#ifndef __ASM_SPINLOCK_H #define __ASM_SPINLOCK_H #if __LINUX_ARM_ARCH__ < 6 #error SMP not supported on pre-ARMv6 CPUs #endif /* * ARMv6 Spin-locking. * * We exclusively read the old value. If it is zero, we may have * won the lock, so we try exclusively storing it. A memory barrier * is required after we get a lock, and before we release it, because * V6 CPUs are assumed to have weakly ordered memory. * * Unlocked value: 0 * Locked value: 1 */ #define __raw_spin_is_locked(x) ((x)->lock != 0) #define __raw_spin_unlock_wait(lock) \ do { while (__raw_spin_is_locked(lock)) cpu_relax(); } while (0) #define __raw_spin_lock_flags(lock, flags) __raw_spin_lock(lock) static inline void __raw_spin_lock(arch_spinlock_t *lock) { unsigned long tmp; __asm__ __volatile__( "1: ldrex %0, [%1]\n" " teq %0, #0\n" #ifdef CONFIG_CPU_32v6K " wfene\n" #endif " strexeq %0, %2, [%1]\n" " teqeq %0, #0\n" " bne 1b" : "=&r" (tmp) : "r" (&lock->lock), "r" (1) : "cc"); smp_mb(); } static inline int __raw_spin_trylock(arch_spinlock_t *lock) { unsigned long tmp; __asm__ __volatile__( " ldrex %0, [%1]\n" " teq %0, #0\n" " strexeq %0, %2, [%1]" : "=&r" (tmp) : "r" (&lock->lock), "r" (1) : "cc"); if (tmp == 0) { smp_mb(); return 1; } else { return 0; } } static inline void __raw_spin_unlock(arch_spinlock_t *lock) { smp_mb(); __asm__ __volatile__( " str %1, [%0]\n" #ifdef CONFIG_CPU_32v6K " mcr p15, 0, %1, c7, c10, 4\n" /* DSB */ " sev" #endif : : "r" (&lock->lock), "r" (0) : "cc"); } /* * RWLOCKS * * * Write locks are easy - we just set bit 31. When unlocking, we can * just write zero since the lock is exclusively held. */ static inline void __raw_write_lock(raw_rwlock_t *rw) { unsigned long tmp; __asm__ __volatile__( "1: ldrex %0, [%1]\n" " teq %0, #0\n" #ifdef CONFIG_CPU_32v6K " wfene\n" #endif " strexeq %0, %2, [%1]\n" " teq %0, #0\n" " bne 1b" : "=&r" (tmp) : "r" (&rw->lock), "r" (0x80000000) : "cc"); smp_mb(); } static inline int __raw_write_trylock(raw_rwlock_t *rw) { unsigned long tmp; __asm__ __volatile__( "1: ldrex %0, [%1]\n" " teq %0, #0\n" " strexeq %0, %2, [%1]" : "=&r" (tmp) : "r" (&rw->lock), "r" (0x80000000) : "cc"); if (tmp == 0) { smp_mb(); return 1; } else { return 0; } } static inline void __raw_write_unlock(raw_rwlock_t *rw) { smp_mb(); __asm__ __volatile__( "str %1, [%0]\n" #ifdef CONFIG_CPU_32v6K " mcr p15, 0, %1, c7, c10, 4\n" /* DSB */ " sev\n" #endif : : "r" (&rw->lock), "r" (0) : "cc"); } /* write_can_lock - would write_trylock() succeed? */ #define __raw_write_can_lock(x) ((x)->lock == 0) /* * Read locks are a bit more hairy: * - Exclusively load the lock value. * - Increment it. * - Store new lock value if positive, and we still own this location. * If the value is negative, we've already failed. * - If we failed to store the value, we want a negative result. * - If we failed, try again. * Unlocking is similarly hairy. We may have multiple read locks * currently active. However, we know we won't have any write * locks. */ static inline void __raw_read_lock(raw_rwlock_t *rw) { unsigned long tmp, tmp2; __asm__ __volatile__( "1: ldrex %0, [%2]\n" " adds %0, %0, #1\n" " strexpl %1, %0, [%2]\n" #ifdef CONFIG_CPU_32v6K " wfemi\n" #endif " rsbpls %0, %1, #0\n" " bmi 1b" : "=&r" (tmp), "=&r" (tmp2) : "r" (&rw->lock) : "cc"); smp_mb(); } static inline void __raw_read_unlock(raw_rwlock_t *rw) { unsigned long tmp, tmp2; smp_mb(); __asm__ __volatile__( "1: ldrex %0, [%2]\n" " sub %0, %0, #1\n" " strex %1, %0, [%2]\n" " teq %1, #0\n" " bne 1b" #ifdef CONFIG_CPU_32v6K "\n cmp %0, #0\n" " mcreq p15, 0, %0, c7, c10, 4\n" " seveq" #endif : "=&r" (tmp), "=&r" (tmp2) : "r" (&rw->lock) : "cc"); } static inline int __raw_read_trylock(raw_rwlock_t *rw) { unsigned long tmp, tmp2 = 1; __asm__ __volatile__( "1: ldrex %0, [%2]\n" " adds %0, %0, #1\n" " strexpl %1, %0, [%2]\n" : "=&r" (tmp), "+r" (tmp2) : "r" (&rw->lock) : "cc"); smp_mb(); return tmp2 == 0; } /* read_can_lock - would read_trylock() succeed? */ #define __raw_read_can_lock(x) ((x)->lock < 0x80000000) #define __raw_read_lock_flags(lock, flags) __raw_read_lock(lock) #define __raw_write_lock_flags(lock, flags) __raw_write_lock(lock) #define _raw_spin_relax(lock) cpu_relax() #define _raw_read_relax(lock) cpu_relax() #define _raw_write_relax(lock) cpu_relax() #endif /* __ASM_SPINLOCK_H */