/* * arch/arm/mach-tegra/include/mach/pci.h * * Header file containing constants for the tegra PCIe driver. * * Copyright (c) 2008-2009, NVIDIA Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __MACH_TEGRA_PCI_H #include #include #include "nvrm_drf.h" #include "ap20/dev_ap_pcie2_root_port.h" #include "ap20/dev_ap_pcie2_pads.h" #include "ap20/arafi.h" extern void __iomem * volatile pci_tegra_regs; /* * AXI address map for the PCIe aperture. AP20, defines 1GB in the AXI * address map for PCIe. * * That address space is split into different regions, with sizes and * offsets as follows. Exepct for the Register space, SW is free to slice the * regions as it chooces. * * The split below seems to work fine for now. * * 0x8000_0000 to 0x80ff_ffff - Register space 16MB. * 0x8100_0000 to 0x81ff_ffff - Config space 16MB. * 0x8200_0000 to 0x82ff_ffff - Extended config space 16MB. * 0x8300_0000 to 0x83ff_ffff - Downstream IO space * ... Will be filled with other BARS like MSI/upstream IO etc. * 0x9000_0000 to 0x9fff_ffff - non-prefetchable memory aperture * 0xa000_0000 to 0xbfff_ffff - Prefetchable memory aperture * * Config and Extended config sizes are choosen to support * maximum of 256 devices, * which is good enough for all the AP20 use cases. * */ #define PCIE_REGS_SIZE 0x01000000UL #define PCIE_CONFIG_OFFSET PCIE_REGS_SIZE #define PCIE_CONFIG_SIZE 0x01000000UL #define PCIE_EXTENDED_CONFIG_OFFSET (PCIE_CONFIG_SIZE + PCIE_CONFIG_OFFSET) #define PCIE_EXTENDED_CONFIG_SIZE 0x01000000UL #define PCIE_DOWNSTREAM_IO_OFFSET (PCIE_EXTENDED_CONFIG_SIZE + \ PCIE_EXTENDED_CONFIG_OFFSET) #define PCIE_DOWNSTREAM_IO_SIZE 0x00100000UL #define PCIE_NON_PREFETCH_MEMORY_OFFSET 0x10000000UL #define PCIE_NON_PREFETCH_MEMORY_SIZE 0x10000000UL #define PCIE_PREFETCH_MEMORY_OFFSET (PCIE_NON_PREFETCH_MEMORY_OFFSET + \ PCIE_NON_PREFETCH_MEMORY_SIZE) #define PCIE_PREFETCH_MEMORY_SIZE 0x20000000UL /* PCIe registers can be classified into 4 regions. * * 1. AFI registers - AFI is a wrapper between PCIE and ARM AXI bus. These * registers define the address translation registers, interrupt registers and * some configuration (a.k.a CYA) registers. * 2. PAD registers - PAD control registers which are inside the PCIE CORE. * 3. Configuration 0 and Configuration 1 registers - These registers are PCIe * configuration registers of Root port 0 and root port 1. * * Check the PcieRegType enumeration for the list of Registers banks inside the * PCIE aperture. * * */ #define NV_PCIE_AXI_AFI_REGS_OFSET 0x3800UL #define NV_PCIE_AXI_PADS_OFSET 0x3000UL #define NV_PCIE_AXI_RP_T0C0_OFFSET 0x0000UL #define NV_PCIE_AXI_RP_T0C1_OFFSET 0x1000UL /* During the boot only registers/config and extended config apertures are * mapped. Rest are mapped on demand by the PCI device drivers. */ #define PCI_TEGRA_IOMAPPED_REG_APERTURE_SIZE \ (PCIE_REGS_SIZE + PCIE_CONFIG_SIZE + PCIE_EXTENDED_CONFIG_SIZE) /* * PCI address map for memory mapped devices. Still using 32-bit aperture. * * 1GB for the system memory. * Everything mapped as cpu physical = pci * */ #define FPCI_SYSTEM_MEMORY_OFFSET 0x0UL #define FPCI_SYSTEM_MEMORY_SIZE 0x40000000UL #define FPCI_NON_PREFETCH_MEMORY_OFFSET 0x90000000UL #define FPCI_NON_PREFETCH_MEMORY_SIZE PCIE_NON_PREFETCH_MEMORY_SIZE #define FPCI_PREFETCH_MEMORY_OFFSET (FPCI_NON_PREFETCH_MEMORY_OFFSET+ \ FPCI_NON_PREFETCH_MEMORY_SIZE) #define FPCI_PREFETCH_MEMORY_SIZE 0x40000000UL /* PCIE DRF macros to read and write PRI registers */ /** NVPCIE_DRF_DEF - define a new register value. @param d register domain (hardware block) @param r register name @param f register field @param c defined value for the field */ #define NVPCIE_DRF_DEF(d,r,f,c) \ ((NV_PROJ__PCIE2_##d##_##r##_##f##_##c) \ << NV_FIELD_SHIFT(NV_PROJ__PCIE2_##d##_##r##_##f)) /** NVPCIE_DRF_NUM - define a new register value. @param d register domain (hardware block) @param r register name @param f register field @param n numeric value for the field */ #define NVPCIE_DRF_NUM(d,r,f,n) \ (((n)& NV_FIELD_MASK(NV_PROJ__PCIE2_##d##_##r##_##f)) << \ NV_FIELD_SHIFT(NV_PROJ__PCIE2_##d##_##r##_##f)) /** NVPCIE_DRF_VAL - read a field from a register. @param d register domain (hardware block) @param r register name @param f register field @param v register value */ #define NVPCIE_DRF_VAL(d,r,f,v) \ (((v)>> NV_FIELD_SHIFT(NV_PROJ__PCIE2_##d##_##r##_##f)) & \ NV_FIELD_MASK(NV_PROJ__PCIE2_##d##_##r##_##f)) /** NVPCIE_FLD_SET_DRF_NUM - modify a register field. @param d register domain (hardware block) @param r register name @param f register field @param n numeric field value @param v register value */ #define NVPCIE_FLD_SET_DRF_NUM(d,r,f,n,v) \ ((v & ~NV_FIELD_SHIFTMASK(NV_PROJ__PCIE2_##d##_##r##_##f)) | \ NVPCIE_DRF_NUM(d,r,f,n)) /** NVPCIE_FLD_SET_DRF_DEF - modify a register field. @param d register domain (hardware block) @param r register name @param f register field @param c defined field value @param v register value */ #define NVPCIE_FLD_SET_DRF_DEF(d,r,f,c,v) \ (((v) & ~NV_FIELD_SHIFTMASK(NV_PROJ__PCIE2_##d##_##r##_##f)) | \ NVPCIE_DRF_DEF(d,r,f,c)) /** NVPCIE_RESETVAL - get the reset value for a register. @param d register domain (hardware block) @param r register name */ #define NVPCIE_RESETVAL(d,r) (d##_##r##_0_RESET_VAL) /* Register access inline functions */ static inline void pci_tegra_afi_writel(u32 value,unsigned long offset) { writel(value, offset + NV_PCIE_AXI_AFI_REGS_OFSET + pci_tegra_regs); } static inline void pci_tegra_rp_writel(u32 value, unsigned long offset, int rp) { BUG_ON(rp != 0 && rp != 1); if (rp == 0) offset += NV_PCIE_AXI_RP_T0C0_OFFSET; if (rp == 1) offset += NV_PCIE_AXI_RP_T0C1_OFFSET; writel(value, offset + pci_tegra_regs); } static inline void pci_tegra_rp_writew(u16 value, unsigned long offset, int rp) { u32 reg; BUG_ON(rp != 0 && rp != 1); if (rp == 0) offset += NV_PCIE_AXI_RP_T0C0_OFFSET; if (rp == 1) offset += NV_PCIE_AXI_RP_T0C1_OFFSET; reg = readl((offset & ~0x3) + pci_tegra_regs); reg &= ~(0xffff << ((offset & 0x3) * 8)); reg |= (u32)value << ((offset & 0x3) * 8); writel(reg, (offset & ~0x3) + pci_tegra_regs); } static inline void pci_tegra_rp_writeb(u8 value, unsigned long offset, int rp) { u32 reg; BUG_ON(rp != 0 && rp != 1); if (rp == 0) offset += NV_PCIE_AXI_RP_T0C0_OFFSET; if (rp == 1) offset += NV_PCIE_AXI_RP_T0C1_OFFSET; reg = readl((offset & ~0x3) + pci_tegra_regs); reg &= ~(0xff << ((offset & 0x3) * 8)); reg |= (u32)value << ((offset & 0x3) * 8); writel(reg, (offset & ~0x3) + pci_tegra_regs); } static inline void pci_tegra_pads_writel(u32 value, unsigned long offset) { writel(value, offset + NV_PCIE_AXI_PADS_OFSET + pci_tegra_regs); } static inline u32 pci_tegra_afi_readl(unsigned long offset) { return readl(offset + NV_PCIE_AXI_AFI_REGS_OFSET + pci_tegra_regs); } static inline u32 pci_tegra_rp_readl(unsigned long offset, int rp) { BUG_ON(rp != 0 && rp != 1); if (rp == 0) offset += NV_PCIE_AXI_RP_T0C0_OFFSET; if (rp == 1) offset += NV_PCIE_AXI_RP_T0C1_OFFSET; return readl(offset + pci_tegra_regs); } static inline u16 pci_tegra_rp_readw(unsigned long offset, int rp) { u32 val; BUG_ON(rp != 0 && rp != 1); if (rp == 0) offset += NV_PCIE_AXI_RP_T0C0_OFFSET; if (rp == 1) offset += NV_PCIE_AXI_RP_T0C1_OFFSET; val = readl((offset & ~0x3) + pci_tegra_regs); val >>= 8 * (offset & 3); val &= 0xffff; return (u16)val; } static inline u8 pci_tegra_rp_readb(unsigned long offset, int rp) { u32 val; BUG_ON(rp != 0 && rp != 1); if (rp == 0) offset += NV_PCIE_AXI_RP_T0C0_OFFSET; if (rp == 1) offset += NV_PCIE_AXI_RP_T0C1_OFFSET; val = readl((offset & ~0x3) + pci_tegra_regs); val >>= 8 * (offset & 3); val &= 0xff; return (u8)val; } static inline u32 pci_tegra_pads_reedl(unsigned long offset) { return readl(offset + NV_PCIE_AXI_PADS_OFSET + pci_tegra_regs); } static inline bool pci_tegra_is_rp(u32 bus_number, int *rp) { if (bus_number == pci_tegra_rp_readb(PCI_PRIMARY_BUS, 0)) { *rp = 0; return true; } else if (bus_number == pci_tegra_rp_readb(PCI_PRIMARY_BUS, 1)) { *rp = 1; return true; } else return false; } /* * Given the bus number, devfn and the offset this API returns the mapped * address of the config space. */ static inline void __iomem *pci_tegra_config_addr(u8 bus_number, u32 devfn, u32 where) { void *addr; u32 function; u32 device; function = PCI_FUNC(devfn); device = PCI_SLOT(devfn); addr = pci_tegra_regs; addr += (where < 256) ? PCIE_CONFIG_OFFSET : PCIE_EXTENDED_CONFIG_OFFSET; addr += bus_number << 16; addr += device << 11; addr += function << 8; addr += where; return addr; } void pci_tegra_enumerate(void); #endif