/* * Copyright (C) 2005-2010 Freescale Semiconductor, Inc. * Copyright (C) 2008 by Sascha Hauer * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "crm_regs.h" #define PRE_DIV_MIN_FREQ 10000000 /* Minimum Frequency after Predivider */ static int cpu_curr_wp; static struct cpu_wp *cpu_wp_tbl; static int cpu_wp_nr; static int cpu_clk_set_wp(int wp); static void __calc_pre_post_dividers(u32 div, u32 *pre, u32 *post) { u32 min_pre, temp_pre, old_err, err; if (div >= 512) { *pre = 8; *post = 64; } else if (div >= 64) { min_pre = (div - 1) / 64 + 1; old_err = 8; for (temp_pre = 8; temp_pre >= min_pre; temp_pre--) { err = div % temp_pre; if (err == 0) { *pre = temp_pre; break; } err = temp_pre - err; if (err < old_err) { old_err = err; *pre = temp_pre; } } *post = (div + *pre - 1) / *pre; } else if (div <= 8) { *pre = div; *post = 1; } else { *pre = 1; *post = div; } } static struct clk mcu_pll_clk; static struct clk serial_pll_clk; static struct clk usb_pll_clk; static struct clk ahb_clk; static struct clk ipg_clk; static struct clk ckih_clk; static int cgr_enable(struct clk *clk) { u32 reg; if (!clk->enable_reg) return 0; reg = __raw_readl(clk->enable_reg); reg |= 3 << clk->enable_shift; __raw_writel(reg, clk->enable_reg); return 0; } static void cgr_disable(struct clk *clk) { u32 reg; if (!clk->enable_reg) return; reg = __raw_readl(clk->enable_reg); reg &= ~(3 << clk->enable_shift); /* special case for EMI clock */ if (clk->enable_reg == MXC_CCM_CGR2 && clk->enable_shift == 8) reg |= (1 << clk->enable_shift); __raw_writel(reg, clk->enable_reg); } static unsigned long pll_ref_get_rate(void) { unsigned long ccmr; unsigned int prcs; ccmr = __raw_readl(MXC_CCM_CCMR); prcs = (ccmr & MXC_CCM_CCMR_PRCS_MASK) >> MXC_CCM_CCMR_PRCS_OFFSET; if (prcs == 0x1) return CKIL_CLK_FREQ * 1024; else return clk_get_rate(&ckih_clk); } static int pll_set_rate(struct clk *clk, unsigned long rate) { u32 reg; signed long pd = 1; /* Pre-divider */ signed long mfi; /* Multiplication Factor (Integer part) */ signed long mfn; /* Multiplication Factor (Integer part) */ signed long mfd; /* Multiplication Factor (Denominator Part) */ signed long tmp; u32 ref_freq = clk_get_rate(clk->parent); while (((ref_freq / pd) * 10) > rate) pd++; if ((ref_freq / pd) < PRE_DIV_MIN_FREQ) return -EINVAL; /* the ref_freq/2 in the following is to round up */ mfi = (((rate / 2) * pd) + (ref_freq / 2)) / ref_freq; if (mfi < 5 || mfi > 15) return -EINVAL; /* pick a mfd value that will work * then solve for mfn */ mfd = ref_freq / 50000; /* * pll_freq * pd * mfd * mfn = -------------------- - (mfi * mfd) * 2 * ref_freq */ /* the tmp/2 is for rounding */ tmp = ref_freq / 10000; mfn = ((((((rate / 2) + (tmp / 2)) / tmp) * pd) * mfd) / 10000) - (mfi * mfd); mfn = mfn & 0x3ff; pd--; mfd--; /* Change the Pll value */ reg = (mfi << MXC_CCM_PCTL_MFI_OFFSET) | (mfn << MXC_CCM_PCTL_MFN_OFFSET) | (mfd << MXC_CCM_PCTL_MFD_OFFSET) | (pd << MXC_CCM_PCTL_PD_OFFSET); if (clk == &mcu_pll_clk) __raw_writel(reg, MXC_CCM_MPCTL); else if (clk == &usb_pll_clk) __raw_writel(reg, MXC_CCM_UPCTL); else if (clk == &serial_pll_clk) __raw_writel(reg, MXC_CCM_SRPCTL); return 0; } static int _clk_cpu_set_rate(struct clk *clk, unsigned long rate) { u32 ahb_rate = clk_get_rate(&ahb_clk); if ((rate < ahb_rate) || (rate % ahb_rate != 0)) { printk(KERN_ERR "Wrong rate %lu in _clk_cpu_set_rate\n", rate); return -EINVAL; } cpu_clk_set_wp(rate / ahb_rate - 1); return 0; } static unsigned long usb_pll_get_rate(struct clk *clk) { unsigned long reg; reg = __raw_readl(MXC_CCM_UPCTL); return mxc_decode_pll(reg, pll_ref_get_rate()); } static unsigned long serial_pll_get_rate(struct clk *clk) { unsigned long reg; reg = __raw_readl(MXC_CCM_SRPCTL); return mxc_decode_pll(reg, pll_ref_get_rate()); } static unsigned long mcu_pll_get_rate(struct clk *clk) { unsigned long reg, ccmr; ccmr = __raw_readl(MXC_CCM_CCMR); if (!(ccmr & MXC_CCM_CCMR_MPE) || (ccmr & MXC_CCM_CCMR_MDS)) return clk_get_rate(&ckih_clk); reg = __raw_readl(MXC_CCM_MPCTL); return mxc_decode_pll(reg, pll_ref_get_rate()); } static int usb_pll_enable(struct clk *clk) { u32 reg; reg = __raw_readl(MXC_CCM_CCMR); reg |= MXC_CCM_CCMR_UPE; __raw_writel(reg, MXC_CCM_CCMR); /* No lock bit on MX31, so using max time from spec */ udelay(80); return 0; } static void usb_pll_disable(struct clk *clk) { u32 reg; reg = __raw_readl(MXC_CCM_CCMR); reg &= ~MXC_CCM_CCMR_UPE; __raw_writel(reg, MXC_CCM_CCMR); } static int serial_pll_enable(struct clk *clk) { u32 reg; reg = __raw_readl(MXC_CCM_CCMR); reg |= MXC_CCM_CCMR_SPE; __raw_writel(reg, MXC_CCM_CCMR); /* No lock bit on MX31, so using max time from spec */ udelay(80); return 0; } static void serial_pll_disable(struct clk *clk) { u32 reg; reg = __raw_readl(MXC_CCM_CCMR); reg &= ~MXC_CCM_CCMR_SPE; __raw_writel(reg, MXC_CCM_CCMR); } #define PDR0(mask, off) ((__raw_readl(MXC_CCM_PDR0) & mask) >> off) #define PDR1(mask, off) ((__raw_readl(MXC_CCM_PDR1) & mask) >> off) #define PDR2(mask, off) ((__raw_readl(MXC_CCM_PDR2) & mask) >> off) static unsigned long mcu_main_get_rate(struct clk *clk) { u32 pmcr0 = __raw_readl(MXC_CCM_PMCR0); if ((pmcr0 & MXC_CCM_PMCR0_DFSUP1) == MXC_CCM_PMCR0_DFSUP1_SPLL) return clk_get_rate(&serial_pll_clk); else return clk_get_rate(&mcu_pll_clk); } static unsigned long _clk_cpu_get_rate(struct clk *clk) { unsigned long mcu_pdf; mcu_pdf = PDR0(MXC_CCM_PDR0_MCU_PODF_MASK, MXC_CCM_PDR0_MCU_PODF_OFFSET); return clk_get_rate(clk->parent) / (mcu_pdf + 1); } static unsigned long ahb_get_rate(struct clk *clk) { unsigned long max_pdf; max_pdf = PDR0(MXC_CCM_PDR0_MAX_PODF_MASK, MXC_CCM_PDR0_MAX_PODF_OFFSET); return clk_get_rate(clk->parent) / (max_pdf + 1); } static unsigned long ipg_get_rate(struct clk *clk) { unsigned long ipg_pdf; ipg_pdf = PDR0(MXC_CCM_PDR0_IPG_PODF_MASK, MXC_CCM_PDR0_IPG_PODF_OFFSET); return clk_get_rate(clk->parent) / (ipg_pdf + 1); } static unsigned long nfc_get_rate(struct clk *clk) { unsigned long nfc_pdf; nfc_pdf = PDR0(MXC_CCM_PDR0_NFC_PODF_MASK, MXC_CCM_PDR0_NFC_PODF_OFFSET); return clk_get_rate(clk->parent) / (nfc_pdf + 1); } static unsigned long hsp_get_rate(struct clk *clk) { unsigned long hsp_pdf; hsp_pdf = PDR0(MXC_CCM_PDR0_HSP_PODF_MASK, MXC_CCM_PDR0_HSP_PODF_OFFSET); return clk_get_rate(clk->parent) / (hsp_pdf + 1); } static unsigned long usb_get_rate(struct clk *clk) { unsigned long usb_pdf, usb_prepdf; usb_pdf = PDR1(MXC_CCM_PDR1_USB_PODF_MASK, MXC_CCM_PDR1_USB_PODF_OFFSET); usb_prepdf = PDR1(MXC_CCM_PDR1_USB_PRDF_MASK, MXC_CCM_PDR1_USB_PRDF_OFFSET); return clk_get_rate(clk->parent) / (usb_prepdf + 1) / (usb_pdf + 1); } static unsigned long csi_get_rate(struct clk *clk) { u32 reg, pre, post; reg = __raw_readl(MXC_CCM_PDR0); pre = (reg & MXC_CCM_PDR0_CSI_PRDF_MASK) >> MXC_CCM_PDR0_CSI_PRDF_OFFSET; pre++; post = (reg & MXC_CCM_PDR0_CSI_PODF_MASK) >> MXC_CCM_PDR0_CSI_PODF_OFFSET; post++; return clk_get_rate(clk->parent) / (pre * post); } static unsigned long csi_round_rate(struct clk *clk, unsigned long rate) { u32 pre, post, parent = clk_get_rate(clk->parent); u32 div = parent / rate; if (parent % rate) div++; __calc_pre_post_dividers(div, &pre, &post); return parent / (pre * post); } static int csi_set_rate(struct clk *clk, unsigned long rate) { u32 reg, div, pre, post, parent = clk_get_rate(clk->parent); div = parent / rate; if ((parent / div) != rate) return -EINVAL; __calc_pre_post_dividers(div, &pre, &post); /* Set CSI clock divider */ reg = __raw_readl(MXC_CCM_PDR0) & ~(MXC_CCM_PDR0_CSI_PODF_MASK | MXC_CCM_PDR0_CSI_PRDF_MASK); reg |= (post - 1) << MXC_CCM_PDR0_CSI_PODF_OFFSET; reg |= (pre - 1) << MXC_CCM_PDR0_CSI_PRDF_OFFSET; __raw_writel(reg, MXC_CCM_PDR0); return 0; } static unsigned long ssi1_get_rate(struct clk *clk) { unsigned long ssi1_pdf, ssi1_prepdf; ssi1_pdf = PDR1(MXC_CCM_PDR1_SSI1_PODF_MASK, MXC_CCM_PDR1_SSI1_PODF_OFFSET); ssi1_prepdf = PDR1(MXC_CCM_PDR1_SSI1_PRE_PODF_MASK, MXC_CCM_PDR1_SSI1_PRE_PODF_OFFSET); return clk_get_rate(clk->parent) / (ssi1_prepdf + 1) / (ssi1_pdf + 1); } static unsigned long ssi2_get_rate(struct clk *clk) { unsigned long ssi2_pdf, ssi2_prepdf; ssi2_pdf = PDR1(MXC_CCM_PDR1_SSI2_PODF_MASK, MXC_CCM_PDR1_SSI2_PODF_OFFSET); ssi2_prepdf = PDR1(MXC_CCM_PDR1_SSI2_PRE_PODF_MASK, MXC_CCM_PDR1_SSI2_PRE_PODF_OFFSET); return clk_get_rate(clk->parent) / (ssi2_prepdf + 1) / (ssi2_pdf + 1); } static unsigned long firi_get_rate(struct clk *clk) { unsigned long firi_pdf, firi_prepdf; firi_pdf = PDR1(MXC_CCM_PDR1_FIRI_PODF_MASK, MXC_CCM_PDR1_FIRI_PODF_OFFSET); firi_prepdf = PDR1(MXC_CCM_PDR1_FIRI_PRE_PODF_MASK, MXC_CCM_PDR1_FIRI_PRE_PODF_OFFSET); return clk_get_rate(clk->parent) / (firi_prepdf + 1) / (firi_pdf + 1); } static unsigned long firi_round_rate(struct clk *clk, unsigned long rate) { u32 pre, post; u32 parent = clk_get_rate(clk->parent); u32 div = parent / rate; if (parent % rate) div++; __calc_pre_post_dividers(div, &pre, &post); return parent / (pre * post); } static int firi_set_rate(struct clk *clk, unsigned long rate) { u32 reg, div, pre, post, parent = clk_get_rate(clk->parent); div = parent / rate; if ((parent / div) != rate) return -EINVAL; __calc_pre_post_dividers(div, &pre, &post); /* Set FIRI clock divider */ reg = __raw_readl(MXC_CCM_PDR1) & ~(MXC_CCM_PDR1_FIRI_PODF_MASK | MXC_CCM_PDR1_FIRI_PRE_PODF_MASK); reg |= (pre - 1) << MXC_CCM_PDR1_FIRI_PRE_PODF_OFFSET; reg |= (post - 1) << MXC_CCM_PDR1_FIRI_PODF_OFFSET; __raw_writel(reg, MXC_CCM_PDR1); return 0; } static unsigned long mbx_get_rate(struct clk *clk) { return clk_get_rate(clk->parent) / 2; } static unsigned long mstick1_get_rate(struct clk *clk) { unsigned long msti_pdf; msti_pdf = PDR2(MXC_CCM_PDR2_MST1_PDF_MASK, MXC_CCM_PDR2_MST1_PDF_OFFSET); return clk_get_rate(clk->parent) / (msti_pdf + 1); } static unsigned long mstick2_get_rate(struct clk *clk) { unsigned long msti_pdf; msti_pdf = PDR2(MXC_CCM_PDR2_MST2_PDF_MASK, MXC_CCM_PDR2_MST2_PDF_OFFSET); return clk_get_rate(clk->parent) / (msti_pdf + 1); } static unsigned long ckih_rate; static unsigned long clk_ckih_get_rate(struct clk *clk) { return ckih_rate; } static unsigned long clk_ckil_get_rate(struct clk *clk) { return CKIL_CLK_FREQ; } static struct clk ckih_clk = { .get_rate = clk_ckih_get_rate, }; static struct clk mcu_pll_clk = { .parent = &ckih_clk, .set_rate = pll_set_rate, .get_rate = mcu_pll_get_rate, }; static struct clk mcu_main_clk = { .parent = &mcu_pll_clk, .get_rate = mcu_main_get_rate, }; static struct clk serial_pll_clk = { .parent = &ckih_clk, .set_rate = pll_set_rate, .get_rate = serial_pll_get_rate, .enable = serial_pll_enable, .disable = serial_pll_disable, }; static struct clk usb_pll_clk = { .parent = &ckih_clk, .set_rate = pll_set_rate, .get_rate = usb_pll_get_rate, .enable = usb_pll_enable, .disable = usb_pll_disable, }; static struct clk cpu_clk = { .parent = &mcu_main_clk, .get_rate = _clk_cpu_get_rate, .set_rate = _clk_cpu_set_rate, }; static struct clk ahb_clk = { .parent = &mcu_main_clk, .get_rate = ahb_get_rate, }; #define DEFINE_CLOCK(name, i, er, es, gr, s, p) \ static struct clk name = { \ .id = i, \ .enable_reg = er, \ .enable_shift = es, \ .get_rate = gr, \ .enable = cgr_enable, \ .disable = cgr_disable, \ .secondary = s, \ .parent = p, \ } #define DEFINE_CLOCK1(name, i, er, es, getsetround, s, p) \ static struct clk name = { \ .id = i, \ .enable_reg = er, \ .enable_shift = es, \ .get_rate = getsetround##_get_rate, \ .set_rate = getsetround##_set_rate, \ .round_rate = getsetround##_round_rate, \ .enable = cgr_enable, \ .disable = cgr_disable, \ .secondary = s, \ .parent = p, \ } DEFINE_CLOCK(perclk_clk, 0, NULL, 0, NULL, NULL, &ipg_clk); DEFINE_CLOCK(ckil_clk, 0, NULL, 0, clk_ckil_get_rate, NULL, NULL); DEFINE_CLOCK(sdhc1_clk, 0, MXC_CCM_CGR0, 0, NULL, NULL, &perclk_clk); DEFINE_CLOCK(sdhc2_clk, 1, MXC_CCM_CGR0, 2, NULL, NULL, &perclk_clk); DEFINE_CLOCK(gpt_clk, 0, MXC_CCM_CGR0, 4, NULL, NULL, &perclk_clk); DEFINE_CLOCK(epit1_clk, 0, MXC_CCM_CGR0, 6, NULL, NULL, &perclk_clk); DEFINE_CLOCK(epit2_clk, 1, MXC_CCM_CGR0, 8, NULL, NULL, &perclk_clk); DEFINE_CLOCK(iim_clk, 0, MXC_CCM_CGR0, 10, NULL, NULL, &ipg_clk); DEFINE_CLOCK(ata_clk, 0, MXC_CCM_CGR0, 12, NULL, NULL, &ipg_clk); DEFINE_CLOCK(sdma_clk1, 0, MXC_CCM_CGR0, 14, NULL, &sdma_clk1, &ahb_clk); DEFINE_CLOCK(cspi3_clk, 2, MXC_CCM_CGR0, 16, NULL, NULL, &ipg_clk); DEFINE_CLOCK(rng_clk, 0, MXC_CCM_CGR0, 18, NULL, NULL, &ipg_clk); DEFINE_CLOCK(uart1_clk, 0, MXC_CCM_CGR0, 20, NULL, NULL, &perclk_clk); DEFINE_CLOCK(uart2_clk, 1, MXC_CCM_CGR0, 22, NULL, NULL, &perclk_clk); DEFINE_CLOCK(ssi1_clk, 0, MXC_CCM_CGR0, 24, ssi1_get_rate, NULL, &serial_pll_clk); DEFINE_CLOCK(i2c1_clk, 0, MXC_CCM_CGR0, 26, NULL, NULL, &perclk_clk); DEFINE_CLOCK(i2c2_clk, 1, MXC_CCM_CGR0, 28, NULL, NULL, &perclk_clk); DEFINE_CLOCK(i2c3_clk, 2, MXC_CCM_CGR0, 30, NULL, NULL, &perclk_clk); DEFINE_CLOCK(mpeg4_clk, 0, MXC_CCM_CGR1, 0, NULL, NULL, &ahb_clk); DEFINE_CLOCK(mstick1_clk, 0, MXC_CCM_CGR1, 2, mstick1_get_rate, NULL, &usb_pll_clk); DEFINE_CLOCK(mstick2_clk, 1, MXC_CCM_CGR1, 4, mstick2_get_rate, NULL, &usb_pll_clk); DEFINE_CLOCK1(csi_clk, 0, MXC_CCM_CGR1, 6, csi, NULL, &serial_pll_clk); DEFINE_CLOCK(rtc_clk, 0, MXC_CCM_CGR1, 8, NULL, NULL, &ckil_clk); DEFINE_CLOCK(wdog_clk, 0, MXC_CCM_CGR1, 10, NULL, NULL, &ipg_clk); DEFINE_CLOCK(pwm_clk, 0, MXC_CCM_CGR1, 12, NULL, NULL, &perclk_clk); DEFINE_CLOCK(usb_clk2, 0, MXC_CCM_CGR1, 18, usb_get_rate, NULL, &ahb_clk); DEFINE_CLOCK(kpp_clk, 0, MXC_CCM_CGR1, 20, NULL, NULL, &ipg_clk); DEFINE_CLOCK(ipu_clk, 0, MXC_CCM_CGR1, 22, hsp_get_rate, NULL, &mcu_main_clk); DEFINE_CLOCK(uart3_clk, 2, MXC_CCM_CGR1, 24, NULL, NULL, &perclk_clk); DEFINE_CLOCK(uart4_clk, 3, MXC_CCM_CGR1, 26, NULL, NULL, &perclk_clk); DEFINE_CLOCK(uart5_clk, 4, MXC_CCM_CGR1, 28, NULL, NULL, &perclk_clk); DEFINE_CLOCK(owire_clk, 0, MXC_CCM_CGR1, 30, NULL, NULL, &perclk_clk); DEFINE_CLOCK(ssi2_clk, 1, MXC_CCM_CGR2, 0, ssi2_get_rate, NULL, &serial_pll_clk); DEFINE_CLOCK(cspi1_clk, 0, MXC_CCM_CGR2, 2, NULL, NULL, &ipg_clk); DEFINE_CLOCK(cspi2_clk, 1, MXC_CCM_CGR2, 4, NULL, NULL, &ipg_clk); DEFINE_CLOCK(mbx_clk, 0, MXC_CCM_CGR2, 6, mbx_get_rate, NULL, &ahb_clk); DEFINE_CLOCK(emi_clk, 0, MXC_CCM_CGR2, 8, NULL, NULL, &ahb_clk); DEFINE_CLOCK(rtic_clk, 0, MXC_CCM_CGR2, 10, NULL, NULL, &ahb_clk); DEFINE_CLOCK1(firi_clk, 0, MXC_CCM_CGR2, 12, firi, NULL, &usb_pll_clk); DEFINE_CLOCK(sdma_clk2, 0, NULL, 0, NULL, NULL, &ipg_clk); DEFINE_CLOCK(usb_clk1, 0, NULL, 0, usb_get_rate, NULL, &usb_pll_clk); DEFINE_CLOCK(nfc_clk, 0, NULL, 0, nfc_get_rate, NULL, &ahb_clk); DEFINE_CLOCK(scc_clk, 0, NULL, 0, NULL, NULL, &ipg_clk); DEFINE_CLOCK(ipg_clk, 0, NULL, 0, ipg_get_rate, NULL, &ahb_clk); #define _REGISTER_CLOCK(d, n, c) \ { \ .dev_id = d, \ .con_id = n, \ .clk = &c, \ }, static struct clk_lookup lookups[] = { _REGISTER_CLOCK(NULL, "cpu_clk", cpu_clk) _REGISTER_CLOCK(NULL, "emi", emi_clk) _REGISTER_CLOCK("spi_imx.0", NULL, cspi1_clk) _REGISTER_CLOCK("spi_imx.1", NULL, cspi2_clk) _REGISTER_CLOCK("spi_imx.2", NULL, cspi3_clk) _REGISTER_CLOCK(NULL, "gpt", gpt_clk) _REGISTER_CLOCK(NULL, "pwm", pwm_clk) _REGISTER_CLOCK("imx-wdt.0", NULL, wdog_clk) _REGISTER_CLOCK(NULL, "rtc", rtc_clk) _REGISTER_CLOCK(NULL, "epit", epit1_clk) _REGISTER_CLOCK(NULL, "epit", epit2_clk) _REGISTER_CLOCK("mxc_nand.0", NULL, nfc_clk) _REGISTER_CLOCK("ipu-core", NULL, ipu_clk) _REGISTER_CLOCK("mx3_sdc_fb", NULL, ipu_clk) _REGISTER_CLOCK(NULL, "kpp", kpp_clk) _REGISTER_CLOCK("mxc-ehci.0", "usb", usb_clk1) _REGISTER_CLOCK("mxc-ehci.0", "usb_ahb", usb_clk2) _REGISTER_CLOCK("mxc-ehci.1", "usb", usb_clk1) _REGISTER_CLOCK("mxc-ehci.1", "usb_ahb", usb_clk2) _REGISTER_CLOCK("mxc-ehci.2", "usb", usb_clk1) _REGISTER_CLOCK("mxc-ehci.2", "usb_ahb", usb_clk2) _REGISTER_CLOCK("fsl-usb2-udc", "usb", usb_clk1) _REGISTER_CLOCK("fsl-usb2-udc", "usb_ahb", usb_clk2) _REGISTER_CLOCK("mx3-camera.0", NULL, csi_clk) _REGISTER_CLOCK("imx-uart.0", NULL, uart1_clk) _REGISTER_CLOCK("imx-uart.1", NULL, uart2_clk) _REGISTER_CLOCK("imx-uart.2", NULL, uart3_clk) _REGISTER_CLOCK("imx-uart.3", NULL, uart4_clk) _REGISTER_CLOCK("imx-uart.4", NULL, uart5_clk) _REGISTER_CLOCK("imx-i2c.0", NULL, i2c1_clk) _REGISTER_CLOCK("imx-i2c.1", NULL, i2c2_clk) _REGISTER_CLOCK("imx-i2c.2", NULL, i2c3_clk) _REGISTER_CLOCK("mxc_w1.0", NULL, owire_clk) _REGISTER_CLOCK("mxc-mmc.0", NULL, sdhc1_clk) _REGISTER_CLOCK("mxc-mmc.1", NULL, sdhc2_clk) _REGISTER_CLOCK("imx-ssi.0", NULL, ssi1_clk) _REGISTER_CLOCK("imx-ssi.1", NULL, ssi2_clk) _REGISTER_CLOCK(NULL, "firi", firi_clk) _REGISTER_CLOCK(NULL, "ata", ata_clk) _REGISTER_CLOCK(NULL, "rtic", rtic_clk) _REGISTER_CLOCK(NULL, "rng", rng_clk) _REGISTER_CLOCK(NULL, "sdma_ahb", sdma_clk1) _REGISTER_CLOCK(NULL, "sdma_ipg", sdma_clk2) _REGISTER_CLOCK(NULL, "mstick", mstick1_clk) _REGISTER_CLOCK(NULL, "mstick", mstick2_clk) _REGISTER_CLOCK(NULL, "scc", scc_clk) _REGISTER_CLOCK(NULL, "iim", iim_clk) _REGISTER_CLOCK(NULL, "mpeg4", mpeg4_clk) _REGISTER_CLOCK(NULL, "mbx", mbx_clk) }; static struct mxc_clk mxc_clks[ARRAY_SIZE(lookups)]; int __init mx31_clocks_init(unsigned long fref) { u32 reg; int i; ckih_rate = fref; clkdev_add_table(lookups, ARRAY_SIZE(lookups)); for (i = 0; i < ARRAY_SIZE(lookups); i++) { clkdev_add(&lookups[i]); mxc_clks[i].reg_clk = lookups[i].clk; if (lookups[i].con_id != NULL) strcpy(mxc_clks[i].name, lookups[i].con_id); else strcpy(mxc_clks[i].name, lookups[i].dev_id); clk_register(&mxc_clks[i]); } /* change the csi_clk parent if necessary */ reg = __raw_readl(MXC_CCM_CCMR); if (!(reg & MXC_CCM_CCMR_CSCS)) if (clk_set_parent(&csi_clk, &usb_pll_clk)) pr_err("%s: error changing csi_clk parent\n", __func__); pr_info("Clock input source is %ld\n", clk_get_rate(&ckih_clk)); clk_enable(&gpt_clk); clk_enable(&emi_clk); clk_enable(&iim_clk); clk_enable(&serial_pll_clk); mx31_read_cpu_rev(); if (mx31_revision() >= MX31_CHIP_REV_2_0) { reg = __raw_readl(MXC_CCM_PMCR1); /* No PLL restart on DVFS switch; enable auto EMI handshake */ reg |= MXC_CCM_PMCR1_PLLRDIS | MXC_CCM_PMCR1_EMIRQ_EN; __raw_writel(reg, MXC_CCM_PMCR1); } cpu_curr_wp = clk_get_rate(&cpu_clk) / clk_get_rate(&ahb_clk) - 1; cpu_wp_tbl = get_cpu_wp(&cpu_wp_nr); /* Init serial PLL according */ clk_set_rate(&serial_pll_clk, (cpu_wp_tbl[2].pll_rate)); mxc_timer_init(&ipg_clk, MX31_IO_ADDRESS(MX31_GPT1_BASE_ADDR), MX31_INT_GPT); return 0; } #define MXC_PMCR0_DVFS_MASK (MXC_CCM_PMCR0_DVSUP_MASK | \ MXC_CCM_PMCR0_UDSC_MASK | \ MXC_CCM_PMCR0_VSCNT_MASK | \ MXC_CCM_PMCR0_DPVCR) #define MXC_PDR0_MAX_MCU_MASK (MXC_CCM_PDR0_MAX_PODF_MASK | \ MXC_CCM_PDR0_MCU_PODF_MASK | \ MXC_CCM_PDR0_HSP_PODF_MASK | \ MXC_CCM_PDR0_IPG_PODF_MASK | \ MXC_CCM_PDR0_NFC_PODF_MASK) /*! * Setup cpu clock based on working point. * @param wp cpu freq working point (0 is the slowest) * @return 0 on success or error code on failure. */ static int cpu_clk_set_wp(int wp) { struct cpu_wp *p; u32 dvsup; u32 pmcr0, pmcr1; u32 pdr0; u32 cgr2 = 0x80000000; u32 vscnt = MXC_CCM_PMCR0_VSCNT_2; u32 udsc = MXC_CCM_PMCR0_UDSC_DOWN; void __iomem *ipu_base = MX31_IO_ADDRESS(MX31_IPU_CTRL_BASE_ADDR); u32 ipu_conf; if (wp >= cpu_wp_nr || wp < 0) { printk(KERN_ERR "Wrong wp: %d for cpu_clk_set_wp\n", wp); return -EINVAL; } if (wp == cpu_curr_wp) return 0; pmcr0 = __raw_readl(MXC_CCM_PMCR0); pmcr1 = __raw_readl(MXC_CCM_PMCR1); pdr0 = __raw_readl(MXC_CCM_PDR0); if (!(pmcr0 & MXC_CCM_PMCR0_UPDTEN)) return -EBUSY; if (wp > cpu_curr_wp) { /* going faster */ if (wp == (cpu_wp_nr - 1)) { /* Only update vscnt going into Turbo */ vscnt = MXC_CCM_PMCR0_VSCNT_8; } udsc = MXC_CCM_PMCR0_UDSC_UP; } p = &cpu_wp_tbl[wp]; dvsup = (cpu_wp_nr - 1 - wp) << MXC_CCM_PMCR0_DVSUP_OFFSET; if ((clk_get_rate(&mcu_main_clk) == 399000000) && (p->cpu_rate == 532000000)) { cgr2 = __raw_readl(MXC_CCM_CGR2); cgr2 &= 0x7fffffff; vscnt = 0; pmcr0 = (pmcr0 & ~MXC_PMCR0_DVFS_MASK) | dvsup | vscnt; pr_debug("manul dvfs, dvsup = %x\n", dvsup); __raw_writel(cgr2, MXC_CCM_CGR2); __raw_writel(pmcr0, MXC_CCM_PMCR0); udelay(100); } if (clk_get_rate(&mcu_main_clk) == p->pll_rate) { /* No pll switching and relocking needed */ pmcr0 |= MXC_CCM_PMCR0_DFSUP0_PDR; } else { /* pll switching and relocking needed */ pmcr0 ^= MXC_CCM_PMCR0_DFSUP1; /* flip MSB bit */ pmcr0 &= ~(MXC_CCM_PMCR0_DFSUP0); } pmcr0 = (pmcr0 & ~MXC_PMCR0_DVFS_MASK) | dvsup | vscnt | udsc; /* also enable DVFS hardware */ pmcr0 |= MXC_CCM_PMCR0_DVFEN; __raw_writel(pmcr0, MXC_CCM_PMCR0); /* IPU and DI submodule must be on for PDR0 update to take effect */ if (!clk_get_usecount(&ipu_clk)) ipu_clk.enable(&ipu_clk); ipu_conf = __raw_readl(ipu_base); if (!(ipu_conf & 0x40)) __raw_writel(ipu_conf | 0x40, ipu_base); __raw_writel((pdr0 & ~MXC_PDR0_MAX_MCU_MASK) | p->pdr0_reg, MXC_CCM_PDR0); if ((pmcr0 & MXC_CCM_PMCR0_DFSUP0) == MXC_CCM_PMCR0_DFSUP0_PLL) { /* prevent pll restart */ pmcr1 |= 0x80; __raw_writel(pmcr1, MXC_CCM_PMCR1); /* PLL and post divider update */ if ((pmcr0 & MXC_CCM_PMCR0_DFSUP1) == MXC_CCM_PMCR0_DFSUP1_SPLL) { __raw_writel(p->pll_reg, MXC_CCM_SRPCTL); mcu_main_clk.parent = &serial_pll_clk; } else { __raw_writel(p->pll_reg, MXC_CCM_MPCTL); mcu_main_clk.parent = &mcu_pll_clk; } } if ((cgr2 & 0x80000000) == 0x0) { pr_debug("start auto dvfs\n"); cgr2 |= 0x80000000; __raw_writel(cgr2, MXC_CCM_CGR2); } cpu_curr_wp = wp; /* Restore IPU_CONF setting */ __raw_writel(ipu_conf, ipu_base); if (!clk_get_usecount(&ipu_clk)) ipu_clk.disable(&ipu_clk); return 0; }