/* * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. * Copyright 2008 Juergen Beisert, kernel@pengutronix.de * Copyright 2008 Martin Fuzzey, mfuzzey@gmail.com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #define IO_ADDR_CCM(off) (MX27_IO_ADDRESS(MX27_CCM_BASE_ADDR + (off))) /* Register offsets */ #define CCM_CSCR IO_ADDR_CCM(0x0) #define CCM_MPCTL0 IO_ADDR_CCM(0x4) #define CCM_MPCTL1 IO_ADDR_CCM(0x8) #define CCM_SPCTL0 IO_ADDR_CCM(0xc) #define CCM_SPCTL1 IO_ADDR_CCM(0x10) #define CCM_OSC26MCTL IO_ADDR_CCM(0x14) #define CCM_PCDR0 IO_ADDR_CCM(0x18) #define CCM_PCDR1 IO_ADDR_CCM(0x1c) #define CCM_PCCR0 IO_ADDR_CCM(0x20) #define CCM_PCCR1 IO_ADDR_CCM(0x24) #define CCM_CCSR IO_ADDR_CCM(0x28) #define CCM_PMCTL IO_ADDR_CCM(0x2c) #define CCM_PMCOUNT IO_ADDR_CCM(0x30) #define CCM_WKGDCTL IO_ADDR_CCM(0x34) #define CCM_CSCR_UPDATE_DIS (1 << 31) #define CCM_CSCR_SSI2 (1 << 23) #define CCM_CSCR_SSI1 (1 << 22) #define CCM_CSCR_VPU (1 << 21) #define CCM_CSCR_MSHC (1 << 20) #define CCM_CSCR_SPLLRES (1 << 19) #define CCM_CSCR_MPLLRES (1 << 18) #define CCM_CSCR_SP (1 << 17) #define CCM_CSCR_MCU (1 << 16) #define CCM_CSCR_OSC26MDIV (1 << 4) #define CCM_CSCR_OSC26M (1 << 3) #define CCM_CSCR_FPM (1 << 2) #define CCM_CSCR_SPEN (1 << 1) #define CCM_CSCR_MPEN (1 << 0) /* i.MX27 TO 2+ */ #define CCM_CSCR_ARM_SRC (1 << 15) #define CCM_SPCTL1_LF (1 << 15) #define CCM_SPCTL1_BRMO (1 << 6) static struct clk mpll_main1_clk, mpll_main2_clk; static int clk_pccr_enable(struct clk *clk) { unsigned long reg; if (!clk->enable_reg) return 0; reg = __raw_readl(clk->enable_reg); reg |= 1 << clk->enable_shift; __raw_writel(reg, clk->enable_reg); return 0; } static void clk_pccr_disable(struct clk *clk) { unsigned long reg; if (!clk->enable_reg) return; reg = __raw_readl(clk->enable_reg); reg &= ~(1 << clk->enable_shift); __raw_writel(reg, clk->enable_reg); } static int clk_spll_enable(struct clk *clk) { unsigned long reg; reg = __raw_readl(CCM_CSCR); reg |= CCM_CSCR_SPEN; __raw_writel(reg, CCM_CSCR); while (!(__raw_readl(CCM_SPCTL1) & CCM_SPCTL1_LF)); return 0; } static void clk_spll_disable(struct clk *clk) { unsigned long reg; reg = __raw_readl(CCM_CSCR); reg &= ~CCM_CSCR_SPEN; __raw_writel(reg, CCM_CSCR); } static int clk_cpu_set_parent(struct clk *clk, struct clk *parent) { int cscr = __raw_readl(CCM_CSCR); if (clk->parent == parent) return 0; if (mx27_revision() >= IMX_CHIP_REVISION_2_0) { if (parent == &mpll_main1_clk) { cscr |= CCM_CSCR_ARM_SRC; } else { if (parent == &mpll_main2_clk) cscr &= ~CCM_CSCR_ARM_SRC; else return -EINVAL; } __raw_writel(cscr, CCM_CSCR); clk->parent = parent; return 0; } return -ENODEV; } static unsigned long round_rate_cpu(struct clk *clk, unsigned long rate) { int div; unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); div = parent_rate / rate; if (parent_rate % rate) div++; if (div > 4) div = 4; return parent_rate / div; } static int set_rate_cpu(struct clk *clk, unsigned long rate) { unsigned int div; uint32_t reg; unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); div = parent_rate / rate; if (div > 4 || div < 1 || ((parent_rate / div) != rate)) return -EINVAL; div--; reg = __raw_readl(CCM_CSCR); if (mx27_revision() >= IMX_CHIP_REVISION_2_0) { reg &= ~(3 << 12); reg |= div << 12; reg &= ~(CCM_CSCR_FPM | CCM_CSCR_SPEN); __raw_writel(reg | CCM_CSCR_UPDATE_DIS, CCM_CSCR); } else { printk(KERN_ERR "Can't set CPU frequency!\n"); } return 0; } static unsigned long round_rate_per(struct clk *clk, unsigned long rate) { u32 div; unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); div = parent_rate / rate; if (parent_rate % rate) div++; if (div > 64) div = 64; return parent_rate / div; } static int set_rate_per(struct clk *clk, unsigned long rate) { u32 reg; u32 div; unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); if (clk->id < 0 || clk->id > 3) return -EINVAL; div = parent_rate / rate; if (div > 64 || div < 1 || ((parent_rate / div) != rate)) return -EINVAL; div--; reg = __raw_readl(CCM_PCDR1) & ~(0x3f << (clk->id << 3)); reg |= div << (clk->id << 3); __raw_writel(reg, CCM_PCDR1); return 0; } static unsigned long get_rate_usb(struct clk *clk) { unsigned long usb_pdf; unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); usb_pdf = (__raw_readl(CCM_CSCR) >> 28) & 0x7; return parent_rate / (usb_pdf + 1U); } static unsigned long get_rate_ssix(struct clk *clk, unsigned long pdf) { unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); if (mx27_revision() >= IMX_CHIP_REVISION_2_0) pdf += 4; /* MX27 TO2+ */ else pdf = (pdf < 2) ? 124UL : pdf; /* MX21 & MX27 TO1 */ return 2UL * parent_rate / pdf; } static unsigned long get_rate_ssi1(struct clk *clk) { return get_rate_ssix(clk, (__raw_readl(CCM_PCDR0) >> 16) & 0x3f); } static unsigned long get_rate_ssi2(struct clk *clk) { return get_rate_ssix(clk, (__raw_readl(CCM_PCDR0) >> 26) & 0x3f); } static unsigned long get_rate_nfc(struct clk *clk) { unsigned long nfc_pdf; unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); if (mx27_revision() >= IMX_CHIP_REVISION_2_0) nfc_pdf = (__raw_readl(CCM_PCDR0) >> 6) & 0xf; else nfc_pdf = (__raw_readl(CCM_PCDR0) >> 12) & 0xf; return parent_rate / (nfc_pdf + 1); } static unsigned long get_rate_vpu(struct clk *clk) { unsigned long vpu_pdf; unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); if (mx27_revision() >= IMX_CHIP_REVISION_2_0) { vpu_pdf = (__raw_readl(CCM_PCDR0) >> 10) & 0x3f; vpu_pdf += 4; } else { vpu_pdf = (__raw_readl(CCM_PCDR0) >> 8) & 0xf; vpu_pdf = (vpu_pdf < 2) ? 124 : vpu_pdf; } return 2UL * parent_rate / vpu_pdf; } static unsigned long round_rate_parent(struct clk *clk, unsigned long rate) { return clk->parent->round_rate(clk->parent, rate); } static unsigned long get_rate_parent(struct clk *clk) { return clk_get_rate(clk->parent); } static int set_rate_parent(struct clk *clk, unsigned long rate) { return clk->parent->set_rate(clk->parent, rate); } /* in Hz */ static unsigned long external_high_reference = 26000000; static unsigned long get_rate_high_reference(struct clk *clk) { return external_high_reference; } /* in Hz */ static unsigned long external_low_reference = 32768; static unsigned long get_rate_low_reference(struct clk *clk) { return external_low_reference; } static unsigned long get_rate_fpm(struct clk *clk) { return clk_get_rate(clk->parent) * 1024; } static unsigned long get_rate_mpll(struct clk *clk) { return mxc_decode_pll(__raw_readl(CCM_MPCTL0), clk_get_rate(clk->parent)); } static unsigned long get_rate_mpll_main(struct clk *clk) { unsigned long parent_rate; parent_rate = clk_get_rate(clk->parent); /* i.MX27 TO2: * clk->id == 0: arm clock source path 1 which is from 2 * MPLL / 2 * clk->id == 1: arm clock source path 2 which is from 2 * MPLL / 3 */ if (mx27_revision() >= IMX_CHIP_REVISION_2_0 && clk->id == 1) return 2UL * parent_rate / 3UL; return parent_rate; } static unsigned long get_rate_spll(struct clk *clk) { uint32_t reg; unsigned long rate; rate = clk_get_rate(clk->parent); reg = __raw_readl(CCM_SPCTL0); /* On TO2 we have to write the value back. Otherwise we * read 0 from this register the next time. */ if (mx27_revision() >= IMX_CHIP_REVISION_2_0) __raw_writel(reg, CCM_SPCTL0); return mxc_decode_pll(reg, rate); } static unsigned long get_rate_cpu(struct clk *clk) { u32 div; unsigned long rate; if (mx27_revision() >= IMX_CHIP_REVISION_2_0) div = (__raw_readl(CCM_CSCR) >> 12) & 0x3; else div = (__raw_readl(CCM_CSCR) >> 13) & 0x7; rate = clk_get_rate(clk->parent); return rate / (div + 1); } static unsigned long get_rate_ahb(struct clk *clk) { unsigned long rate, bclk_pdf; if (mx27_revision() >= IMX_CHIP_REVISION_2_0) bclk_pdf = (__raw_readl(CCM_CSCR) >> 8) & 0x3; else bclk_pdf = (__raw_readl(CCM_CSCR) >> 9) & 0xf; rate = clk_get_rate(clk->parent); return rate / (bclk_pdf + 1); } static unsigned long get_rate_ipg(struct clk *clk) { unsigned long rate, ipg_pdf; if (mx27_revision() >= IMX_CHIP_REVISION_2_0) return clk_get_rate(clk->parent); else ipg_pdf = (__raw_readl(CCM_CSCR) >> 8) & 1; rate = clk_get_rate(clk->parent); return rate / (ipg_pdf + 1); } static unsigned long get_rate_per(struct clk *clk) { unsigned long perclk_pdf, parent_rate; parent_rate = clk_get_rate(clk->parent); if (clk->id < 0 || clk->id > 3) return 0; perclk_pdf = (__raw_readl(CCM_PCDR1) >> (clk->id << 3)) & 0x3f; return parent_rate / (perclk_pdf + 1); } /* * the high frequency external clock reference * Default case is 26MHz. Could be changed at runtime * with a call to change_external_high_reference() */ static struct clk ckih_clk = { .get_rate = get_rate_high_reference, }; static struct clk mpll_clk = { .parent = &ckih_clk, .get_rate = get_rate_mpll, }; /* For i.MX27 TO2, it is the MPLL path 1 of ARM core * It provides the clock source whose rate is same as MPLL */ static struct clk mpll_main1_clk = { .id = 0, .parent = &mpll_clk, .get_rate = get_rate_mpll_main, }; /* For i.MX27 TO2, it is the MPLL path 2 of ARM core * It provides the clock source whose rate is same MPLL * 2 / 3 */ static struct clk mpll_main2_clk = { .id = 1, .parent = &mpll_clk, .get_rate = get_rate_mpll_main, }; static struct clk ahb_clk = { .parent = &mpll_main2_clk, .get_rate = get_rate_ahb, }; static struct clk ipg_clk = { .parent = &ahb_clk, .get_rate = get_rate_ipg, }; static struct clk cpu_clk = { .parent = &mpll_main2_clk, .set_parent = clk_cpu_set_parent, .round_rate = round_rate_cpu, .get_rate = get_rate_cpu, .set_rate = set_rate_cpu, }; static struct clk spll_clk = { .parent = &ckih_clk, .get_rate = get_rate_spll, .enable = clk_spll_enable, .disable = clk_spll_disable, }; /* * the low frequency external clock reference * Default case is 32.768kHz. */ static struct clk ckil_clk = { .get_rate = get_rate_low_reference, }; /* Output of frequency pre multiplier */ static struct clk fpm_clk = { .parent = &ckil_clk, .get_rate = get_rate_fpm, }; #define PCCR0 CCM_PCCR0 #define PCCR1 CCM_PCCR1 #define DEFINE_CLOCK(name, i, er, es, gr, s, p) \ static struct clk name = { \ .id = i, \ .enable_reg = er, \ .enable_shift = es, \ .get_rate = gr, \ .enable = clk_pccr_enable, \ .disable = clk_pccr_disable, \ .secondary = s, \ .parent = p, \ } #define DEFINE_CLOCK1(name, i, er, es, getsetround, s, p) \ static struct clk name = { \ .id = i, \ .enable_reg = er, \ .enable_shift = es, \ .get_rate = get_rate_##getsetround, \ .set_rate = set_rate_##getsetround, \ .round_rate = round_rate_##getsetround, \ .enable = clk_pccr_enable, \ .disable = clk_pccr_disable, \ .secondary = s, \ .parent = p, \ } /* Forward declaration to keep the following list in order */ static struct clk slcdc_clk1, sahara2_clk1, rtic_clk1, fec_clk1, emma_clk1, dma_clk1, lcdc_clk2, vpu_clk1; /* All clocks we can gate through PCCRx in the order of PCCRx bits */ DEFINE_CLOCK(ssi2_clk1, 1, PCCR0, 0, NULL, NULL, &ipg_clk); DEFINE_CLOCK(ssi1_clk1, 0, PCCR0, 1, NULL, NULL, &ipg_clk); DEFINE_CLOCK(slcdc_clk, 0, PCCR0, 2, NULL, &slcdc_clk1, &ahb_clk); DEFINE_CLOCK(sdhc3_clk1, 0, PCCR0, 3, NULL, NULL, &ipg_clk); DEFINE_CLOCK(sdhc2_clk1, 0, PCCR0, 4, NULL, NULL, &ipg_clk); DEFINE_CLOCK(sdhc1_clk1, 0, PCCR0, 5, NULL, NULL, &ipg_clk); DEFINE_CLOCK(scc_clk, 0, PCCR0, 6, NULL, NULL, &ipg_clk); DEFINE_CLOCK(sahara2_clk, 0, PCCR0, 7, NULL, &sahara2_clk1, &ahb_clk); DEFINE_CLOCK(rtic_clk, 0, PCCR0, 8, NULL, &rtic_clk1, &ahb_clk); DEFINE_CLOCK(rtc_clk, 0, PCCR0, 9, NULL, NULL, &ipg_clk); DEFINE_CLOCK(pwm_clk1, 0, PCCR0, 11, NULL, NULL, &ipg_clk); DEFINE_CLOCK(owire_clk, 0, PCCR0, 12, NULL, NULL, &ipg_clk); DEFINE_CLOCK(mstick_clk1, 0, PCCR0, 13, NULL, NULL, &ipg_clk); DEFINE_CLOCK(lcdc_clk1, 0, PCCR0, 14, NULL, &lcdc_clk2, &ipg_clk); DEFINE_CLOCK(kpp_clk, 0, PCCR0, 15, NULL, NULL, &ipg_clk); DEFINE_CLOCK(iim_clk, 0, PCCR0, 16, NULL, NULL, &ipg_clk); DEFINE_CLOCK(i2c2_clk, 1, PCCR0, 17, NULL, NULL, &ipg_clk); DEFINE_CLOCK(i2c1_clk, 0, PCCR0, 18, NULL, NULL, &ipg_clk); DEFINE_CLOCK(gpt6_clk1, 0, PCCR0, 29, NULL, NULL, &ipg_clk); DEFINE_CLOCK(gpt5_clk1, 0, PCCR0, 20, NULL, NULL, &ipg_clk); DEFINE_CLOCK(gpt4_clk1, 0, PCCR0, 21, NULL, NULL, &ipg_clk); DEFINE_CLOCK(gpt3_clk1, 0, PCCR0, 22, NULL, NULL, &ipg_clk); DEFINE_CLOCK(gpt2_clk1, 0, PCCR0, 23, NULL, NULL, &ipg_clk); DEFINE_CLOCK(gpt1_clk1, 0, PCCR0, 24, NULL, NULL, &ipg_clk); DEFINE_CLOCK(gpio_clk, 0, PCCR0, 25, NULL, NULL, &ipg_clk); DEFINE_CLOCK(fec_clk, 0, PCCR0, 26, NULL, &fec_clk1, &ahb_clk); DEFINE_CLOCK(emma_clk, 0, PCCR0, 27, NULL, &emma_clk1, &ahb_clk); DEFINE_CLOCK(dma_clk, 0, PCCR0, 28, NULL, &dma_clk1, &ahb_clk); DEFINE_CLOCK(cspi13_clk1, 0, PCCR0, 29, NULL, NULL, &ipg_clk); DEFINE_CLOCK(cspi2_clk1, 0, PCCR0, 30, NULL, NULL, &ipg_clk); DEFINE_CLOCK(cspi1_clk1, 0, PCCR0, 31, NULL, NULL, &ipg_clk); DEFINE_CLOCK(mstick_clk, 0, PCCR1, 2, NULL, &mstick_clk1, &ipg_clk); DEFINE_CLOCK(nfc_clk, 0, PCCR1, 3, get_rate_nfc, NULL, &cpu_clk); DEFINE_CLOCK(ssi2_clk, 1, PCCR1, 4, get_rate_ssi2, &ssi2_clk1, &mpll_main2_clk); DEFINE_CLOCK(ssi1_clk, 0, PCCR1, 5, get_rate_ssi1, &ssi1_clk1, &mpll_main2_clk); DEFINE_CLOCK(vpu_clk, 0, PCCR1, 6, get_rate_vpu, &vpu_clk1, &mpll_main2_clk); DEFINE_CLOCK1(per4_clk, 3, PCCR1, 7, per, NULL, &mpll_main2_clk); DEFINE_CLOCK1(per3_clk, 2, PCCR1, 8, per, NULL, &mpll_main2_clk); DEFINE_CLOCK1(per2_clk, 1, PCCR1, 9, per, NULL, &mpll_main2_clk); DEFINE_CLOCK1(per1_clk, 0, PCCR1, 10, per, NULL, &mpll_main2_clk); DEFINE_CLOCK(usb_clk1, 0, PCCR1, 11, NULL, NULL, &ahb_clk); DEFINE_CLOCK(slcdc_clk1, 0, PCCR1, 12, NULL, NULL, &ahb_clk); DEFINE_CLOCK(sahara2_clk1, 0, PCCR1, 13, NULL, NULL, &ahb_clk); DEFINE_CLOCK(rtic_clk1, 0, PCCR1, 14, NULL, NULL, &ahb_clk); DEFINE_CLOCK(lcdc_clk2, 0, PCCR1, 15, NULL, NULL, &ahb_clk); DEFINE_CLOCK(vpu_clk1, 0, PCCR1, 16, NULL, NULL, &ahb_clk); DEFINE_CLOCK(fec_clk1, 0, PCCR1, 17, NULL, NULL, &ahb_clk); DEFINE_CLOCK(emma_clk1, 0, PCCR1, 18, NULL, NULL, &ahb_clk); DEFINE_CLOCK(emi_clk, 0, PCCR1, 19, NULL, NULL, &ahb_clk); DEFINE_CLOCK(dma_clk1, 0, PCCR1, 20, NULL, NULL, &ahb_clk); DEFINE_CLOCK(csi_clk1, 0, PCCR1, 21, NULL, NULL, &ahb_clk); DEFINE_CLOCK(brom_clk, 0, PCCR1, 22, NULL, NULL, &ahb_clk); DEFINE_CLOCK(pata_clk, 0, PCCR1, 23, NULL, NULL, &ahb_clk); DEFINE_CLOCK(wdog_clk, 0, PCCR1, 24, NULL, NULL, &ipg_clk); DEFINE_CLOCK(usb_clk, 0, PCCR1, 25, get_rate_usb, &usb_clk1, &spll_clk); DEFINE_CLOCK(uart6_clk1, 0, PCCR1, 26, NULL, NULL, &ipg_clk); DEFINE_CLOCK(uart5_clk1, 0, PCCR1, 27, NULL, NULL, &ipg_clk); DEFINE_CLOCK(uart4_clk1, 0, PCCR1, 28, NULL, NULL, &ipg_clk); DEFINE_CLOCK(uart3_clk1, 0, PCCR1, 29, NULL, NULL, &ipg_clk); DEFINE_CLOCK(uart2_clk1, 0, PCCR1, 30, NULL, NULL, &ipg_clk); DEFINE_CLOCK(uart1_clk1, 0, PCCR1, 31, NULL, NULL, &ipg_clk); /* Clocks we cannot directly gate, but drivers need their rates */ DEFINE_CLOCK(cspi1_clk, 0, NULL, 0, NULL, &cspi1_clk1, &per2_clk); DEFINE_CLOCK(cspi2_clk, 1, NULL, 0, NULL, &cspi2_clk1, &per2_clk); DEFINE_CLOCK(cspi3_clk, 2, NULL, 0, NULL, &cspi13_clk1, &per2_clk); DEFINE_CLOCK(sdhc1_clk, 0, NULL, 0, NULL, &sdhc1_clk1, &per2_clk); DEFINE_CLOCK(sdhc2_clk, 1, NULL, 0, NULL, &sdhc2_clk1, &per2_clk); DEFINE_CLOCK(sdhc3_clk, 2, NULL, 0, NULL, &sdhc3_clk1, &per2_clk); DEFINE_CLOCK(pwm_clk, 0, NULL, 0, NULL, &pwm_clk1, &per1_clk); DEFINE_CLOCK(gpt1_clk, 0, NULL, 0, NULL, &gpt1_clk1, &per1_clk); DEFINE_CLOCK(gpt2_clk, 1, NULL, 0, NULL, &gpt2_clk1, &per1_clk); DEFINE_CLOCK(gpt3_clk, 2, NULL, 0, NULL, &gpt3_clk1, &per1_clk); DEFINE_CLOCK(gpt4_clk, 3, NULL, 0, NULL, &gpt4_clk1, &per1_clk); DEFINE_CLOCK(gpt5_clk, 4, NULL, 0, NULL, &gpt5_clk1, &per1_clk); DEFINE_CLOCK(gpt6_clk, 5, NULL, 0, NULL, &gpt6_clk1, &per1_clk); DEFINE_CLOCK(uart1_clk, 0, NULL, 0, NULL, &uart1_clk1, &per1_clk); DEFINE_CLOCK(uart2_clk, 1, NULL, 0, NULL, &uart2_clk1, &per1_clk); DEFINE_CLOCK(uart3_clk, 2, NULL, 0, NULL, &uart3_clk1, &per1_clk); DEFINE_CLOCK(uart4_clk, 3, NULL, 0, NULL, &uart4_clk1, &per1_clk); DEFINE_CLOCK(uart5_clk, 4, NULL, 0, NULL, &uart5_clk1, &per1_clk); DEFINE_CLOCK(uart6_clk, 5, NULL, 0, NULL, &uart6_clk1, &per1_clk); DEFINE_CLOCK1(lcdc_clk, 0, NULL, 0, parent, &lcdc_clk1, &per3_clk); DEFINE_CLOCK1(csi_clk, 0, NULL, 0, parent, &csi_clk1, &per4_clk); #define _REGISTER_CLOCK(d, n, c) \ { \ .dev_id = d, \ .con_id = n, \ .clk = &c, \ }, static struct clk_lookup lookups[] = { /* i.mx27 has the i.mx21 type uart */ _REGISTER_CLOCK("imx21-uart.0", NULL, uart1_clk) _REGISTER_CLOCK("imx21-uart.1", NULL, uart2_clk) _REGISTER_CLOCK("imx21-uart.2", NULL, uart3_clk) _REGISTER_CLOCK("imx21-uart.3", NULL, uart4_clk) _REGISTER_CLOCK("imx21-uart.4", NULL, uart5_clk) _REGISTER_CLOCK("imx21-uart.5", NULL, uart6_clk) _REGISTER_CLOCK(NULL, "gpt1", gpt1_clk) _REGISTER_CLOCK(NULL, "gpt2", gpt2_clk) _REGISTER_CLOCK(NULL, "gpt3", gpt3_clk) _REGISTER_CLOCK(NULL, "gpt4", gpt4_clk) _REGISTER_CLOCK(NULL, "gpt5", gpt5_clk) _REGISTER_CLOCK(NULL, "gpt6", gpt6_clk) _REGISTER_CLOCK("mxc_pwm.0", NULL, pwm_clk) _REGISTER_CLOCK("mxc-mmc.0", NULL, sdhc1_clk) _REGISTER_CLOCK("mxc-mmc.1", NULL, sdhc2_clk) _REGISTER_CLOCK("mxc-mmc.2", NULL, sdhc3_clk) _REGISTER_CLOCK("imx27-cspi.0", NULL, cspi1_clk) _REGISTER_CLOCK("imx27-cspi.1", NULL, cspi2_clk) _REGISTER_CLOCK("imx27-cspi.2", NULL, cspi3_clk) _REGISTER_CLOCK("imx-fb.0", NULL, lcdc_clk) _REGISTER_CLOCK("mx2-camera.0", NULL, csi_clk) _REGISTER_CLOCK("fsl-usb2-udc", "usb", usb_clk) _REGISTER_CLOCK("fsl-usb2-udc", "usb_ahb", usb_clk1) _REGISTER_CLOCK("mxc-ehci.0", "usb", usb_clk) _REGISTER_CLOCK("mxc-ehci.0", "usb_ahb", usb_clk1) _REGISTER_CLOCK("mxc-ehci.1", "usb", usb_clk) _REGISTER_CLOCK("mxc-ehci.1", "usb_ahb", usb_clk1) _REGISTER_CLOCK("mxc-ehci.2", "usb", usb_clk) _REGISTER_CLOCK("mxc-ehci.2", "usb_ahb", usb_clk1) _REGISTER_CLOCK("imx-ssi.0", NULL, ssi1_clk) _REGISTER_CLOCK("imx-ssi.1", NULL, ssi2_clk) _REGISTER_CLOCK("mxc_nand.0", NULL, nfc_clk) _REGISTER_CLOCK(NULL, "vpu", vpu_clk) _REGISTER_CLOCK(NULL, "dma", dma_clk) _REGISTER_CLOCK(NULL, "rtic", rtic_clk) _REGISTER_CLOCK(NULL, "brom", brom_clk) _REGISTER_CLOCK(NULL, "emma", emma_clk) _REGISTER_CLOCK(NULL, "slcdc", slcdc_clk) _REGISTER_CLOCK("imx27-fec.0", NULL, fec_clk) _REGISTER_CLOCK(NULL, "emi", emi_clk) _REGISTER_CLOCK(NULL, "sahara2", sahara2_clk) _REGISTER_CLOCK("pata_imx", NULL, pata_clk) _REGISTER_CLOCK(NULL, "mstick", mstick_clk) _REGISTER_CLOCK("imx2-wdt.0", NULL, wdog_clk) _REGISTER_CLOCK(NULL, "gpio", gpio_clk) _REGISTER_CLOCK("imx-i2c.0", NULL, i2c1_clk) _REGISTER_CLOCK("imx-i2c.1", NULL, i2c2_clk) _REGISTER_CLOCK(NULL, "iim", iim_clk) _REGISTER_CLOCK(NULL, "kpp", kpp_clk) _REGISTER_CLOCK("mxc_w1.0", NULL, owire_clk) _REGISTER_CLOCK(NULL, "rtc", rtc_clk) _REGISTER_CLOCK(NULL, "scc", scc_clk) }; /* Adjust the clock path for TO2 and later */ static void __init to2_adjust_clocks(void) { unsigned long cscr = __raw_readl(CCM_CSCR); if (mx27_revision() >= IMX_CHIP_REVISION_2_0) { if (cscr & CCM_CSCR_ARM_SRC) cpu_clk.parent = &mpll_main1_clk; if (!(cscr & CCM_CSCR_SSI2)) ssi1_clk.parent = &spll_clk; if (!(cscr & CCM_CSCR_SSI1)) ssi1_clk.parent = &spll_clk; if (!(cscr & CCM_CSCR_VPU)) vpu_clk.parent = &spll_clk; } else { cpu_clk.parent = &mpll_clk; cpu_clk.set_parent = NULL; cpu_clk.round_rate = NULL; cpu_clk.set_rate = NULL; ahb_clk.parent = &mpll_clk; per1_clk.parent = &mpll_clk; per2_clk.parent = &mpll_clk; per3_clk.parent = &mpll_clk; per4_clk.parent = &mpll_clk; ssi1_clk.parent = &mpll_clk; ssi2_clk.parent = &mpll_clk; vpu_clk.parent = &mpll_clk; } } /* * must be called very early to get information about the * available clock rate when the timer framework starts */ int __init mx27_clocks_init(unsigned long fref) { u32 cscr = __raw_readl(CCM_CSCR); external_high_reference = fref; /* detect clock reference for both system PLLs */ if (cscr & CCM_CSCR_MCU) mpll_clk.parent = &ckih_clk; else mpll_clk.parent = &fpm_clk; if (cscr & CCM_CSCR_SP) spll_clk.parent = &ckih_clk; else spll_clk.parent = &fpm_clk; to2_adjust_clocks(); clkdev_add_table(lookups, ARRAY_SIZE(lookups)); /* Turn off all clocks we do not need */ __raw_writel(0, CCM_PCCR0); __raw_writel((1 << 10) | (1 << 19), CCM_PCCR1); spll_clk.disable(&spll_clk); /* enable basic clocks */ clk_enable(&per1_clk); clk_enable(&gpio_clk); clk_enable(&emi_clk); clk_enable(&iim_clk); imx_print_silicon_rev("i.MX27", mx27_revision()); clk_disable(&iim_clk); #if defined(CONFIG_DEBUG_LL) && !defined(CONFIG_DEBUG_ICEDCC) clk_enable(&uart1_clk); #endif mxc_timer_init(&gpt1_clk, MX27_IO_ADDRESS(MX27_GPT1_BASE_ADDR), MX27_INT_GPT1); return 0; } #ifdef CONFIG_OF int __init mx27_clocks_init_dt(void) { struct device_node *np; u32 fref = 26000000; /* default */ for_each_compatible_node(np, NULL, "fixed-clock") { if (!of_device_is_compatible(np, "fsl,imx-osc26m")) continue; if (!of_property_read_u32(np, "clock-frequency", &fref)) break; } return mx27_clocks_init(fref); } #endif