/* linux/arch/arm/mach-exynos4/mct.c * * Copyright (c) 2011 Samsung Electronics Co., Ltd. * http://www.samsung.com * * EXYNOS4 MCT(Multi-Core Timer) support * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include static unsigned long clk_cnt_per_tick; static unsigned long clk_rate; struct mct_clock_event_device { struct clock_event_device *evt; void __iomem *base; }; struct mct_clock_event_device mct_tick[2]; static void exynos4_mct_write(unsigned int value, void *addr) { void __iomem *stat_addr; u32 mask; u32 i; __raw_writel(value, addr); switch ((u32) addr) { case (u32) EXYNOS4_MCT_G_TCON: stat_addr = EXYNOS4_MCT_G_WSTAT; mask = 1 << 16; /* G_TCON write status */ break; case (u32) EXYNOS4_MCT_G_COMP0_L: stat_addr = EXYNOS4_MCT_G_WSTAT; mask = 1 << 0; /* G_COMP0_L write status */ break; case (u32) EXYNOS4_MCT_G_COMP0_U: stat_addr = EXYNOS4_MCT_G_WSTAT; mask = 1 << 1; /* G_COMP0_U write status */ break; case (u32) EXYNOS4_MCT_G_COMP0_ADD_INCR: stat_addr = EXYNOS4_MCT_G_WSTAT; mask = 1 << 2; /* G_COMP0_ADD_INCR write status */ break; case (u32) EXYNOS4_MCT_G_CNT_L: stat_addr = EXYNOS4_MCT_G_CNT_WSTAT; mask = 1 << 0; /* G_CNT_L write status */ break; case (u32) EXYNOS4_MCT_G_CNT_U: stat_addr = EXYNOS4_MCT_G_CNT_WSTAT; mask = 1 << 1; /* G_CNT_U write status */ break; case (u32)(EXYNOS4_MCT_L0_BASE + MCT_L_TCON_OFFSET): stat_addr = EXYNOS4_MCT_L0_BASE + MCT_L_WSTAT_OFFSET; mask = 1 << 3; /* L0_TCON write status */ break; case (u32)(EXYNOS4_MCT_L1_BASE + MCT_L_TCON_OFFSET): stat_addr = EXYNOS4_MCT_L1_BASE + MCT_L_WSTAT_OFFSET; mask = 1 << 3; /* L1_TCON write status */ break; case (u32)(EXYNOS4_MCT_L0_BASE + MCT_L_TCNTB_OFFSET): stat_addr = EXYNOS4_MCT_L0_BASE + MCT_L_WSTAT_OFFSET; mask = 1 << 0; /* L0_TCNTB write status */ break; case (u32)(EXYNOS4_MCT_L1_BASE + MCT_L_TCNTB_OFFSET): stat_addr = EXYNOS4_MCT_L1_BASE + MCT_L_WSTAT_OFFSET; mask = 1 << 0; /* L1_TCNTB write status */ break; case (u32)(EXYNOS4_MCT_L0_BASE + MCT_L_ICNTB_OFFSET): stat_addr = EXYNOS4_MCT_L0_BASE + MCT_L_WSTAT_OFFSET; mask = 1 << 1; /* L0_ICNTB write status */ break; case (u32)(EXYNOS4_MCT_L1_BASE + MCT_L_ICNTB_OFFSET): stat_addr = EXYNOS4_MCT_L1_BASE + MCT_L_WSTAT_OFFSET; mask = 1 << 1; /* L1_ICNTB write status */ break; default: return; } /* Wait maximum 1 ms until written values are applied */ for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++) if (__raw_readl(stat_addr) & mask) { __raw_writel(mask, stat_addr); return; } panic("MCT hangs after writing %d (addr:0x%08x)\n", value, (u32)addr); } /* Clocksource handling */ static void exynos4_mct_frc_start(u32 hi, u32 lo) { u32 reg; exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L); exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U); reg = __raw_readl(EXYNOS4_MCT_G_TCON); reg |= MCT_G_TCON_START; exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON); } static cycle_t exynos4_frc_read(struct clocksource *cs) { unsigned int lo, hi; u32 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U); do { hi = hi2; lo = __raw_readl(EXYNOS4_MCT_G_CNT_L); hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U); } while (hi != hi2); return ((cycle_t)hi << 32) | lo; } struct clocksource mct_frc = { .name = "mct-frc", .rating = 400, .read = exynos4_frc_read, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static void __init exynos4_clocksource_init(void) { exynos4_mct_frc_start(0, 0); if (clocksource_register_hz(&mct_frc, clk_rate)) panic("%s: can't register clocksource\n", mct_frc.name); } static void exynos4_mct_comp0_stop(void) { unsigned int tcon; tcon = __raw_readl(EXYNOS4_MCT_G_TCON); tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC); exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON); exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB); } static void exynos4_mct_comp0_start(enum clock_event_mode mode, unsigned long cycles) { unsigned int tcon; cycle_t comp_cycle; tcon = __raw_readl(EXYNOS4_MCT_G_TCON); if (mode == CLOCK_EVT_MODE_PERIODIC) { tcon |= MCT_G_TCON_COMP0_AUTO_INC; exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR); } comp_cycle = exynos4_frc_read(&mct_frc) + cycles; exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L); exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U); exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB); tcon |= MCT_G_TCON_COMP0_ENABLE; exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON); } static int exynos4_comp_set_next_event(unsigned long cycles, struct clock_event_device *evt) { exynos4_mct_comp0_start(evt->mode, cycles); return 0; } static void exynos4_comp_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { exynos4_mct_comp0_stop(); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: exynos4_mct_comp0_start(mode, clk_cnt_per_tick); break; case CLOCK_EVT_MODE_ONESHOT: case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_RESUME: break; } } static struct clock_event_device mct_comp_device = { .name = "mct-comp", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .rating = 250, .set_next_event = exynos4_comp_set_next_event, .set_mode = exynos4_comp_set_mode, }; static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT); evt->event_handler(evt); return IRQ_HANDLED; } static struct irqaction mct_comp_event_irq = { .name = "mct_comp_irq", .flags = IRQF_TIMER | IRQF_IRQPOLL, .handler = exynos4_mct_comp_isr, .dev_id = &mct_comp_device, }; static void exynos4_clockevent_init(void) { clk_cnt_per_tick = clk_rate / 2 / HZ; clockevents_calc_mult_shift(&mct_comp_device, clk_rate / 2, 5); mct_comp_device.max_delta_ns = clockevent_delta2ns(0xffffffff, &mct_comp_device); mct_comp_device.min_delta_ns = clockevent_delta2ns(0xf, &mct_comp_device); mct_comp_device.cpumask = cpumask_of(0); clockevents_register_device(&mct_comp_device); setup_irq(IRQ_MCT_G0, &mct_comp_event_irq); } #ifdef CONFIG_LOCAL_TIMERS /* Clock event handling */ static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt) { unsigned long tmp; unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START; void __iomem *addr = mevt->base + MCT_L_TCON_OFFSET; tmp = __raw_readl(addr); if (tmp & mask) { tmp &= ~mask; exynos4_mct_write(tmp, addr); } } static void exynos4_mct_tick_start(unsigned long cycles, struct mct_clock_event_device *mevt) { unsigned long tmp; exynos4_mct_tick_stop(mevt); tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */ /* update interrupt count buffer */ exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET); /* enable MCT tick interrupt */ exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET); tmp = __raw_readl(mevt->base + MCT_L_TCON_OFFSET); tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START | MCT_L_TCON_INTERVAL_MODE; exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET); } static int exynos4_tick_set_next_event(unsigned long cycles, struct clock_event_device *evt) { struct mct_clock_event_device *mevt = &mct_tick[smp_processor_id()]; exynos4_mct_tick_start(cycles, mevt); return 0; } static inline void exynos4_tick_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { struct mct_clock_event_device *mevt = &mct_tick[smp_processor_id()]; exynos4_mct_tick_stop(mevt); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: exynos4_mct_tick_start(clk_cnt_per_tick, mevt); break; case CLOCK_EVT_MODE_ONESHOT: case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_RESUME: break; } } static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id) { struct mct_clock_event_device *mevt = dev_id; struct clock_event_device *evt = mevt->evt; /* * This is for supporting oneshot mode. * Mct would generate interrupt periodically * without explicit stopping. */ if (evt->mode != CLOCK_EVT_MODE_PERIODIC) exynos4_mct_tick_stop(mevt); /* Clear the MCT tick interrupt */ exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET); evt->event_handler(evt); return IRQ_HANDLED; } static struct irqaction mct_tick0_event_irq = { .name = "mct_tick0_irq", .flags = IRQF_TIMER | IRQF_NOBALANCING, .handler = exynos4_mct_tick_isr, }; static struct irqaction mct_tick1_event_irq = { .name = "mct_tick1_irq", .flags = IRQF_TIMER | IRQF_NOBALANCING, .handler = exynos4_mct_tick_isr, }; static void exynos4_mct_tick_init(struct clock_event_device *evt) { unsigned int cpu = smp_processor_id(); mct_tick[cpu].evt = evt; if (cpu == 0) { mct_tick[cpu].base = EXYNOS4_MCT_L0_BASE; evt->name = "mct_tick0"; } else { mct_tick[cpu].base = EXYNOS4_MCT_L1_BASE; evt->name = "mct_tick1"; } evt->cpumask = cpumask_of(cpu); evt->set_next_event = exynos4_tick_set_next_event; evt->set_mode = exynos4_tick_set_mode; evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; evt->rating = 450; clockevents_calc_mult_shift(evt, clk_rate / 2, 5); evt->max_delta_ns = clockevent_delta2ns(0x7fffffff, evt); evt->min_delta_ns = clockevent_delta2ns(0xf, evt); clockevents_register_device(evt); exynos4_mct_write(0x1, mct_tick[cpu].base + MCT_L_TCNTB_OFFSET); if (cpu == 0) { mct_tick0_event_irq.dev_id = &mct_tick[cpu]; setup_irq(IRQ_MCT_L0, &mct_tick0_event_irq); } else { mct_tick1_event_irq.dev_id = &mct_tick[cpu]; setup_irq(IRQ_MCT_L1, &mct_tick1_event_irq); irq_set_affinity(IRQ_MCT_L1, cpumask_of(1)); } } /* Setup the local clock events for a CPU */ int __cpuinit local_timer_setup(struct clock_event_device *evt) { exynos4_mct_tick_init(evt); return 0; } int local_timer_ack(void) { return 0; } #endif /* CONFIG_LOCAL_TIMERS */ static void __init exynos4_timer_resources(void) { struct clk *mct_clk; mct_clk = clk_get(NULL, "xtal"); clk_rate = clk_get_rate(mct_clk); } static void __init exynos4_timer_init(void) { exynos4_timer_resources(); exynos4_clocksource_init(); exynos4_clockevent_init(); } struct sys_timer exynos4_timer = { .init = exynos4_timer_init, };