of source (memory, controller FIFO, etc) * @addressMode: INCR, except in very rare cases * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the * width to use when addressing the fifo (e.g. W8BIT, W32BIT) * * Note that the source address is modified during the DMA transfer * according to edma_set_src_index(). */ void edma_set_src(unsigned slot, dma_addr_t src_port, enum address_mode mode, enum fifo_width width) { unsigned ctlr; ctlr = EDMA_CTLR(slot); slot = EDMA_CHAN_SLOT(slot); if (slot < edma_cc[ctlr]->num_slots) { unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot); if (mode) { /* set SAM and program FWID */ i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8)); } else { /* clear SAM */ i &= ~SAM; } edma_parm_write(ctlr, PARM_OPT, slot, i); /* set the source port address in source register of param structure */ edma_parm_write(ctlr, PARM_SRC, slot, src_port); } } EXPORT_SYMBOL(edma_set_src); /** * edma_set_dest - set initial DMA destination address in parameter RAM slot * @slot: parameter RAM slot being configured * @dest_port: physical address of destination (memory, controller FIFO, etc) * @addressMode: INCR, except in very rare cases * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the * width to use when addressing the fifo (e.g. W8BIT, W32BIT) * * Note that the destination address is modified during the DMA transfer * according to edma_set_dest_index(). */ void edma_set_dest(unsigned slot, dma_addr_t dest_port, enum address_mode mode, enum fifo_width width) { unsigned ctlr; ctlr = EDMA_CTLR(slot); slot = EDMA_CHAN_SLOT(slot); if (slot < edma_cc[ctlr]->num_slots) { unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot); if (mode) { /* set DAM and program FWID */ i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8)); } else { /* clear DAM */ i &= ~DAM; } edma_parm_write(ctlr, PARM_OPT, slot, i); /* set the destination port address in dest register of param structure */ edma_parm_write(ctlr, PARM_DST, slot, dest_port); } } EXPORT_SYMBOL(edma_set_dest); /** * edma_get_position - returns the current transfer point * @slot: parameter RAM slot being examined * @dst: true selects the dest position, false the source * * Returns the position of the current active slot */ dma_addr_t edma_get_position(unsigned slot, bool dst) { u32 offs, ctlr = EDMA_CTLR(slot); slot = EDMA_CHAN_SLOT(slot); offs = PARM_OFFSET(slot); offs += dst ? PARM_DST : PARM_SRC; return edma_read(ctlr, offs); } /** * edma_set_src_index - configure DMA source address indexing * @slot: parameter RAM slot being configured * @src_bidx: byte offset between source arrays in a frame * @src_cidx: byte offset between source frames in a block * * Offsets are specified to support either contiguous or discontiguous * memory transfers, or repeated access to a hardware register, as needed. * When accessing hardware registers, both offsets are normally zero. */ void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx) { unsigned ctlr; ctlr = EDMA_CTLR(slot); slot = EDMA_CHAN_SLOT(slot); if (slot < edma_cc[ctlr]->num_slots) { edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot, 0xffff0000, src_bidx); edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot, 0xffff0000, src_cidx); } } EXPORT_SYMBOL(edma_set_src_index); /** * edma_set_dest_index - configure DMA destination address indexing * @slot: parameter RAM slot being configured * @dest_bidx: byte offset between destination arrays in a frame * @dest_cidx: byte offset between destination frames in a block * * Offsets are specified to support either contiguous or discontiguous * memory transfers, or repeated access to a hardware register, as needed. * When accessing hardware registers, both offsets are normally zero. */ void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx) { unsigned ctlr; ctlr = EDMA_CTLR(slot); slot = EDMA_CHAN_SLOT(slot); if (slot < edma_cc[ctlr]->num_slots) { edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot, 0x0000ffff, dest_bidx << 16); edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot, 0x0000ffff, dest_cidx << 16); } } EXPORT_SYMBOL(edma_set_dest_index); /** * edma_set_transfer_params - configure DMA transfer parameters * @slot: parameter RAM slot being configured * @acnt: how many bytes per array (at least one) * @bcnt: how many arrays per frame (at least one) * @ccnt: how many frames per block (at least one) * @bcnt_rld: used only for A-Synchronized transfers; this specifies * the value to reload into bcnt when it decrements to zero * @sync_mode: ASYNC or ABSYNC * * See the EDMA3 documentation to understand how to configure and link * transfers using the fields in PaRAM slots. If you are not doing it * all at once with edma_write_slot(), you will use this routine * plus two calls each for source and destination, setting the initial * address and saying how to index that address. * * An example of an A-Synchronized transfer is a serial link using a * single word shift register. In that case, @acnt would be equal to * that word size; the serial controller issues a DMA synchronization * event to transfer each word, and memory access by the DMA transfer * controller will be word-at-a-time. * * An example of an AB-Synchronized transfer is a device using a FIFO. * In that case, @acnt equals the FIFO width and @bcnt equals its depth. * The controller with the FIFO issues DMA synchronization events when * the FIFO threshold is reached, and the DMA transfer controller will * transfer one frame to (or from) the FIFO. It will probably use * efficient burst modes to access memory. */ void edma_set_transfer_params(unsigned slot, u16 acnt, u16 bcnt, u16 ccnt, u16 bcnt_rld, enum sync_dimension sync_mode) { unsigned ctlr; ctlr = EDMA_CTLR(slot); slot = EDMA_CHAN_SLOT(slot); if (slot < edma_cc[ctlr]->num_slots) { edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot, 0x0000ffff, bcnt_rld << 16); if (sync_mode == ASYNC) edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM); else edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM); /* Set the acount, bcount, ccount registers */ edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt); edma_parm_write(ctlr, PARM_CCNT, slot, ccnt); } } EXPORT_SYMBOL(edma_set_transfer_params); /** * edma_link - link one parameter RAM slot to another * @from: parameter RAM slot originating the link * @to: parameter RAM slot which is the link target * * The originating slot should not be part of any active DMA transfer. */ void edma_link(unsigned from, unsigned to) { unsigned ctlr_from, ctlr_to; ctlr_from = EDMA_CTLR(from); from = EDMA_CHAN_SLOT(from); ctlr_to = EDMA_CTLR(to); to = EDMA_CHAN_SLOT(to); if (from >= edma_cc[ctlr_from]->num_slots) return; if (to >= edma_cc[ctlr_to]->num_slots) return; edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000, PARM_OFFSET(to)); } EXPORT_SYMBOL(edma_link); /** * edma_unlink - cut link from one parameter RAM slot * @from: parameter RAM slot originating the link * * The originating slot should not be part of any active DMA transfer. * Its link is set to 0xffff. */ void edma_unlink(unsigned from) { unsigned ctlr; ctlr = EDMA_CTLR(from); from = EDMA_CHAN_SLOT(from); if (from >= edma_cc[ctlr]->num_slots) return; edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff); } EXPORT_SYMBOL(edma_unlink); /*-----------------------------------------------------------------------*/ /* Parameter RAM operations (ii) -- read/write whole parameter sets */ /** * edma_write_slot - write parameter RAM data for slot * @slot: number of parameter RAM slot being modified * @param: data to be written into parameter RAM slot * * Use this to assign all parameters of a transfer at once. This * allows more efficient setup of transfers than issuing multiple * calls to set up those parameters in small pieces, and provides * complete control over all transfer options. */ void edma_write_slot(unsigned slot, const struct edmacc_param *param) { unsigned ctlr; ctlr = EDMA_CTLR(slot); slot = EDMA_CHAN_SLOT(slot); if (slot >= edma_cc[ctlr]->num_slots) return; memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param, PARM_SIZE); } EXPORT_SYMBOL(edma_write_slot); /** * edma_read_slot - read parameter RAM data from slot * @slot: number of parameter RAM slot being copied * @param: where to store copy of parameter RAM data * * Use this to read data from a parameter RAM slot, perhaps to * save them as a template for later reuse. */ void edma_read_slot(unsigned slot, struct edmacc_param *param) { unsigned ctlr; ctlr = EDMA_CTLR(slot); slot = EDMA_CHAN_SLOT(slot); if (slot >= edma_cc[ctlr]->num_slots) return; memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot), PARM_SIZE); } EXPORT_SYMBOL(edma_read_slot); /*-----------------------------------------------------------------------*/ /* Various EDMA channel control operations */ /** * edma_pause - pause dma on a channel * @channel: on which edma_start() has been called * * This temporarily disables EDMA hardware events on the specified channel, * preventing them from triggering new transfers on its behalf */ void edma_pause(unsigned channel) { unsigned ctlr; ctlr = EDMA_CTLR(channel); channel = EDMA_CHAN_SLOT(channel); if (channel < edma_cc[ctlr]->num_channels) { unsigned int mask = BIT(channel & 0x1f); edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask); } } EXPORT_SYMBOL(edma_pause); /** * edma_resume - resumes dma on a paused channel * @channel: on which edma_pause() has been called * * This re-enables EDMA hardware events on the specified channel. */ void edma_resume(unsigned channel) { unsigned ctlr; ctlr = EDMA_CTLR(channel); channel = EDMA_CHAN_SLOT(channel); if (channel < edma_cc[ctlr]->num_channels) { unsigned int mask = BIT(channel & 0x1f); edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask); } } EXPORT_SYMBOL(edma_resume); int edma_trigger_channel(unsigned channel) { unsigned ctlr; unsigned int mask; ctlr = EDMA_CTLR(channel); channel = EDMA_CHAN_SLOT(channel); mask = BIT(channel & 0x1f); edma_shadow0_write_array(ctlr, SH_ESR, (channel >> 5), mask); pr_debug("EDMA: ESR%d %08x\n", (channel >> 5), edma_shadow0_read_array(ctlr, SH_ESR, (channel >> 5))); return 0; } EXPORT_SYMBOL(edma_trigger_channel); /** * edma_start - start dma on a channel * @channel: channel being activated * * Channels with event associations will be triggered by their hardware * events, and channels without such associations will be triggered by * software. (At this writing there is no interface for using software * triggers except with channels that don't support hardware triggers.) * * Returns zero on success, else negative errno. */ int edma_start(unsigned channel) { unsigned ctlr; ctlr = EDMA_CTLR(channel); channel = EDMA_CHAN_SLOT(channel); if (channel < edma_cc[ctlr]->num_channels) { int j = channel >> 5; unsigned int mask = BIT(channel & 0x1f); /* EDMA channels without event association */ if (test_bit(channel, edma_cc[ctlr]->edma_unused)) { pr_debug("EDMA: ESR%d %08x\n", j, edma_shadow0_read_array(ctlr, SH_ESR, j)); edma_shadow0_write_array(ctlr, SH_ESR, j, mask); return 0; } /* EDMA channel with event association */ pr_debug("EDMA: ER%d %08x\n", j, edma_shadow0_read_array(ctlr, SH_ER, j)); /* Clear any pending event or error */ edma_write_array(ctlr, EDMA_ECR, j, mask); edma_write_array(ctlr, EDMA_EMCR, j, mask); /* Clear any SER */ edma_shadow0_write_array(ctlr, SH_SECR, j, mask); edma_shadow0_write_array(ctlr, SH_EESR, j, mask); pr_debug("EDMA: EER%d %08x\n", j, edma_shadow0_read_array(ctlr, SH_EER, j)); return 0; } return -EINVAL; } EXPORT_SYMBOL(edma_start); /** * edma_stop - stops dma on the channel passed * @channel: channel being deactivated * * When @lch is a channel, any active transfer is paused and * all pending hardware events are cleared. The current transfer * may not be resumed, and the channel's Parameter RAM should be * reinitialized before being reused. */ void edma_stop(unsigned channel) { unsigned ctlr; ctlr = EDMA_CTLR(channel); channel = EDMA_CHAN_SLOT(channel); if (channel < edma_cc[ctlr]->num_channels) { int j = channel >> 5; unsigned int mask = BIT(channel & 0x1f); edma_shadow0_write_array(ctlr, SH_EECR, j, mask); edma_shadow0_write_array(ctlr, SH_ECR, j, mask); edma_shadow0_write_array(ctlr, SH_SECR, j, mask); edma_write_array(ctlr, EDMA_EMCR, j, mask); pr_debug("EDMA: EER%d %08x\n", j, edma_shadow0_read_array(ctlr, SH_EER, j)); /* REVISIT: consider guarding against inappropriate event * chaining by overwriting with dummy_paramset. */ } } EXPORT_SYMBOL(edma_stop); /****************************************************************************** * * It cleans ParamEntry qand bring back EDMA to initial state if media has * been removed before EDMA has finished.It is usedful for removable media. * Arguments: * ch_no - channel no * * Return: zero on success, or corresponding error no on failure * * FIXME this should not be needed ... edma_stop() should suffice. * *****************************************************************************/ void edma_clean_channel(unsigned channel) { unsigned ctlr; ctlr = EDMA_CTLR(channel); channel = EDMA_CHAN_SLOT(channel); if (channel < edma_cc[ctlr]->num_channels) { int j = (channel >> 5); unsigned int mask = BIT(channel & 0x1f); pr_debug("EDMA: EMR%d %08x\n", j, edma_read_array(ctlr, EDMA_EMR, j)); edma_shadow0_write_array(ctlr, SH_ECR, j, mask); /* Clear the corresponding EMR bits */ edma_write_array(ctlr, EDMA_EMCR, j, mask); /* Clear any SER */ edma_shadow0_write_array(ctlr, SH_SECR, j, mask); edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); } } EXPORT_SYMBOL(edma_clean_channel); /* * edma_clear_event - clear an outstanding event on the DMA channel * Arguments: * channel - channel number */ void edma_clear_event(unsigned channel) { unsigned ctlr; ctlr = EDMA_CTLR(channel); channel = EDMA_CHAN_SLOT(channel); if (channel >= edma_cc[ctlr]->num_channels) return; if (channel < 32) edma_write(ctlr, EDMA_ECR, BIT(channel)); else edma_write(ctlr, EDMA_ECRH, BIT(channel - 32)); } EXPORT_SYMBOL(edma_clear_event); /* * edma_assign_channel_eventq - move given channel to desired eventq * Arguments: * channel - channel number * eventq_no - queue to move the channel * * Can be used to move a channel to a selected event queue. */ void edma_assign_channel_eventq(unsigned channel, enum dma_event_q eventq_no) { unsigned ctlr; ctlr = EDMA_CTLR(channel); channel = EDMA_CHAN_SLOT(channel); if (channel >= edma_cc[ctlr]->num_channels) return; /* default to low priority queue */ if (eventq_no == EVENTQ_DEFAULT) eventq_no = edma_cc[ctlr]->default_queue; if (eventq_no >= edma_cc[ctlr]->num_tc) return; map_dmach_queue(ctlr, channel, eventq_no); } EXPORT_SYMBOL(edma_assign_channel_eventq); static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, struct edma *edma_cc, int cc_id) { int i; u32 value, cccfg; s8 (*queue_priority_map)[2]; /* Decode the eDMA3 configuration from CCCFG register */ cccfg = edma_read(cc_id, EDMA_CCCFG); value = GET_NUM_REGN(cccfg); edma_cc->num_region = BIT(value); value = GET_NUM_DMACH(cccfg); edma_cc->num_channels = BIT(value + 1); value = GET_NUM_PAENTRY(cccfg); edma_cc->num_slots = BIT(value + 4); value = GET_NUM_EVQUE(cccfg); edma_cc->num_tc = value + 1; dev_dbg(dev, "eDMA3 CC%d HW configuration (cccfg: 0x%08x):\n", cc_id, cccfg); dev_dbg(dev, "num_region: %u\n", edma_cc->num_region); dev_dbg(dev, "num_channel: %u\n", edma_cc->num_channels); dev_dbg(dev, "num_slot: %u\n", edma_cc->num_slots); dev_dbg(dev, "num_tc: %u\n", edma_cc->num_tc); /* Nothing need to be done if queue priority is provided */ if (pdata->queue_priority_mapping) return 0; /* * Configure TC/queue priority as follows: * Q0 - priority 0 * Q1 - priority 1 * Q2 - priority 2 * ... * The meaning of priority numbers: 0 highest priority, 7 lowest * priority. So Q0 is the highest priority queue and the last queue has * the lowest priority. */ queue_priority_map = devm_kzalloc(dev, (edma_cc->num_tc + 1) * sizeof(s8), GFP_KERNEL); if (!queue_priority_map) return -ENOMEM; for (i = 0; i < edma_cc->num_tc; i++) { queue_priority_map[i][0] = i; queue_priority_map[i][1] = i; } queue_priority_map[i][0] = -1; queue_priority_map[i][1] = -1; pdata->queue_priority_mapping = queue_priority_map; /* Default queue has the lowest priority */ pdata->default_queue = i - 1; return 0; } #if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DMADEVICES) static int edma_xbar_event_map(struct device *dev, struct device_node *node, struct edma_soc_info *pdata, size_t sz) { const char pname[] = "ti,edma-xbar-event-map"; struct resource res; void __iomem *xbar; s16 (*xbar_chans)[2]; size_t nelm = sz / sizeof(s16); u32 shift, offset, mux; int ret, i; xbar_chans = devm_kzalloc(dev, (nelm + 2) * sizeof(s16), GFP_KERNEL); if (!xbar_chans) return -ENOMEM; ret = of_address_to_resource(node, 1, &res); if (ret) return -ENOMEM; xbar = devm_ioremap(dev, res.start, resource_size(&res)); if (!xbar) return -ENOMEM; ret = of_property_read_u16_array(node, pname, (u16 *)xbar_chans, nelm); if (ret) return -EIO; /* Invalidate last entry for the other user of this mess */ nelm >>= 1; xbar_chans[nelm][0] = xbar_chans[nelm][1] = -1; for (i = 0; i < nelm; i++) { shift = (xbar_chans[i][1] & 0x03) << 3; offset = xbar_chans[i][1] & 0xfffffffc; mux = readl(xbar + offset); mux &= ~(0xff << shift); mux |= xbar_chans[i][0] << shift; writel(mux, (xbar + offset)); } pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; return 0; } static int edma_of_parse_dt(struct device *dev, struct device_node *node, struct edma_soc_info *pdata) { int ret = 0; struct property *prop; size_t sz; struct edma_rsv_info *rsv_info; rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL); if (!rsv_info) return -ENOMEM; pdata->rsv = rsv_info; prop = of_find_property(node, "ti,edma-xbar-event-map", &sz); if (prop) ret = edma_xbar_event_map(dev, node, pdata, sz); return ret; } static struct of_dma_filter_info edma_filter_info = { .filter_fn = edma_filter_fn, }; static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, struct device_node *node) { struct edma_soc_info *info; int ret; info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); if (!info) return ERR_PTR(-ENOMEM); ret = edma_of_parse_dt(dev, node, info); if (ret) return ERR_PTR(ret); dma_cap_set(DMA_SLAVE, edma_filter_info.dma_cap); dma_cap_set(DMA_CYCLIC, edma_filter_info.dma_cap); of_dma_controller_register(dev->of_node, of_dma_simple_xlate, &edma_filter_info); return info; } #else static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, struct device_node *node) { return ERR_PTR(-ENOSYS); } #endif static int edma_probe(struct platform_device *pdev) { struct edma_soc_info **info = pdev->dev.platform_data; struct edma_soc_info *ninfo[EDMA_MAX_CC] = {NULL}; s8 (*queue_priority_mapping)[2]; int i, j, off, ln, found = 0; int status = -1; const s16 (*rsv_chans)[2]; const s16 (*rsv_slots)[2]; const s16 (*xbar_chans)[2]; int irq[EDMA_MAX_CC] = {0, 0}; int err_irq[EDMA_MAX_CC] = {0, 0}; struct resource *r[EDMA_MAX_CC] = {NULL}; struct resource res[EDMA_MAX_CC]; char res_name[10]; struct device_node *node = pdev->dev.of_node; struct device *dev = &pdev->dev; int ret; if (node) { /* Check if this is a second instance registered */ if (arch_num_cc) { dev_err(dev, "only one EDMA instance is supported via DT\n"); return -ENODEV; } ninfo[0] = edma_setup_info_from_dt(dev, node); if (IS_ERR(ninfo[0])) { dev_err(dev, "failed to get DT data\n"); return PTR_ERR(ninfo[0]); } info = ninfo; } if (!info) return -ENODEV; pm_runtime_enable(dev); ret = pm_runtime_get_sync(dev); if (ret < 0) { dev_err(dev, "pm_runtime_get_sync() failed\n"); return ret; } for (j = 0; j < EDMA_MAX_CC; j++) { if (!info[j]) { if (!found) return -ENODEV; break; } if (node) { ret = of_address_to_resource(node, j, &res[j]); if (!ret) r[j] = &res[j]; } else { sprintf(res_name, "edma_cc%d", j); r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); } if (!r[j]) { if (found) break; else return -ENODEV; } else { found = 1; } edmacc_regs_base[j] = devm_ioremap_resource(&pdev->dev, r[j]); if (IS_ERR(edmacc_regs_base[j])) return PTR_ERR(edmacc_regs_base[j]); edma_cc[j] = devm_kzalloc(&pdev->dev, sizeof(struct edma), GFP_KERNEL); if (!edma_cc[j]) return -ENOMEM; /* Get eDMA3 configuration from IP */ ret = edma_setup_from_hw(dev, info[j], edma_cc[j], j); if (ret) return ret; edma_cc[j]->default_queue = info[j]->default_queue; dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n", edmacc_regs_base[j]); for (i = 0; i < edma_cc[j]->num_slots; i++) memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i), &dummy_paramset, PARM_SIZE); /* Mark all channels as unused */ memset(edma_cc[j]->edma_unused, 0xff, sizeof(edma_cc[j]->edma_unused)); if (info[j]->rsv) { /* Clear the reserved channels in unused list */ rsv_chans = info[j]->rsv->rsv_chans; if (rsv_chans) { for (i = 0; rsv_chans[i][0] != -1; i++) { off = rsv_chans[i][0]; ln = rsv_chans[i][1]; clear_bits(off, ln, edma_cc[j]->edma_unused); } } /* Set the reserved slots in inuse list */ rsv_slots = info[j]->rsv->rsv_slots; if (rsv_slots) { for (i = 0; rsv_slots[i][0] != -1; i++) { off = rsv_slots[i][0]; ln = rsv_slots[i][1]; set_bits(off, ln, edma_cc[j]->edma_inuse); } } } /* Clear the xbar mapped channels in unused list */ xbar_chans = info[j]->xbar_chans; if (xbar_chans) { for (i = 0; xbar_chans[i][1] != -1; i++) { off = xbar_chans[i][1]; clear_bits(off, 1, edma_cc[j]->edma_unused); } } if (node) { irq[j] = irq_of_parse_and_map(node, 0); err_irq[j] = irq_of_parse_and_map(node, 2); } else { char irq_name[10]; sprintf(irq_name, "edma%d", j); irq[j] = platform_get_irq_byname(pdev, irq_name); sprintf(irq_name, "edma%d_err", j); err_irq[j] = platform_get_irq_byname(pdev, irq_name); } edma_cc[j]->irq_res_start = irq[j]; edma_cc[j]->irq_res_end = err_irq[j]; status = devm_request_irq(dev, irq[j], dma_irq_handler, 0, "edma", dev); if (status < 0) { dev_dbg(&pdev->dev, "devm_request_irq %d failed --> %d\n", irq[j], status); return status; } status = devm_request_irq(dev, err_irq[j], dma_ccerr_handler, 0, "edma_error", dev); if (status < 0) { dev_dbg(&pdev->dev, "devm_request_irq %d failed --> %d\n", err_irq[j], status); return status; } for (i = 0; i < edma_cc[j]->num_channels; i++) map_dmach_queue(j, i, info[j]->default_queue); queue_priority_mapping = info[j]->queue_priority_mapping; /* Event queue priority mapping */ for (i = 0; queue_priority_mapping[i][0] != -1; i++) assign_priority_to_queue(j, queue_priority_mapping[i][0], queue_priority_mapping[i][1]); /* Map the channel to param entry if channel mapping logic * exist */ if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST) map_dmach_param(j); for (i = 0; i < edma_cc[j]->num_region; i++) { edma_write_array2(j, EDMA_DRAE, i, 0, 0x0); edma_write_array2(j, EDMA_DRAE, i, 1, 0x0); edma_write_array(j, EDMA_QRAE, i, 0x0); } edma_cc[j]->info = info[j]; arch_num_cc++; } return 0; } static int edma_pm_resume(struct device *dev) { int i, j; for (j = 0; j < arch_num_cc; j++) { struct edma *cc = edma_cc[j]; s8 (*queue_priority_mapping)[2]; queue_priority_mapping = cc->info->queue_priority_mapping; /* Event queue priority mapping */ for (i = 0; queue_priority_mapping[i][0] != -1; i++) assign_priority_to_queue(j, queue_priority_mapping[i][0], queue_priority_mapping[i][1]); /* * Map the channel to param entry if channel mapping logic * exist */ if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST) map_dmach_param(j); for (i = 0; i < cc->num_channels; i++) { if (test_bit(i, cc->edma_inuse)) { /* ensure access through shadow region 0 */ edma_or_array2(j, EDMA_DRAE, 0, i >> 5, BIT(i & 0x1f)); setup_dma_interrupt(i, cc->intr_data[i].callback, cc->intr_data[i].data); } } } return 0; } static const struct dev_pm_ops edma_pm_ops = { SET_LATE_SYSTEM_SLEEP_PM_OPS(NULL, edma_pm_resume) }; static struct platform_driver edma_driver = { .driver = { .name = "edma", .pm = &edma_pm_ops, .of_match_table = edma_of_ids, }, .probe = edma_probe, }; static int __init edma_init(void) { return platform_driver_probe(&edma_driver, edma_probe); } arch_initcall(edma_init);