/* * arch/arm/mach-tegra/tegra2_clocks.c * * Copyright (C) 2010 Google, Inc. * * Author: * Colin Cross * * Copyright (C) 2010-2011 NVIDIA Corporation * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "clock.h" #include "fuse.h" #include "tegra2_emc.h" #include "tegra2_statmon.h" #define RST_DEVICES 0x004 #define RST_DEVICES_SET 0x300 #define RST_DEVICES_CLR 0x304 #define RST_DEVICES_NUM 3 #define CLK_OUT_ENB 0x010 #define CLK_OUT_ENB_SET 0x320 #define CLK_OUT_ENB_CLR 0x324 #define CLK_OUT_ENB_NUM 3 #define CLK_MASK_ARM 0x44 #define MISC_CLK_ENB 0x48 #define OSC_CTRL 0x50 #define OSC_CTRL_OSC_FREQ_MASK (3<<30) #define OSC_CTRL_OSC_FREQ_13MHZ (0<<30) #define OSC_CTRL_OSC_FREQ_19_2MHZ (1<<30) #define OSC_CTRL_OSC_FREQ_12MHZ (2<<30) #define OSC_CTRL_OSC_FREQ_26MHZ (3<<30) #define OSC_CTRL_MASK (0x3f2 | OSC_CTRL_OSC_FREQ_MASK) #define OSC_FREQ_DET 0x58 #define OSC_FREQ_DET_TRIG (1<<31) #define OSC_FREQ_DET_STATUS 0x5C #define OSC_FREQ_DET_BUSY (1<<31) #define OSC_FREQ_DET_CNT_MASK 0xFFFF #define PERIPH_CLK_SOURCE_I2S1 0x100 #define PERIPH_CLK_SOURCE_EMC 0x19c #define PERIPH_CLK_SOURCE_OSC 0x1fc #define PERIPH_CLK_SOURCE_NUM \ ((PERIPH_CLK_SOURCE_OSC - PERIPH_CLK_SOURCE_I2S1) / 4) #define PERIPH_CLK_SOURCE_MASK (3<<30) #define PERIPH_CLK_SOURCE_SHIFT 30 #define PERIPH_CLK_SOURCE_ENABLE (1<<28) #define PERIPH_CLK_SOURCE_DIVU71_MASK 0xFF #define PERIPH_CLK_SOURCE_DIVU16_MASK 0xFFFF #define PERIPH_CLK_SOURCE_DIV_SHIFT 0 #define SDMMC_CLK_INT_FB_SEL (1 << 23) #define SDMMC_CLK_INT_FB_DLY_SHIFT 16 #define SDMMC_CLK_INT_FB_DLY_MASK (0xF << SDMMC_CLK_INT_FB_DLY_SHIFT) #define PLL_BASE 0x0 #define PLL_BASE_BYPASS (1<<31) #define PLL_BASE_ENABLE (1<<30) #define PLL_BASE_REF_ENABLE (1<<29) #define PLL_BASE_OVERRIDE (1<<28) #define PLL_BASE_DIVP_MASK (0x7<<20) #define PLL_BASE_DIVP_SHIFT 20 #define PLL_BASE_DIVN_MASK (0x3FF<<8) #define PLL_BASE_DIVN_SHIFT 8 #define PLL_BASE_DIVM_MASK (0x1F) #define PLL_BASE_DIVM_SHIFT 0 #define PLL_OUT_RATIO_MASK (0xFF<<8) #define PLL_OUT_RATIO_SHIFT 8 #define PLL_OUT_OVERRIDE (1<<2) #define PLL_OUT_CLKEN (1<<1) #define PLL_OUT_RESET_DISABLE (1<<0) #define PLL_MISC(c) (((c)->flags & PLL_ALT_MISC_REG) ? 0x4 : 0xc) #define PLL_MISC_DCCON_SHIFT 20 #define PLL_MISC_CPCON_SHIFT 8 #define PLL_MISC_CPCON_MASK (0xF<u.periph.clk_num / 32) * 4) #define PERIPH_CLK_TO_ENB_SET_REG(c) ((c->u.periph.clk_num / 32) * 8) #define PERIPH_CLK_TO_ENB_BIT(c) (1 << (c->u.periph.clk_num % 32)) #define SUPER_CLK_MUX 0x00 #define SUPER_STATE_SHIFT 28 #define SUPER_STATE_MASK (0xF << SUPER_STATE_SHIFT) #define SUPER_STATE_STANDBY (0x0 << SUPER_STATE_SHIFT) #define SUPER_STATE_IDLE (0x1 << SUPER_STATE_SHIFT) #define SUPER_STATE_RUN (0x2 << SUPER_STATE_SHIFT) #define SUPER_STATE_IRQ (0x3 << SUPER_STATE_SHIFT) #define SUPER_STATE_FIQ (0x4 << SUPER_STATE_SHIFT) #define SUPER_SOURCE_MASK 0xF #define SUPER_FIQ_SOURCE_SHIFT 12 #define SUPER_IRQ_SOURCE_SHIFT 8 #define SUPER_RUN_SOURCE_SHIFT 4 #define SUPER_IDLE_SOURCE_SHIFT 0 #define SUPER_CLK_DIVIDER 0x04 #define BUS_CLK_DISABLE (1<<3) #define BUS_CLK_DIV_MASK 0x3 #define PMC_CTRL 0x0 #define PMC_CTRL_BLINK_ENB (1 << 7) #define PMC_DPD_PADS_ORIDE 0x1c #define PMC_DPD_PADS_ORIDE_BLINK_ENB (1 << 20) #define PMC_BLINK_TIMER_DATA_ON_SHIFT 0 #define PMC_BLINK_TIMER_DATA_ON_MASK 0x7fff #define PMC_BLINK_TIMER_ENB (1 << 15) #define PMC_BLINK_TIMER_DATA_OFF_SHIFT 16 #define PMC_BLINK_TIMER_DATA_OFF_MASK 0xffff #define AP25_EMC_BRIDGE_RATE 380000000 #define AP25_EMC_INTERMEDIATE_RATE 760000000 #define AP25_EMC_SCALING_STEP 600000000 static void __iomem *reg_clk_base = IO_ADDRESS(TEGRA_CLK_RESET_BASE); static void __iomem *reg_pmc_base = IO_ADDRESS(TEGRA_PMC_BASE); static void __iomem *misc_gp_hidrev_base = IO_ADDRESS(TEGRA_APB_MISC_BASE); #define MISC_GP_HIDREV 0x804 static int tegra2_clk_shared_bus_update(struct clk *bus); /* * Some clocks share a register with other clocks. Any clock op that * non-atomically modifies a register used by another clock must lock * clock_register_lock first. */ static DEFINE_SPINLOCK(clock_register_lock); /* * Some peripheral clocks share an enable bit, so refcount the enable bits * in registers CLK_ENABLE_L, CLK_ENABLE_H, and CLK_ENABLE_U */ static int tegra_periph_clk_enable_refcount[3 * 32]; #define clk_writel(value, reg) \ __raw_writel(value, (u32)reg_clk_base + (reg)) #define clk_readl(reg) \ __raw_readl((u32)reg_clk_base + (reg)) #define pmc_writel(value, reg) \ __raw_writel(value, (u32)reg_pmc_base + (reg)) #define pmc_readl(reg) \ __raw_readl((u32)reg_pmc_base + (reg)) #define chipid_readl() \ __raw_readl((u32)misc_gp_hidrev_base + MISC_GP_HIDREV) unsigned long clk_measure_input_freq(void) { u32 clock_autodetect; clk_writel(OSC_FREQ_DET_TRIG | 1, OSC_FREQ_DET); do {} while (clk_readl(OSC_FREQ_DET_STATUS) & OSC_FREQ_DET_BUSY); clock_autodetect = clk_readl(OSC_FREQ_DET_STATUS); if (clock_autodetect >= 732 - 3 && clock_autodetect <= 732 + 3) { return 12000000; } else if (clock_autodetect >= 794 - 3 && clock_autodetect <= 794 + 3) { return 13000000; } else if (clock_autodetect >= 1172 - 3 && clock_autodetect <= 1172 + 3) { return 19200000; } else if (clock_autodetect >= 1587 - 3 && clock_autodetect <= 1587 + 3) { return 26000000; } else { pr_err("%s: Unexpected clock autodetect value %d", __func__, clock_autodetect); BUG(); return 0; } } static int clk_div71_get_divider(unsigned long parent_rate, unsigned long rate) { s64 divider_u71 = parent_rate * 2; divider_u71 += rate - 1; do_div(divider_u71, rate); if (divider_u71 - 2 < 0) return 0; if (divider_u71 - 2 > 255) return -EINVAL; return divider_u71 - 2; } static int clk_div16_get_divider(unsigned long parent_rate, unsigned long rate) { s64 divider_u16; divider_u16 = parent_rate; divider_u16 += rate - 1; do_div(divider_u16, rate); if (divider_u16 - 1 < 0) return 0; if (divider_u16 - 1 > 0xFFFF) return -EINVAL; return divider_u16 - 1; } static inline int clk_set_div(struct clk *c, int n) { return clk_set_rate(c, (clk_get_rate(c->parent) + n-1) / n); } /* clk_m functions */ static unsigned long tegra2_clk_m_autodetect_rate(struct clk *c) { u32 auto_clock_control = clk_readl(OSC_CTRL) & ~OSC_CTRL_OSC_FREQ_MASK; c->rate = clk_measure_input_freq(); switch (c->rate) { case 12000000: auto_clock_control |= OSC_CTRL_OSC_FREQ_12MHZ; break; case 13000000: auto_clock_control |= OSC_CTRL_OSC_FREQ_13MHZ; break; case 19200000: auto_clock_control |= OSC_CTRL_OSC_FREQ_19_2MHZ; break; case 26000000: auto_clock_control |= OSC_CTRL_OSC_FREQ_26MHZ; break; default: pr_err("%s: Unexpected clock rate %ld", __func__, c->rate); BUG(); } clk_writel(auto_clock_control, OSC_CTRL); return c->rate; } static void tegra2_clk_m_init(struct clk *c) { pr_debug("%s on clock %s\n", __func__, c->name); tegra2_clk_m_autodetect_rate(c); } static int tegra2_clk_m_enable(struct clk *c) { pr_debug("%s on clock %s\n", __func__, c->name); return 0; } static void tegra2_clk_m_disable(struct clk *c) { pr_debug("%s on clock %s\n", __func__, c->name); BUG(); } static struct clk_ops tegra_clk_m_ops = { .init = tegra2_clk_m_init, .enable = tegra2_clk_m_enable, .disable = tegra2_clk_m_disable, }; /* super clock functions */ /* "super clocks" on tegra have two-stage muxes and a clock skipping * super divider. We will ignore the clock skipping divider, since we * can't lower the voltage when using the clock skip, but we can if we * lower the PLL frequency. */ static void tegra2_super_clk_init(struct clk *c) { u32 val; int source; int shift; const struct clk_mux_sel *sel; val = clk_readl(c->reg + SUPER_CLK_MUX); c->state = ON; BUG_ON(((val & SUPER_STATE_MASK) != SUPER_STATE_RUN) && ((val & SUPER_STATE_MASK) != SUPER_STATE_IDLE)); shift = ((val & SUPER_STATE_MASK) == SUPER_STATE_IDLE) ? SUPER_IDLE_SOURCE_SHIFT : SUPER_RUN_SOURCE_SHIFT; source = (val >> shift) & SUPER_SOURCE_MASK; for (sel = c->inputs; sel->input != NULL; sel++) { if (sel->value == source) break; } BUG_ON(sel->input == NULL); c->parent = sel->input; } static int tegra2_super_clk_enable(struct clk *c) { clk_writel(0, c->reg + SUPER_CLK_DIVIDER); return 0; } static void tegra2_super_clk_disable(struct clk *c) { pr_debug("%s on clock %s\n", __func__, c->name); /* oops - don't disable the CPU clock! */ BUG(); } static int tegra2_super_clk_set_parent(struct clk *c, struct clk *p) { u32 val; const struct clk_mux_sel *sel; int shift; val = clk_readl(c->reg + SUPER_CLK_MUX); BUG_ON(((val & SUPER_STATE_MASK) != SUPER_STATE_RUN) && ((val & SUPER_STATE_MASK) != SUPER_STATE_IDLE)); shift = ((val & SUPER_STATE_MASK) == SUPER_STATE_IDLE) ? SUPER_IDLE_SOURCE_SHIFT : SUPER_RUN_SOURCE_SHIFT; for (sel = c->inputs; sel->input != NULL; sel++) { if (sel->input == p) { val &= ~(SUPER_SOURCE_MASK << shift); val |= sel->value << shift; if (c->refcnt) clk_enable(p); clk_writel(val, c->reg); if (c->refcnt && c->parent) clk_disable(c->parent); clk_reparent(c, p); return 0; } } return -EINVAL; } /* * Super clocks have "clock skippers" instead of dividers. Dividing using * a clock skipper does not allow the voltage to be scaled down, so instead * adjust the rate of the parent clock. This requires that the parent of a * super clock have no other children, otherwise the rate will change * underneath the other children. */ static int tegra2_super_clk_set_rate(struct clk *c, unsigned long rate) { return clk_set_rate(c->parent, rate); } static struct clk_ops tegra_super_ops = { .init = tegra2_super_clk_init, .enable = tegra2_super_clk_enable, .disable = tegra2_super_clk_disable, .set_parent = tegra2_super_clk_set_parent, .set_rate = tegra2_super_clk_set_rate, }; static int tegra2_twd_clk_set_rate(struct clk *c, unsigned long rate) { /* The input value 'rate' is the clock rate of the CPU complex. */ c->rate = (rate * c->mul) / c->div; return 0; } static struct clk_ops tegra2_twd_ops = { .set_rate = tegra2_twd_clk_set_rate, }; static struct clk tegra2_clk_twd = { /* NOTE: The twd clock must have *NO* parent. It's rate is directly updated by tegra3_cpu_cmplx_clk_set_rate() because the frequency change notifer for the twd is called in an atomic context which cannot take a mutex. */ .name = "twd", .ops = &tegra2_twd_ops, .max_rate = 1000000000, /* Same as tegra_clk_virtual_cpu.max_rate */ .mul = 1, .div = 4, }; /* virtual cpu clock functions */ /* some clocks can not be stopped (cpu, memory bus) while the SoC is running. To change the frequency of these clocks, the parent pll may need to be reprogrammed, so the clock must be moved off the pll, the pll reprogrammed, and then the clock moved back to the pll. To hide this sequence, a virtual clock handles it. */ static void tegra2_cpu_clk_init(struct clk *c) { } static int tegra2_cpu_clk_enable(struct clk *c) { return 0; } static void tegra2_cpu_clk_disable(struct clk *c) { pr_debug("%s on clock %s\n", __func__, c->name); /* oops - don't disable the CPU clock! */ BUG(); } static int tegra2_cpu_clk_set_rate(struct clk *c, unsigned long rate) { int ret; /* * Take an extra reference to the main pll so it doesn't turn * off when we move the cpu off of it */ clk_enable(c->u.cpu.main); ret = clk_set_parent(c->parent, c->u.cpu.backup); if (ret) { pr_err("Failed to switch cpu to clock %s\n", c->u.cpu.backup->name); goto out; } if (rate == clk_get_rate(c->u.cpu.backup)) goto out; ret = clk_set_rate(c->u.cpu.main, rate); if (ret) { pr_err("Failed to change cpu pll to %lu\n", rate); goto out; } ret = clk_set_parent(c->parent, c->u.cpu.main); if (ret) { pr_err("Failed to switch cpu to clock %s\n", c->u.cpu.main->name); goto out; } out: /* We can't parent the twd to directly to the CPU complex because the TWD frequency update notifier is called in an atomic context and the CPU frequency update requires a mutex. Update the twd clock rate with the new CPU complex rate. */ clk_set_rate(&tegra2_clk_twd, clk_get_rate_locked(c)); clk_disable(c->u.cpu.main); return ret; } static struct clk_ops tegra_cpu_ops = { .init = tegra2_cpu_clk_init, .enable = tegra2_cpu_clk_enable, .disable = tegra2_cpu_clk_disable, .set_rate = tegra2_cpu_clk_set_rate, }; static void tegra2_virtual_sclk_init(struct clk *c) { c->max_rate = c->parent->max_rate; c->min_rate = c->parent->min_rate; } static long tegra2_virtual_sclk_round_rate(struct clk *c, unsigned long rate) { long new_rate = rate; return new_rate; } static int tegra2_virtual_sclk_set_rate(struct clk *c, unsigned long rate) { int ret; if (rate >= c->u.system.pclk->min_rate * 2) { ret = clk_set_div(c->u.system.pclk, 2); if (ret) { pr_err("Failed to set 1 : 2 pclk divider\n"); return ret; } } ret = clk_set_rate(c->parent, rate); if (ret) { pr_err("Failed to set sclk source %s to %lu\n", c->parent->name, rate); return ret; } if (rate < c->u.system.pclk->min_rate * 2) { ret = clk_set_div(c->u.system.pclk, 1); if (ret) { pr_err("Failed to set 1 : 1 pclk divider\n"); return ret; } } return 0; } static struct clk_ops tegra_virtual_sclk_ops = { .init = tegra2_virtual_sclk_init, .set_rate = tegra2_virtual_sclk_set_rate, .round_rate = tegra2_virtual_sclk_round_rate, .shared_bus_update = tegra2_clk_shared_bus_update, }; /* virtual cop clock functions. Used to acquire the fake 'cop' clock to * reset the COP block (i.e. AVP) */ static void tegra2_cop_clk_reset(struct clk *c, bool assert) { unsigned long reg = assert ? RST_DEVICES_SET : RST_DEVICES_CLR; pr_debug("%s %s\n", __func__, assert ? "assert" : "deassert"); clk_writel(1 << 1, reg); } static struct clk_ops tegra_cop_ops = { .reset = tegra2_cop_clk_reset, }; /* bus clock functions */ static void tegra2_bus_clk_init(struct clk *c) { u32 val = clk_readl(c->reg); c->state = ((val >> c->reg_shift) & BUS_CLK_DISABLE) ? OFF : ON; c->div = ((val >> c->reg_shift) & BUS_CLK_DIV_MASK) + 1; c->mul = 1; } static int tegra2_bus_clk_enable(struct clk *c) { u32 val; unsigned long flags; spin_lock_irqsave(&clock_register_lock, flags); val = clk_readl(c->reg); val &= ~(BUS_CLK_DISABLE << c->reg_shift); clk_writel(val, c->reg); spin_unlock_irqrestore(&clock_register_lock, flags); return 0; } static void tegra2_bus_clk_disable(struct clk *c) { u32 val; unsigned long flags; spin_lock_irqsave(&clock_register_lock, flags); val = clk_readl(c->reg); val |= BUS_CLK_DISABLE << c->reg_shift; clk_writel(val, c->reg); spin_unlock_irqrestore(&clock_register_lock, flags); } static int tegra2_bus_clk_set_rate(struct clk *c, unsigned long rate) { u32 val; unsigned long parent_rate = clk_get_rate(c->parent); unsigned long flags; int ret = -EINVAL; int i; spin_lock_irqsave(&clock_register_lock, flags); val = clk_readl(c->reg); for (i = 1; i <= 4; i++) { if (rate >= parent_rate / i) { val &= ~(BUS_CLK_DIV_MASK << c->reg_shift); val |= (i - 1) << c->reg_shift; clk_writel(val, c->reg); c->div = i; c->mul = 1; ret = 0; break; } } spin_unlock_irqrestore(&clock_register_lock, flags); return ret; } static struct clk_ops tegra_bus_ops = { .init = tegra2_bus_clk_init, .enable = tegra2_bus_clk_enable, .disable = tegra2_bus_clk_disable, .set_rate = tegra2_bus_clk_set_rate, }; /* Blink output functions */ static void tegra2_blink_clk_init(struct clk *c) { u32 val; val = pmc_readl(PMC_CTRL); c->state = (val & PMC_CTRL_BLINK_ENB) ? ON : OFF; c->mul = 1; val = pmc_readl(c->reg); if (val & PMC_BLINK_TIMER_ENB) { unsigned int on_off; on_off = (val >> PMC_BLINK_TIMER_DATA_ON_SHIFT) & PMC_BLINK_TIMER_DATA_ON_MASK; val >>= PMC_BLINK_TIMER_DATA_OFF_SHIFT; val &= PMC_BLINK_TIMER_DATA_OFF_MASK; on_off += val; /* each tick in the blink timer is 4 32KHz clocks */ c->div = on_off * 4; } else { c->div = 1; } } static int tegra2_blink_clk_enable(struct clk *c) { u32 val; val = pmc_readl(PMC_DPD_PADS_ORIDE); pmc_writel(val | PMC_DPD_PADS_ORIDE_BLINK_ENB, PMC_DPD_PADS_ORIDE); val = pmc_readl(PMC_CTRL); pmc_writel(val | PMC_CTRL_BLINK_ENB, PMC_CTRL); return 0; } static void tegra2_blink_clk_disable(struct clk *c) { u32 val; val = pmc_readl(PMC_CTRL); pmc_writel(val & ~PMC_CTRL_BLINK_ENB, PMC_CTRL); val = pmc_readl(PMC_DPD_PADS_ORIDE); pmc_writel(val & ~PMC_DPD_PADS_ORIDE_BLINK_ENB, PMC_DPD_PADS_ORIDE); } static int tegra2_blink_clk_set_rate(struct clk *c, unsigned long rate) { unsigned long parent_rate = clk_get_rate(c->parent); if (rate >= parent_rate) { c->div = 1; pmc_writel(0, c->reg); } else { unsigned int on_off; u32 val; on_off = DIV_ROUND_UP(parent_rate / 8, rate); c->div = on_off * 8; val = (on_off & PMC_BLINK_TIMER_DATA_ON_MASK) << PMC_BLINK_TIMER_DATA_ON_SHIFT; on_off &= PMC_BLINK_TIMER_DATA_OFF_MASK; on_off <<= PMC_BLINK_TIMER_DATA_OFF_SHIFT; val |= on_off; val |= PMC_BLINK_TIMER_ENB; pmc_writel(val, c->reg); } return 0; } static struct clk_ops tegra_blink_clk_ops = { .init = &tegra2_blink_clk_init, .enable = &tegra2_blink_clk_enable, .disable = &tegra2_blink_clk_disable, .set_rate = &tegra2_blink_clk_set_rate, }; /* PLL Functions */ static int tegra2_pll_clk_wait_for_lock(struct clk *c) { udelay(c->u.pll.lock_delay); return 0; } static void tegra2_pll_clk_init(struct clk *c) { u32 val = clk_readl(c->reg + PLL_BASE); c->state = (val & PLL_BASE_ENABLE) ? ON : OFF; if (c->flags & PLL_FIXED && !(val & PLL_BASE_OVERRIDE)) { pr_warning("Clock %s has unknown fixed frequency\n", c->name); c->mul = 1; c->div = 1; } else if (val & PLL_BASE_BYPASS) { c->mul = 1; c->div = 1; } else { c->mul = (val & PLL_BASE_DIVN_MASK) >> PLL_BASE_DIVN_SHIFT; c->div = (val & PLL_BASE_DIVM_MASK) >> PLL_BASE_DIVM_SHIFT; if (c->flags & PLLU) c->div *= (val & PLLU_BASE_POST_DIV) ? 1 : 2; else c->div *= (val & PLL_BASE_DIVP_MASK) ? 2 : 1; } } static int tegra2_pll_clk_enable(struct clk *c) { u32 val; pr_debug("%s on clock %s\n", __func__, c->name); val = clk_readl(c->reg + PLL_BASE); val &= ~PLL_BASE_BYPASS; val |= PLL_BASE_ENABLE; clk_writel(val, c->reg + PLL_BASE); if (c->flags & PLLD) { val = clk_readl(c->reg + PLL_MISC(c) + PLL_BASE); val |= PLLD_MISC_CLKENABLE; clk_writel(val, c->reg + PLL_MISC(c) + PLL_BASE); } tegra2_pll_clk_wait_for_lock(c); return 0; } static void tegra2_pll_clk_disable(struct clk *c) { u32 val; pr_debug("%s on clock %s\n", __func__, c->name); val = clk_readl(c->reg); val &= ~(PLL_BASE_BYPASS | PLL_BASE_ENABLE); clk_writel(val, c->reg); if (c->flags & PLLD) { val = clk_readl(c->reg + PLL_MISC(c) + PLL_BASE); val &= ~PLLD_MISC_CLKENABLE; clk_writel(val, c->reg + PLL_MISC(c) + PLL_BASE); } } static int tegra2_pll_clk_set_rate(struct clk *c, unsigned long rate) { u32 val; unsigned long input_rate; const struct clk_pll_freq_table *sel; pr_debug("%s: %s %lu\n", __func__, c->name, rate); input_rate = clk_get_rate(c->parent); for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) { if (sel->input_rate == input_rate && sel->output_rate == rate) { c->mul = sel->n; c->div = sel->m * sel->p; val = clk_readl(c->reg + PLL_BASE); if (c->flags & PLL_FIXED) val |= PLL_BASE_OVERRIDE; val &= ~(PLL_BASE_DIVP_MASK | PLL_BASE_DIVN_MASK | PLL_BASE_DIVM_MASK); val |= (sel->m << PLL_BASE_DIVM_SHIFT) | (sel->n << PLL_BASE_DIVN_SHIFT); BUG_ON(sel->p < 1 || sel->p > 128); if (c->flags & PLLU) { if (sel->p == 1) val |= PLLU_BASE_POST_DIV; } else { if (sel->p == 2) val |= 1 << PLL_BASE_DIVP_SHIFT; else if (sel->p == 4) val |= 2 << PLL_BASE_DIVP_SHIFT; else if (sel->p == 8) val |= 3 << PLL_BASE_DIVP_SHIFT; else if (sel->p == 16) val |= 4 << PLL_BASE_DIVP_SHIFT; else if (sel->p == 32) val |= 5 << PLL_BASE_DIVP_SHIFT; else if (sel->p == 64) val |= 6 << PLL_BASE_DIVP_SHIFT; else if (sel->p == 128) val |= 7 << PLL_BASE_DIVP_SHIFT; } clk_writel(val, c->reg + PLL_BASE); if (c->flags & PLL_HAS_CPCON) { val = clk_readl(c->reg + PLL_MISC(c)); val &= ~PLL_MISC_CPCON_MASK; val |= sel->cpcon << PLL_MISC_CPCON_SHIFT; clk_writel(val, c->reg + PLL_MISC(c)); } if (c->state == ON) tegra2_pll_clk_enable(c); return 0; } } return -EINVAL; } static struct clk_ops tegra_pll_ops = { .init = tegra2_pll_clk_init, .enable = tegra2_pll_clk_enable, .disable = tegra2_pll_clk_disable, .set_rate = tegra2_pll_clk_set_rate, }; static int tegra2_plle_clk_enable(struct clk *c) { u32 val; pr_debug("%s on clock %s\n", __func__, c->name); mdelay(1); val = clk_readl(c->reg + PLL_BASE); if (!(val & PLLE_MISC_READY)) return -EBUSY; val = clk_readl(c->reg + PLL_BASE); val |= PLL_BASE_ENABLE | PLL_BASE_BYPASS; clk_writel(val, c->reg + PLL_BASE); return 0; } static struct clk_ops tegra_plle_ops = { .init = tegra2_pll_clk_init, .enable = tegra2_plle_clk_enable, .set_rate = tegra2_pll_clk_set_rate, }; /* Clock divider ops */ static void tegra2_pll_div_clk_init(struct clk *c) { u32 val = clk_readl(c->reg); u32 divu71; val >>= c->reg_shift; c->state = (val & PLL_OUT_CLKEN) ? ON : OFF; if (!(val & PLL_OUT_RESET_DISABLE)) c->state = OFF; if (c->flags & DIV_U71) { divu71 = (val & PLL_OUT_RATIO_MASK) >> PLL_OUT_RATIO_SHIFT; c->div = (divu71 + 2); c->mul = 2; } else if (c->flags & DIV_2) { c->div = 2; c->mul = 1; } else { c->div = 1; c->mul = 1; } } static int tegra2_pll_div_clk_enable(struct clk *c) { u32 val; u32 new_val; unsigned long flags; pr_debug("%s: %s\n", __func__, c->name); if (c->flags & DIV_U71) { spin_lock_irqsave(&clock_register_lock, flags); val = clk_readl(c->reg); new_val = val >> c->reg_shift; new_val &= 0xFFFF; new_val |= PLL_OUT_CLKEN | PLL_OUT_RESET_DISABLE; val &= ~(0xFFFF << c->reg_shift); val |= new_val << c->reg_shift; clk_writel(val, c->reg); spin_unlock_irqrestore(&clock_register_lock, flags); return 0; } else if (c->flags & DIV_2) { BUG_ON(!(c->flags & PLLD)); spin_lock_irqsave(&clock_register_lock, flags); val = clk_readl(c->reg); val &= ~PLLD_MISC_DIV_RST; clk_writel(val, c->reg); spin_unlock_irqrestore(&clock_register_lock, flags); return 0; } return -EINVAL; } static void tegra2_pll_div_clk_disable(struct clk *c) { u32 val; u32 new_val; unsigned long flags; pr_debug("%s: %s\n", __func__, c->name); if (c->flags & DIV_U71) { spin_lock_irqsave(&clock_register_lock, flags); val = clk_readl(c->reg); new_val = val >> c->reg_shift; new_val &= 0xFFFF; new_val &= ~(PLL_OUT_CLKEN | PLL_OUT_RESET_DISABLE); val &= ~(0xFFFF << c->reg_shift); val |= new_val << c->reg_shift; clk_writel(val, c->reg); spin_unlock_irqrestore(&clock_register_lock, flags); } else if (c->flags & DIV_2) { BUG_ON(!(c->flags & PLLD)); spin_lock_irqsave(&clock_register_lock, flags); val = clk_readl(c->reg); val |= PLLD_MISC_DIV_RST; clk_writel(val, c->reg); spin_unlock_irqrestore(&clock_register_lock, flags); } } static int tegra2_pll_div_clk_set_rate(struct clk *c, unsigned long rate) { u32 val; u32 new_val; int divider_u71; unsigned long parent_rate = clk_get_rate(c->parent); unsigned long flags; pr_debug("%s: %s %lu\n", __func__, c->name, rate); if (c->flags & DIV_U71) { divider_u71 = clk_div71_get_divider(parent_rate, rate); if (divider_u71 >= 0) { spin_lock_irqsave(&clock_register_lock, flags); val = clk_readl(c->reg); new_val = val >> c->reg_shift; new_val &= 0xFFFF; if (c->flags & DIV_U71_FIXED) new_val |= PLL_OUT_OVERRIDE; new_val &= ~PLL_OUT_RATIO_MASK; new_val |= divider_u71 << PLL_OUT_RATIO_SHIFT; val &= ~(0xFFFF << c->reg_shift); val |= new_val << c->reg_shift; clk_writel(val, c->reg); c->div = divider_u71 + 2; c->mul = 2; spin_unlock_irqrestore(&clock_register_lock, flags); return 0; } } else if (c->flags & DIV_2) { if (parent_rate == rate * 2) return 0; } return -EINVAL; } static long tegra2_pll_div_clk_round_rate(struct clk *c, unsigned long rate) { int divider; unsigned long parent_rate = clk_get_rate(c->parent); pr_debug("%s: %s %lu\n", __func__, c->name, rate); if (c->flags & DIV_U71) { divider = clk_div71_get_divider(parent_rate, rate); if (divider < 0) return divider; return DIV_ROUND_UP(parent_rate * 2, divider + 2); } else if (c->flags & DIV_2) { return DIV_ROUND_UP(parent_rate, 2); } return -EINVAL; } static struct clk_ops tegra_pll_div_ops = { .init = tegra2_pll_div_clk_init, .enable = tegra2_pll_div_clk_enable, .disable = tegra2_pll_div_clk_disable, .set_rate = tegra2_pll_div_clk_set_rate, .round_rate = tegra2_pll_div_clk_round_rate, }; /* Periph clk ops */ static void tegra2_periph_clk_init(struct clk *c) { u32 val = clk_readl(c->reg); const struct clk_mux_sel *mux = 0; const struct clk_mux_sel *sel; if (c->flags & MUX) { for (sel = c->inputs; sel->input != NULL; sel++) { if (val >> PERIPH_CLK_SOURCE_SHIFT == sel->value) mux = sel; } BUG_ON(!mux); c->parent = mux->input; } else { c->parent = c->inputs[0].input; } if (c->flags & DIV_U71) { u32 divu71 = val & PERIPH_CLK_SOURCE_DIVU71_MASK; c->div = divu71 + 2; c->mul = 2; } else if (c->flags & DIV_U16) { u32 divu16 = val & PERIPH_CLK_SOURCE_DIVU16_MASK; c->div = divu16 + 1; c->mul = 1; } else { c->div = 1; c->mul = 1; } c->state = ON; if (!c->u.periph.clk_num) return; if (!(clk_readl(CLK_OUT_ENB + PERIPH_CLK_TO_ENB_REG(c)) & PERIPH_CLK_TO_ENB_BIT(c))) c->state = OFF; if (!(c->flags & PERIPH_NO_RESET)) if (clk_readl(RST_DEVICES + PERIPH_CLK_TO_ENB_REG(c)) & PERIPH_CLK_TO_ENB_BIT(c)) c->state = OFF; } static int tegra2_periph_clk_enable(struct clk *c) { u32 val; unsigned long flags; int refcount; pr_debug("%s on clock %s\n", __func__, c->name); if (!c->u.periph.clk_num) return 0; spin_lock_irqsave(&clock_register_lock, flags); refcount = tegra_periph_clk_enable_refcount[c->u.periph.clk_num]++; if (refcount > 1) goto out; clk_writel(PERIPH_CLK_TO_ENB_BIT(c), CLK_OUT_ENB_SET + PERIPH_CLK_TO_ENB_SET_REG(c)); if (!(c->flags & PERIPH_NO_RESET) && !(c->flags & PERIPH_MANUAL_RESET)) clk_writel(PERIPH_CLK_TO_ENB_BIT(c), RST_DEVICES_CLR + PERIPH_CLK_TO_ENB_SET_REG(c)); if (c->flags & PERIPH_EMC_ENB) { /* The EMC peripheral clock has 2 extra enable bits */ /* FIXME: Do they need to be disabled? */ val = clk_readl(c->reg); val |= 0x3 << 24; clk_writel(val, c->reg); } out: spin_unlock_irqrestore(&clock_register_lock, flags); return 0; } static void tegra2_periph_clk_disable(struct clk *c) { unsigned long flags; unsigned long val; pr_debug("%s on clock %s\n", __func__, c->name); if (!c->u.periph.clk_num) return; spin_lock_irqsave(&clock_register_lock, flags); if (c->refcnt) tegra_periph_clk_enable_refcount[c->u.periph.clk_num]--; if (tegra_periph_clk_enable_refcount[c->u.periph.clk_num] == 0) { /* If peripheral is in the APB bus then read the APB bus to * flush the write operation in apb bus. This will avoid the * peripheral access after disabling clock*/ if (c->flags & PERIPH_ON_APB) val = chipid_readl(); clk_writel(PERIPH_CLK_TO_ENB_BIT(c), CLK_OUT_ENB_CLR + PERIPH_CLK_TO_ENB_SET_REG(c)); } spin_unlock_irqrestore(&clock_register_lock, flags); } static void tegra2_periph_clk_reset(struct clk *c, bool assert) { unsigned long base = assert ? RST_DEVICES_SET : RST_DEVICES_CLR; unsigned long val; pr_debug("%s %s on clock %s\n", __func__, assert ? "assert" : "deassert", c->name); BUG_ON(!c->u.periph.clk_num); if (!(c->flags & PERIPH_NO_RESET)) { /* If peripheral is in the APB bus then read the APB bus to * flush the write operation in apb bus. This will avoid the * peripheral access after disabling clock*/ if (c->flags & PERIPH_ON_APB) val = chipid_readl(); clk_writel(PERIPH_CLK_TO_ENB_BIT(c), base + PERIPH_CLK_TO_ENB_SET_REG(c)); } } static int tegra2_periph_clk_set_parent(struct clk *c, struct clk *p) { u32 val; const struct clk_mux_sel *sel; pr_debug("%s: %s %s\n", __func__, c->name, p->name); for (sel = c->inputs; sel->input != NULL; sel++) { if (sel->input == p) { val = clk_readl(c->reg); val &= ~((c->reg_shift >> 8) << (c->reg_shift & 0xFF)); val |= (sel->value) << (c->reg_shift & 0xFF); if (c->refcnt) clk_enable(p); clk_writel(val, c->reg); if (c->refcnt && c->parent) clk_disable(c->parent); clk_reparent(c, p); return 0; } } return -EINVAL; } static int tegra2_periph_clk_set_rate(struct clk *c, unsigned long rate) { u32 val; int divider; unsigned long parent_rate = clk_get_rate(c->parent); if (c->flags & DIV_U71) { divider = clk_div71_get_divider(parent_rate, rate); if (divider >= 0) { val = clk_readl(c->reg); val &= ~PERIPH_CLK_SOURCE_DIVU71_MASK; val |= divider; clk_writel(val, c->reg); c->div = divider + 2; c->mul = 2; return 0; } } else if (c->flags & DIV_U16) { divider = clk_div16_get_divider(parent_rate, rate); if (divider >= 0) { val = clk_readl(c->reg); val &= ~PERIPH_CLK_SOURCE_DIVU16_MASK; val |= divider; clk_writel(val, c->reg); c->div = divider + 1; c->mul = 1; return 0; } } else if (parent_rate <= rate) { c->div = 1; c->mul = 1; return 0; } return -EINVAL; } static long tegra2_periph_clk_round_rate(struct clk *c, unsigned long rate) { int divider; unsigned long parent_rate = clk_get_rate(c->parent); pr_debug("%s: %s %lu\n", __func__, c->name, rate); if (c->flags & DIV_U71) { divider = clk_div71_get_divider(parent_rate, rate); if (divider < 0) return divider; return DIV_ROUND_UP(parent_rate * 2, divider + 2); } else if (c->flags & DIV_U16) { divider = clk_div16_get_divider(parent_rate, rate); if (divider < 0) return divider; return DIV_ROUND_UP(parent_rate, divider + 1); } return -EINVAL; } static struct clk_ops tegra_periph_clk_ops = { .init = &tegra2_periph_clk_init, .enable = &tegra2_periph_clk_enable, .disable = &tegra2_periph_clk_disable, .set_parent = &tegra2_periph_clk_set_parent, .set_rate = &tegra2_periph_clk_set_rate, .round_rate = &tegra2_periph_clk_round_rate, .reset = &tegra2_periph_clk_reset, }; /* The SDMMC controllers have extra bits in the clock source register that * adjust the delay between the clock and data to compenstate for delays * on the PCB. */ void tegra2_sdmmc_tap_delay(struct clk *c, int delay) { u32 reg; delay = clamp(delay, 0, 15); reg = clk_readl(c->reg); reg &= ~SDMMC_CLK_INT_FB_DLY_MASK; reg |= SDMMC_CLK_INT_FB_SEL; reg |= delay << SDMMC_CLK_INT_FB_DLY_SHIFT; clk_writel(reg, c->reg); } /* External memory controller clock ops */ static void tegra2_emc_clk_init(struct clk *c) { tegra2_periph_clk_init(c); c->max_rate = clk_get_rate_locked(c); } static long tegra2_emc_clk_round_rate(struct clk *c, unsigned long rate) { long new_rate = rate; new_rate = tegra_emc_round_rate(new_rate); if (new_rate < 0) return c->max_rate; return new_rate; } static int tegra2_emc_clk_set_rate(struct clk *c, unsigned long rate) { int ret; int divider; struct clk *p = NULL; unsigned long inp_rate; unsigned long new_rate; const struct clk_mux_sel *sel; for (sel = c->inputs; sel->input != NULL; sel++) { inp_rate = clk_get_rate(sel->input); divider = clk_div71_get_divider(inp_rate, rate); if (divider < 0) return divider; new_rate = DIV_ROUND_UP(inp_rate * 2, divider + 2); if ((abs(rate - new_rate)) < 2000) { p = sel->input; break; } } BUG_ON(!p); BUG_ON(divider & 0x1); /* * The Tegra2 memory controller has an interlock with the clock * block that allows memory shadowed registers to be updated, * and then transfer them to the main registers at the same * time as the clock update without glitches. */ ret = tegra_emc_set_rate(rate); if (ret < 0) return ret; if (c->parent != p) { BUG_ON(divider != 0); ret = clk_set_parent_locked(c, p); udelay(1); return ret; } ret = tegra2_periph_clk_set_rate(c, rate); udelay(1); return ret; } static struct clk_ops tegra_emc_clk_ops = { .init = &tegra2_emc_clk_init, .enable = &tegra2_periph_clk_enable, .disable = &tegra2_periph_clk_disable, .set_parent = &tegra2_periph_clk_set_parent, .set_rate = &tegra2_emc_clk_set_rate, .round_rate = &tegra2_emc_clk_round_rate, .reset = &tegra2_periph_clk_reset, .shared_bus_update = &tegra2_clk_shared_bus_update, }; /* Clock doubler ops */ static void tegra2_clk_double_init(struct clk *c) { c->mul = 2; c->div = 1; c->state = ON; if (!c->u.periph.clk_num) return; if (!(clk_readl(CLK_OUT_ENB + PERIPH_CLK_TO_ENB_REG(c)) & PERIPH_CLK_TO_ENB_BIT(c))) c->state = OFF; }; static int tegra2_clk_double_set_rate(struct clk *c, unsigned long rate) { if (rate != 2 * clk_get_rate(c->parent)) return -EINVAL; c->mul = 2; c->div = 1; return 0; } static struct clk_ops tegra_clk_double_ops = { .init = &tegra2_clk_double_init, .enable = &tegra2_periph_clk_enable, .disable = &tegra2_periph_clk_disable, .set_rate = &tegra2_clk_double_set_rate, }; /* Audio sync clock ops */ static void tegra2_audio_sync_clk_init(struct clk *c) { int source; const struct clk_mux_sel *sel; u32 val = clk_readl(c->reg); c->state = (val & (1<<4)) ? OFF : ON; source = val & 0xf; for (sel = c->inputs; sel->input != NULL; sel++) if (sel->value == source) break; BUG_ON(sel->input == NULL); c->parent = sel->input; } static int tegra2_audio_sync_clk_enable(struct clk *c) { clk_writel(0, c->reg); return 0; } static void tegra2_audio_sync_clk_disable(struct clk *c) { clk_writel(1, c->reg); } static int tegra2_audio_sync_clk_set_parent(struct clk *c, struct clk *p) { u32 val; const struct clk_mux_sel *sel; for (sel = c->inputs; sel->input != NULL; sel++) { if (sel->input == p) { val = clk_readl(c->reg); val &= ~0xf; val |= sel->value; if (c->refcnt) clk_enable(p); clk_writel(val, c->reg); if (c->refcnt && c->parent) clk_disable(c->parent); clk_reparent(c, p); return 0; } } return -EINVAL; } static struct clk_ops tegra_audio_sync_clk_ops = { .init = tegra2_audio_sync_clk_init, .enable = tegra2_audio_sync_clk_enable, .disable = tegra2_audio_sync_clk_disable, .set_parent = tegra2_audio_sync_clk_set_parent, }; /* call this function after pinmux configuration */ static void tegra2_cdev_clk_set_parent(struct clk *c) { const struct clk_mux_sel *mux = 0; const struct clk_mux_sel *sel; enum tegra_pingroup pg = TEGRA_PINGROUP_CDEV1; int val; /* Get pinmux setting for cdev1 and cdev2 from APB_MISC register */ if (!strcmp(c->name, "cdev2")) pg = TEGRA_PINGROUP_CDEV2; val = tegra_pinmux_get_func(pg); for (sel = c->inputs; sel->input != NULL; sel++) { if (val == sel->value) mux = sel; } BUG_ON(!mux); c->parent = mux->input; } /* cdev1 and cdev2 (dap_mclk1 and dap_mclk2) ops */ static void tegra2_cdev_clk_init(struct clk *c) { const struct clk_mux_sel *sel; /* Find max rate from inputs */ for (sel = c->inputs; sel->input != NULL; sel++) { c->max_rate = max(sel->input->max_rate, c->max_rate); } /* We could un-tristate the cdev1 or cdev2 pingroup here; this is * currently done in the pinmux code. */ c->state = ON; BUG_ON(!c->u.periph.clk_num); if (!(clk_readl(CLK_OUT_ENB + PERIPH_CLK_TO_ENB_REG(c)) & PERIPH_CLK_TO_ENB_BIT(c))) c->state = OFF; } static int tegra2_cdev_clk_enable(struct clk *c) { BUG_ON(!c->u.periph.clk_num); if (!c->parent) { /* Set parent from inputs */ tegra2_cdev_clk_set_parent(c); clk_enable(c->parent); } clk_writel(PERIPH_CLK_TO_ENB_BIT(c), CLK_OUT_ENB_SET + PERIPH_CLK_TO_ENB_SET_REG(c)); return 0; } static void tegra2_cdev_clk_disable(struct clk *c) { BUG_ON(!c->u.periph.clk_num); clk_writel(PERIPH_CLK_TO_ENB_BIT(c), CLK_OUT_ENB_CLR + PERIPH_CLK_TO_ENB_SET_REG(c)); } static struct clk_ops tegra_cdev_clk_ops = { .init = &tegra2_cdev_clk_init, .enable = &tegra2_cdev_clk_enable, .disable = &tegra2_cdev_clk_disable, }; /* shared bus ops */ /* * Some clocks may have multiple downstream users that need to request a * higher clock rate. Shared bus clocks provide a unique shared_bus_user * clock to each user. The frequency of the bus is set to the highest * enabled shared_bus_user clock, with a minimum value set by the * shared bus. */ static int tegra2_clk_shared_bus_update(struct clk *bus) { struct clk *c; unsigned long old_rate; unsigned long rate = bus->min_rate; int sku_id = tegra_sku_id(); list_for_each_entry(c, &bus->shared_bus_list, u.shared_bus_user.node) { if (c->u.shared_bus_user.enabled) rate = max(c->u.shared_bus_user.rate, rate); } old_rate = clk_get_rate_locked(bus); if (rate == old_rate) return 0; /* WAR: For AP25 EMC scaling */ if ((sku_id == 0x17) && (bus->flags & PERIPH_EMC_ENB)) { if (old_rate == AP25_EMC_SCALING_STEP && rate != AP25_EMC_INTERMEDIATE_RATE) clk_set_rate_locked(bus, AP25_EMC_INTERMEDIATE_RATE); if (((old_rate > AP25_EMC_BRIDGE_RATE) && (rate < AP25_EMC_BRIDGE_RATE)) || ((old_rate < AP25_EMC_BRIDGE_RATE) && (rate > AP25_EMC_BRIDGE_RATE))) clk_set_rate_locked(bus, AP25_EMC_BRIDGE_RATE); if (rate == AP25_EMC_SCALING_STEP && old_rate != AP25_EMC_INTERMEDIATE_RATE) clk_set_rate_locked(bus, AP25_EMC_INTERMEDIATE_RATE); } return clk_set_rate_locked(bus, rate); }; static void tegra_clk_shared_bus_init(struct clk *c) { unsigned long flags; c->max_rate = c->parent->max_rate; c->u.shared_bus_user.rate = c->parent->max_rate; c->state = OFF; c->set = true; clk_lock_save(c->parent, &flags); list_add_tail(&c->u.shared_bus_user.node, &c->parent->shared_bus_list); clk_unlock_restore(c->parent, &flags); } static int tegra_clk_shared_bus_set_rate(struct clk *c, unsigned long rate) { int ret; long new_rate = rate; new_rate = clk_round_rate(c->parent, new_rate); if (new_rate < 0) return new_rate; c->u.shared_bus_user.rate = new_rate; ret = tegra_clk_shared_bus_update(c->parent); return ret; } static long tegra_clk_shared_bus_round_rate(struct clk *c, unsigned long rate) { return clk_round_rate(c->parent, rate); } static int tegra_clk_shared_bus_enable(struct clk *c) { int ret; c->u.shared_bus_user.enabled = true; ret = tegra_clk_shared_bus_update(c->parent); if (strcmp(c->name, "avp.sclk") == 0) tegra2_statmon_start(); return ret; } static void tegra_clk_shared_bus_disable(struct clk *c) { int ret; if (strcmp(c->name, "avp.sclk") == 0) tegra2_statmon_stop(); c->u.shared_bus_user.enabled = false; ret = tegra_clk_shared_bus_update(c->parent); WARN_ON_ONCE(ret); } static struct clk_ops tegra_clk_shared_bus_ops = { .init = tegra_clk_shared_bus_init, .enable = tegra_clk_shared_bus_enable, .disable = tegra_clk_shared_bus_disable, .set_rate = tegra_clk_shared_bus_set_rate, .round_rate = tegra_clk_shared_bus_round_rate, }; /* Clock definitions */ static struct clk tegra_clk_32k = { .name = "clk_32k", .rate = 32768, .ops = NULL, .max_rate = 32768, }; static struct clk_pll_freq_table tegra_pll_s_freq_table[] = { {32768, 12000000, 366, 1, 1, 0}, {32768, 13000000, 397, 1, 1, 0}, {32768, 19200000, 586, 1, 1, 0}, {32768, 26000000, 793, 1, 1, 0}, {0, 0, 0, 0, 0, 0}, }; static struct clk tegra_pll_s = { .name = "pll_s", .flags = PLL_ALT_MISC_REG, .ops = &tegra_pll_ops, .parent = &tegra_clk_32k, .max_rate = 26000000, .reg = 0xf0, .u.pll = { .input_min = 32768, .input_max = 32768, .cf_min = 0, /* FIXME */ .cf_max = 0, /* FIXME */ .vco_min = 12000000, .vco_max = 26000000, .freq_table = tegra_pll_s_freq_table, .lock_delay = 300, }, }; static struct clk_mux_sel tegra_clk_m_sel[] = { { .input = &tegra_clk_32k, .value = 0}, { .input = &tegra_pll_s, .value = 1}, { 0, 0}, }; static struct clk tegra_clk_m = { .name = "clk_m", .flags = ENABLE_ON_INIT, .ops = &tegra_clk_m_ops, .inputs = tegra_clk_m_sel, .reg = 0x1fc, .reg_shift = 28, .max_rate = 26000000, }; static struct clk_pll_freq_table tegra_pll_c_freq_table[] = { { 12000000, 522000000, 348, 8, 1, 8}, { 13000000, 522000000, 522, 13, 1, 8}, { 19200000, 522000000, 435, 16, 1, 8}, { 26000000, 522000000, 522, 26, 1, 8}, { 12000000, 598000000, 598, 12, 1, 8}, { 13000000, 598000000, 598, 13, 1, 8}, { 19200000, 598000000, 375, 12, 1, 6}, { 26000000, 598000000, 598, 26, 1, 8}, { 0, 0, 0, 0, 0, 0 }, }; static struct clk tegra_pll_c = { .name = "pll_c", .flags = PLL_HAS_CPCON, .ops = &tegra_pll_ops, .reg = 0x80, .parent = &tegra_clk_m, .max_rate = 600000000, .u.pll = { .input_min = 2000000, .input_max = 31000000, .cf_min = 1000000, .cf_max = 6000000, .vco_min = 20000000, .vco_max = 1400000000, .freq_table = tegra_pll_c_freq_table, .lock_delay = 300, }, }; static struct clk tegra_pll_c_out1 = { .name = "pll_c_out1", .ops = &tegra_pll_div_ops, .flags = DIV_U71, .parent = &tegra_pll_c, .reg = 0x84, .reg_shift = 0, .max_rate = 600000000, }; static struct clk_pll_freq_table tegra_pll_m_freq_table[] = { { 12000000, 666000000, 666, 12, 1, 8}, { 13000000, 666000000, 666, 13, 1, 8}, { 19200000, 666000000, 555, 16, 1, 8}, { 26000000, 666000000, 666, 26, 1, 8}, { 12000000, 600000000, 600, 12, 1, 8}, { 13000000, 600000000, 600, 13, 1, 8}, { 19200000, 600000000, 375, 12, 1, 6}, { 26000000, 600000000, 600, 26, 1, 8}, { 0, 0, 0, 0, 0, 0 }, }; static struct clk tegra_pll_m = { .name = "pll_m", .flags = PLL_HAS_CPCON, .ops = &tegra_pll_ops, .reg = 0x90, .parent = &tegra_clk_m, .max_rate = 800000000, .u.pll = { .input_min = 2000000, .input_max = 31000000, .cf_min = 1000000, .cf_max = 6000000, .vco_min = 20000000, .vco_max = 1200000000, .freq_table = tegra_pll_m_freq_table, .lock_delay = 300, }, }; static struct clk tegra_pll_m_out1 = { .name = "pll_m_out1", .ops = &tegra_pll_div_ops, .flags = DIV_U71, .parent = &tegra_pll_m, .reg = 0x94, .reg_shift = 0, .max_rate = 600000000, }; static struct clk_pll_freq_table tegra_pll_p_freq_table[] = { { 12000000, 216000000, 432, 12, 2, 8}, { 13000000, 216000000, 432, 13, 2, 8}, { 19200000, 216000000, 90, 4, 2, 1}, { 26000000, 216000000, 432, 26, 2, 8}, { 12000000, 432000000, 432, 12, 1, 8}, { 13000000, 432000000, 432, 13, 1, 8}, { 19200000, 432000000, 90, 4, 1, 1}, { 26000000, 432000000, 432, 26, 1, 8}, { 0, 0, 0, 0, 0, 0 }, }; static struct clk tegra_pll_p = { .name = "pll_p", .flags = ENABLE_ON_INIT | PLL_FIXED | PLL_HAS_CPCON, .ops = &tegra_pll_ops, .reg = 0xa0, .parent = &tegra_clk_m, .max_rate = 432000000, .u.pll = { .input_min = 2000000, .input_max = 31000000, .cf_min = 1000000, .cf_max = 6000000, .vco_min = 20000000, .vco_max = 1400000000, .freq_table = tegra_pll_p_freq_table, .lock_delay = 300, }, }; static struct clk tegra_pll_p_out1 = { .name = "pll_p_out1", .ops = &tegra_pll_div_ops, .flags = ENABLE_ON_INIT | DIV_U71 | DIV_U71_FIXED, .parent = &tegra_pll_p, .reg = 0xa4, .reg_shift = 0, .max_rate = 432000000, }; static struct clk tegra_pll_p_out2 = { .name = "pll_p_out2", .ops = &tegra_pll_div_ops, .flags = ENABLE_ON_INIT | DIV_U71 | DIV_U71_FIXED, .parent = &tegra_pll_p, .reg = 0xa4, .reg_shift = 16, .max_rate = 432000000, }; static struct clk tegra_pll_p_out3 = { .name = "pll_p_out3", .ops = &tegra_pll_div_ops, .flags = ENABLE_ON_INIT | DIV_U71 | DIV_U71_FIXED, .parent = &tegra_pll_p, .reg = 0xa8, .reg_shift = 0, .max_rate = 432000000, }; static struct clk tegra_pll_p_out4 = { .name = "pll_p_out4", .ops = &tegra_pll_div_ops, .flags = ENABLE_ON_INIT | DIV_U71 | DIV_U71_FIXED, .parent = &tegra_pll_p, .reg = 0xa8, .reg_shift = 16, .max_rate = 432000000, }; static struct clk_pll_freq_table tegra_pll_a_freq_table[] = { { 28800000, 56448000, 49, 25, 1, 1}, { 28800000, 73728000, 64, 25, 1, 1}, { 28800000, 24000000, 5, 6, 1, 1}, { 0, 0, 0, 0, 0, 0 }, }; static struct clk tegra_pll_a = { .name = "pll_a", .flags = PLL_HAS_CPCON, .ops = &tegra_pll_ops, .reg = 0xb0, .parent = &tegra_pll_p_out1, .max_rate = 73728000, .u.pll = { .input_min = 2000000, .input_max = 31000000, .cf_min = 1000000, .cf_max = 6000000, .vco_min = 20000000, .vco_max = 1400000000, .freq_table = tegra_pll_a_freq_table, .lock_delay = 300, }, }; static struct clk tegra_pll_a_out0 = { .name = "pll_a_out0", .ops = &tegra_pll_div_ops, .flags = DIV_U71, .parent = &tegra_pll_a, .reg = 0xb4, .reg_shift = 0, .max_rate = 73728000, }; static struct clk_pll_freq_table tegra_pll_d_freq_table[] = { { 12000000, 216000000, 216, 12, 1, 4}, { 13000000, 216000000, 216, 13, 1, 4}, { 19200000, 216000000, 135, 12, 1, 3}, { 26000000, 216000000, 216, 26, 1, 4}, { 12000000, 5000000, 10, 24, 1, 4}, { 12000000, 10000000, 10, 12, 1, 4}, { 12000000, 161500000, 323, 24, 1, 4}, { 12000000, 162000000, 162, 12, 1, 4}, { 12000000, 594000000, 594, 12, 1, 8}, { 13000000, 594000000, 594, 13, 1, 8}, { 19200000, 594000000, 495, 16, 1, 8}, { 26000000, 594000000, 594, 26, 1, 8}, { 12000000, 1000000000, 1000, 12, 1, 12}, { 13000000, 1000000000, 1000, 13, 1, 12}, { 19200000, 1000000000, 625, 12, 1, 8}, { 26000000, 1000000000, 1000, 26, 1, 12}, { 12000000, 504000000, 504, 12, 1, 8}, { 13000000, 504000000, 504, 13, 1, 8}, { 19200000, 504000000, 420, 16, 1, 8}, { 26000000, 504000000, 504, 26, 1, 8}, { 0, 0, 0, 0, 0, 0 }, }; static struct clk tegra_pll_d = { .name = "pll_d", .flags = PLL_HAS_CPCON | PLLD, .ops = &tegra_pll_ops, .reg = 0xd0, .parent = &tegra_clk_m, .max_rate = 1000000000, .u.pll = { .input_min = 2000000, .input_max = 40000000, .cf_min = 1000000, .cf_max = 6000000, .vco_min = 40000000, .vco_max = 1000000000, .freq_table = tegra_pll_d_freq_table, .lock_delay = 1000, }, }; static struct clk tegra_pll_d_out0 = { .name = "pll_d_out0", .ops = &tegra_pll_div_ops, .flags = DIV_2 | PLLD, .parent = &tegra_pll_d, .max_rate = 500000000, }; static struct clk_pll_freq_table tegra_pll_u_freq_table[] = { { 12000000, 480000000, 960, 12, 2, 0}, { 13000000, 480000000, 960, 13, 2, 0}, { 19200000, 480000000, 200, 4, 2, 0}, { 26000000, 480000000, 960, 26, 2, 0}, { 0, 0, 0, 0, 0, 0 }, }; static struct clk tegra_pll_u = { .name = "pll_u", .flags = PLLU, .ops = &tegra_pll_ops, .reg = 0xc0, .parent = &tegra_clk_m, .max_rate = 480000000, .u.pll = { .input_min = 2000000, .input_max = 40000000, .cf_min = 1000000, .cf_max = 6000000, .vco_min = 480000000, .vco_max = 960000000, .freq_table = tegra_pll_u_freq_table, .lock_delay = 1000, }, }; static struct clk_pll_freq_table tegra_pll_x_freq_table[] = { /* 1.2 GHz */ { 12000000, 1200000000, 600, 6, 1, 12}, { 13000000, 1200000000, 923, 10, 1, 12}, { 19200000, 1200000000, 750, 12, 1, 8}, { 26000000, 1200000000, 600, 13, 1, 12}, /* 1 GHz */ { 12000000, 1000000000, 1000, 12, 1, 12}, { 13000000, 1000000000, 1000, 13, 1, 12}, { 19200000, 1000000000, 625, 12, 1, 8}, { 26000000, 1000000000, 1000, 26, 1, 12}, /* 912 MHz */ { 12000000, 912000000, 912, 12, 1, 12}, { 13000000, 912000000, 912, 13, 1, 12}, { 19200000, 912000000, 760, 16, 1, 8}, { 26000000, 912000000, 912, 26, 1, 12}, /* 816 MHz */ { 12000000, 816000000, 816, 12, 1, 12}, { 13000000, 816000000, 816, 13, 1, 12}, { 19200000, 816000000, 680, 16, 1, 8}, { 26000000, 816000000, 816, 26, 1, 12}, /* 760 MHz */ { 12000000, 760000000, 760, 12, 1, 12}, { 13000000, 760000000, 760, 13, 1, 12}, { 19200000, 760000000, 950, 24, 1, 8}, { 26000000, 760000000, 760, 26, 1, 12}, /* 750 MHz */ { 12000000, 750000000, 750, 12, 1, 12}, { 13000000, 750000000, 750, 13, 1, 12}, { 19200000, 750000000, 625, 16, 1, 8}, { 26000000, 750000000, 750, 26, 1, 12}, /* 608 MHz */ { 12000000, 608000000, 608, 12, 1, 12}, { 13000000, 608000000, 608, 13, 1, 12}, { 19200000, 608000000, 380, 12, 1, 8}, { 26000000, 608000000, 608, 26, 1, 12}, /* 456 MHz */ { 12000000, 456000000, 456, 12, 1, 12}, { 13000000, 456000000, 456, 13, 1, 12}, { 19200000, 456000000, 380, 16, 1, 8}, { 26000000, 456000000, 456, 26, 1, 12}, /* 312 MHz */ { 12000000, 312000000, 312, 12, 1, 12}, { 13000000, 312000000, 312, 13, 1, 12}, { 19200000, 312000000, 260, 16, 1, 8}, { 26000000, 312000000, 312, 26, 1, 12}, { 0, 0, 0, 0, 0, 0 }, }; static struct clk tegra_pll_x = { .name = "pll_x", .flags = PLL_HAS_CPCON | PLL_ALT_MISC_REG, .ops = &tegra_pll_ops, .reg = 0xe0, .parent = &tegra_clk_m, .max_rate = 1000000000, .u.pll = { .input_min = 2000000, .input_max = 31000000, .cf_min = 1000000, .cf_max = 6000000, .vco_min = 20000000, .vco_max = 1200000000, .freq_table = tegra_pll_x_freq_table, .lock_delay = 300, }, }; static struct clk_pll_freq_table tegra_pll_e_freq_table[] = { { 12000000, 100000000, 200, 24, 1, 0 }, { 0, 0, 0, 0, 0, 0 }, }; static struct clk tegra_pll_e = { .name = "pll_e", .flags = PLL_ALT_MISC_REG, .ops = &tegra_plle_ops, .parent = &tegra_clk_m, .reg = 0xe8, .max_rate = 100000000, .u.pll = { .input_min = 12000000, .input_max = 12000000, .freq_table = tegra_pll_e_freq_table, }, }; static struct clk tegra_clk_d = { .name = "clk_d", .flags = PERIPH_NO_RESET, .ops = &tegra_clk_double_ops, .reg = 0x34, .reg_shift = 12, .parent = &tegra_clk_m, .max_rate = 52000000, .u.periph = { .clk_num = 90, }, }; /* initialized before peripheral clocks */ static struct clk_mux_sel mux_audio_sync_clk[8+1]; static const struct audio_sources { const char *name; int value; } mux_audio_sync_clk_sources[] = { { .name = "spdif_in", .value = 0 }, { .name = "i2s1", .value = 1 }, { .name = "i2s2", .value = 2 }, { .name = "pll_a_out0", .value = 4 }, #if 0 /* FIXME: not implemented */ { .name = "ac97", .value = 3 }, { .name = "ext_audio_clk2", .value = 5 }, { .name = "ext_audio_clk1", .value = 6 }, { .name = "ext_vimclk", .value = 7 }, #endif { 0, 0 } }; static struct clk tegra_clk_audio = { .name = "audio", .inputs = mux_audio_sync_clk, .reg = 0x38, .max_rate = 73728000, .ops = &tegra_audio_sync_clk_ops }; static struct clk tegra_clk_audio_2x = { .name = "audio_2x", .flags = PERIPH_NO_RESET, .max_rate = 48000000, .ops = &tegra_clk_double_ops, .reg = 0x34, .reg_shift = 8, .parent = &tegra_clk_audio, .u.periph = { .clk_num = 89, }, }; struct clk_lookup tegra_audio_clk_lookups[] = { { .con_id = "audio", .clk = &tegra_clk_audio }, { .con_id = "audio_2x", .clk = &tegra_clk_audio_2x } }; /* This is called after peripheral clocks are initialized, as the * audio_sync clock depends on some of the peripheral clocks. */ static void init_audio_sync_clock_mux(void) { int i; struct clk_mux_sel *sel = mux_audio_sync_clk; const struct audio_sources *src = mux_audio_sync_clk_sources; struct clk_lookup *lookup; for (i = 0; src->name; i++, sel++, src++) { sel->input = tegra_get_clock_by_name(src->name); if (!sel->input) pr_err("%s: could not find clk %s\n", __func__, src->name); sel->value = src->value; } lookup = tegra_audio_clk_lookups; for (i = 0; i < ARRAY_SIZE(tegra_audio_clk_lookups); i++, lookup++) { clk_init(lookup->clk); clkdev_add(lookup); } } static struct clk_mux_sel mux_cclk[] = { { .input = &tegra_clk_m, .value = 0}, { .input = &tegra_pll_c, .value = 1}, { .input = &tegra_clk_32k, .value = 2}, { .input = &tegra_pll_m, .value = 3}, { .input = &tegra_pll_p, .value = 4}, { .input = &tegra_pll_p_out4, .value = 5}, { .input = &tegra_pll_p_out3, .value = 6}, { .input = &tegra_clk_d, .value = 7}, { .input = &tegra_pll_x, .value = 8}, { 0, 0}, }; static struct clk_mux_sel mux_sclk[] = { { .input = &tegra_clk_m, .value = 0}, { .input = &tegra_pll_c_out1, .value = 1}, { .input = &tegra_pll_p_out4, .value = 2}, { .input = &tegra_pll_p_out3, .value = 3}, { .input = &tegra_pll_p_out2, .value = 4}, { .input = &tegra_clk_d, .value = 5}, { .input = &tegra_clk_32k, .value = 6}, { .input = &tegra_pll_m_out1, .value = 7}, { 0, 0}, }; static struct clk tegra_clk_cclk = { .name = "cclk", .inputs = mux_cclk, .reg = 0x20, .ops = &tegra_super_ops, .max_rate = 1000000000, }; static struct clk tegra_clk_sclk = { .name = "sclk", .inputs = mux_sclk, .reg = 0x28, .ops = &tegra_super_ops, .max_rate = 240000000, .min_rate = 40000000, }; static struct clk tegra_clk_virtual_cpu = { .name = "cpu", .parent = &tegra_clk_cclk, .ops = &tegra_cpu_ops, .max_rate = 1000000000, .u.cpu = { .main = &tegra_pll_x, .backup = &tegra_pll_p, }, }; static struct clk tegra_clk_cop = { .name = "cop", .parent = &tegra_clk_sclk, .ops = &tegra_cop_ops, .max_rate = 240000000, }; static struct clk tegra_clk_hclk = { .name = "hclk", .flags = DIV_BUS, .parent = &tegra_clk_sclk, .reg = 0x30, .reg_shift = 4, .ops = &tegra_bus_ops, .max_rate = 240000000, .min_rate = 36000000, }; static struct clk tegra_clk_pclk = { .name = "pclk", .flags = DIV_BUS, .parent = &tegra_clk_hclk, .reg = 0x30, .reg_shift = 0, .ops = &tegra_bus_ops, .max_rate = 120000000, .min_rate = 36000000, }; static struct clk tegra_clk_virtual_sclk = { .name = "virt_sclk", .parent = &tegra_clk_sclk, .ops = &tegra_virtual_sclk_ops, .u.system = { .pclk = &tegra_clk_pclk, }, }; static struct clk tegra_clk_blink = { .name = "blink", .parent = &tegra_clk_32k, .reg = 0x40, .ops = &tegra_blink_clk_ops, .max_rate = 32768, }; static struct clk_mux_sel mux_dev1_clk[] = { { .input = &tegra_clk_m, .value = 0 }, { .input = &tegra_pll_a_out0, .value = 1 }, { .input = &tegra_pll_m_out1, .value = 2 }, { .input = &tegra_clk_audio, .value = 3 }, { 0, 0 } }; static struct clk_mux_sel mux_dev2_clk[] = { { .input = &tegra_clk_m, .value = 0 }, { .input = &tegra_clk_hclk, .value = 1 }, { .input = &tegra_clk_pclk, .value = 2 }, { .input = &tegra_pll_p_out4, .value = 3 }, { 0, 0 } }; /* dap_mclk1, belongs to the cdev1 pingroup. */ static struct clk tegra_clk_cdev1 = { .name = "cdev1", .ops = &tegra_cdev_clk_ops, .inputs = mux_dev1_clk, .u.periph = { .clk_num = 94, }, .flags = MUX, }; /* dap_mclk2, belongs to the cdev2 pingroup. */ static struct clk tegra_clk_cdev2 = { .name = "cdev2", .ops = &tegra_cdev_clk_ops, .inputs = mux_dev2_clk, .u.periph = { .clk_num = 93, }, .flags = MUX, }; static struct clk_mux_sel mux_pllm_pllc_pllp_plla[] = { { .input = &tegra_pll_m, .value = 0}, { .input = &tegra_pll_c, .value = 1}, { .input = &tegra_pll_p, .value = 2}, { .input = &tegra_pll_a_out0, .value = 3}, { 0, 0}, }; static struct clk_mux_sel mux_pllm_pllc_pllp_clkm[] = { { .input = &tegra_pll_m, .value = 0}, { .input = &tegra_pll_c, .value = 1}, { .input = &tegra_pll_p, .value = 2}, { .input = &tegra_clk_m, .value = 3}, { 0, 0}, }; static struct clk_mux_sel mux_pllp_pllc_pllm_clkm[] = { { .input = &tegra_pll_p, .value = 0}, { .input = &tegra_pll_c, .value = 1}, { .input = &tegra_pll_m, .value = 2}, { .input = &tegra_clk_m, .value = 3}, { 0, 0}, }; static struct clk_mux_sel mux_pllaout0_audio2x_pllp_clkm[] = { {.input = &tegra_pll_a_out0, .value = 0}, {.input = &tegra_clk_audio_2x, .value = 1}, {.input = &tegra_pll_p, .value = 2}, {.input = &tegra_clk_m, .value = 3}, { 0, 0}, }; static struct clk_mux_sel mux_pllp_plld_pllc_clkm[] = { {.input = &tegra_pll_p, .value = 0}, {.input = &tegra_pll_d_out0, .value = 1}, {.input = &tegra_pll_c, .value = 2}, {.input = &tegra_clk_m, .value = 3}, { 0, 0}, }; static struct clk_mux_sel mux_pllp_pllc_audio_clkm_clk32[] = { {.input = &tegra_pll_p, .value = 0}, {.input = &tegra_pll_c, .value = 1}, {.input = &tegra_clk_audio, .value = 2}, {.input = &tegra_clk_m, .value = 3}, {.input = &tegra_clk_32k, .value = 4}, { 0, 0}, }; static struct clk_mux_sel mux_pllp_pllc_pllm[] = { {.input = &tegra_pll_p, .value = 0}, {.input = &tegra_pll_c, .value = 1}, {.input = &tegra_pll_m, .value = 2}, { 0, 0}, }; static struct clk_mux_sel mux_clk_m[] = { { .input = &tegra_clk_m, .value = 0}, { 0, 0}, }; static struct clk_mux_sel mux_pllp_out3[] = { { .input = &tegra_pll_p_out3, .value = 0}, { 0, 0}, }; static struct clk_mux_sel mux_plld_out0[] = { { .input = &tegra_pll_d_out0, .value = 0}, { 0, 0}, }; static struct clk_mux_sel mux_clk_32k[] = { { .input = &tegra_clk_32k, .value = 0}, { 0, 0}, }; static struct clk_mux_sel mux_pclk[] = { { .input = &tegra_clk_pclk, .value = 0}, { 0, 0}, }; static struct clk tegra_clk_emc = { .name = "emc", .ops = &tegra_emc_clk_ops, .reg = 0x19c, .max_rate = 800000000, .inputs = mux_pllm_pllc_pllp_clkm, .flags = MUX | DIV_U71 | PERIPH_EMC_ENB, .u.periph = { .clk_num = 57, }, }; #define PERIPH_CLK(_name, _dev, _con, _clk_num, _reg, _reg_shift, _max, _inputs, _flags) \ { \ .name = _name, \ .lookup = { \ .dev_id = _dev, \ .con_id = _con, \ }, \ .ops = &tegra_periph_clk_ops, \ .reg = _reg, \ .reg_shift = _reg_shift, \ .inputs = _inputs, \ .flags = _flags, \ .max_rate = _max, \ .u.periph = { \ .clk_num = _clk_num, \ }, \ } #define SHARED_CLK(_name, _dev, _con, _parent) \ { \ .name = _name, \ .lookup = { \ .dev_id = _dev, \ .con_id = _con, \ }, \ .ops = &tegra_clk_shared_bus_ops, \ .parent = _parent, \ } struct clk tegra_list_periph_clks[] = { PERIPH_CLK("apbdma", "tegra-dma", NULL, 34, 0, 0x31E, 108000000, mux_pclk, 0), PERIPH_CLK("rtc", "rtc-tegra", NULL, 4, 0, 0x31E, 32768, mux_clk_32k, PERIPH_NO_RESET | PERIPH_ON_APB), PERIPH_CLK("kbc", "tegra-kbc", NULL, 36, 0, 0x31E, 32768, mux_clk_32k, PERIPH_NO_RESET | PERIPH_ON_APB), PERIPH_CLK("timer", "timer", NULL, 5, 0, 0x31E, 26000000, mux_clk_m, 0), PERIPH_CLK("i2s1", "tegra20-i2s.0", NULL, 11, 0x100, 0x31E, 26000000, mux_pllaout0_audio2x_pllp_clkm, MUX | DIV_U71 | PERIPH_ON_APB), PERIPH_CLK("i2s2", "tegra20-i2s.1", NULL, 18, 0x104, 0x31E, 26000000, mux_pllaout0_audio2x_pllp_clkm, MUX | DIV_U71 | PERIPH_ON_APB), PERIPH_CLK("fuse", "fuse-tegra", "fuse", 39, 0, 0x31E, 26000000, mux_clk_m, PERIPH_ON_APB), PERIPH_CLK("fuse_burn", "fuse-tegra", "fuse_burn", 39, 0, 0x31E, 26000000, mux_clk_m, PERIPH_ON_APB), PERIPH_CLK("kfuse", "kfuse-tegra", NULL, 40, 0, 0x31E, 26000000, mux_clk_m, 0), PERIPH_CLK("spdif_out", "tegra20-spdif", "spdif_out", 10, 0x108, 0x31E, 100000000, mux_pllaout0_audio2x_pllp_clkm, MUX | DIV_U71 | PERIPH_ON_APB), PERIPH_CLK("spdif_in", "tegra20-spdif", "spdif_in", 10, 0x10c, 0x31E, 100000000, mux_pllp_pllc_pllm, MUX | DIV_U71 | PERIPH_ON_APB), PERIPH_CLK("pwm", "pwm", NULL, 17, 0x110, 0x71C, 432000000, mux_pllp_pllc_audio_clkm_clk32, MUX | DIV_U71 | PERIPH_ON_APB), PERIPH_CLK("spi", "spi", NULL, 43, 0x114, 0x31E, 40000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB), PERIPH_CLK("xio", "xio", NULL, 45, 0x120, 0x31E, 150000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), PERIPH_CLK("twc", "twc", NULL, 16, 0x12c, 0x31E, 150000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB), PERIPH_CLK("sbc1", "spi_tegra.0", NULL, 41, 0x134, 0x31E, 160000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB), PERIPH_CLK("sbc2", "spi_tegra.1", NULL, 44, 0x118, 0x31E, 160000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB), PERIPH_CLK("sbc3", "spi_tegra.2", NULL, 46, 0x11c, 0x31E, 160000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB), PERIPH_CLK("sbc4", "spi_tegra.3", NULL, 68, 0x1b4, 0x31E, 160000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB), PERIPH_CLK("ide", "ide", NULL, 25, 0x144, 0x31E, 100000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), /* requires min voltage */ PERIPH_CLK("ndflash", "tegra_nand", NULL, 13, 0x160, 0x31E, 164000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), /* scales with voltage */ PERIPH_CLK("vfir", "vfir", NULL, 7, 0x168, 0x31E, 72000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB), PERIPH_CLK("sdmmc1", "sdhci-tegra.0", NULL, 14, 0x150, 0x31E, 52000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), /* scales with voltage */ PERIPH_CLK("sdmmc2", "sdhci-tegra.1", NULL, 9, 0x154, 0x31E, 52000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), /* scales with voltage */ PERIPH_CLK("sdmmc3", "sdhci-tegra.2", NULL, 69, 0x1bc, 0x31E, 52000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), /* scales with voltage */ PERIPH_CLK("sdmmc4", "sdhci-tegra.3", NULL, 15, 0x164, 0x31E, 52000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), /* scales with voltage */ PERIPH_CLK("vcp", "tegra-avp", "vcp", 29, 0, 0x31E, 250000000, mux_clk_m, 0), PERIPH_CLK("bsea", "tegra-avp", "bsea", 62, 0, 0x31E, 250000000, mux_clk_m, 0), PERIPH_CLK("bsev", "tegra-aes", "bsev", 63, 0, 0x31E, 250000000, mux_clk_m, 0), PERIPH_CLK("vde", "tegra-avp", "vde", 61, 0x1c8, 0x31E, 250000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), /* scales with voltage and process_id */ PERIPH_CLK("csite", "csite", NULL, 73, 0x1d4, 0x31E, 144000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), /* max rate ??? */ /* FIXME: what is la? */ PERIPH_CLK("la", "la", NULL, 76, 0x1f8, 0x31E, 26000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), PERIPH_CLK("owr", "tegra_w1", NULL, 71, 0x1cc, 0x31E, 26000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB), PERIPH_CLK("nor", "tegra-nor", NULL, 42, 0x1d0, 0x31E, 92000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), /* requires min voltage */ PERIPH_CLK("mipi", "mipi", NULL, 50, 0x174, 0x31E, 60000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB), /* scales with voltage */ PERIPH_CLK("i2c1", "tegra-i2c.0", NULL, 12, 0x124, 0x31E, 26000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U16 | PERIPH_ON_APB), PERIPH_CLK("i2c2", "tegra-i2c.1", NULL, 54, 0x198, 0x31E, 26000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U16 | PERIPH_ON_APB), PERIPH_CLK("i2c3", "tegra-i2c.2", NULL, 67, 0x1b8, 0x31E, 26000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U16 | PERIPH_ON_APB), PERIPH_CLK("dvc", "tegra-i2c.3", NULL, 47, 0x128, 0x31E, 26000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U16 | PERIPH_ON_APB), PERIPH_CLK("uarta", "tegra_uart.0", NULL, 6, 0x178, 0x31E, 600000000, mux_pllp_pllc_pllm_clkm, MUX | PERIPH_ON_APB), PERIPH_CLK("uartb", "tegra_uart.1", NULL, 7, 0x17c, 0x31E, 600000000, mux_pllp_pllc_pllm_clkm, MUX | PERIPH_ON_APB), PERIPH_CLK("uartc", "tegra_uart.2", NULL, 55, 0x1a0, 0x31E, 600000000, mux_pllp_pllc_pllm_clkm, MUX | PERIPH_ON_APB), PERIPH_CLK("uartd", "tegra_uart.3", NULL, 65, 0x1c0, 0x31E, 600000000, mux_pllp_pllc_pllm_clkm, MUX | PERIPH_ON_APB), PERIPH_CLK("uarte", "tegra_uart.4", NULL, 66, 0x1c4, 0x31E, 600000000, mux_pllp_pllc_pllm_clkm, MUX | PERIPH_ON_APB), PERIPH_CLK("3d", "3d", NULL, 24, 0x158, 0x31E, 300000000, mux_pllm_pllc_pllp_plla, MUX | DIV_U71 | PERIPH_MANUAL_RESET), /* scales with voltage and process_id */ PERIPH_CLK("2d", "2d", NULL, 21, 0x15c, 0x31E, 300000000, mux_pllm_pllc_pllp_plla, MUX | DIV_U71), /* scales with voltage and process_id */ PERIPH_CLK("vi", "tegra_camera", "vi", 20, 0x148, 0x31E, 150000000, mux_pllm_pllc_pllp_plla, MUX | DIV_U71), /* scales with voltage and process_id */ PERIPH_CLK("vi_sensor", "tegra_camera", "vi_sensor", 20, 0x1a8, 0x31E, 150000000, mux_pllm_pllc_pllp_plla, MUX | DIV_U71 | PERIPH_NO_RESET), /* scales with voltage and process_id */ PERIPH_CLK("epp", "epp", NULL, 19, 0x16c, 0x31E, 300000000, mux_pllm_pllc_pllp_plla, MUX | DIV_U71), /* scales with voltage and process_id */ PERIPH_CLK("mpe", "mpe", NULL, 60, 0x170, 0x31E, 300000000, mux_pllm_pllc_pllp_plla, MUX | DIV_U71), /* scales with voltage and process_id */ PERIPH_CLK("host1x", "host1x", NULL, 28, 0x180, 0x31E, 166000000, mux_pllm_pllc_pllp_plla, MUX | DIV_U71), /* scales with voltage and process_id */ PERIPH_CLK("cve", "cve", NULL, 49, 0x140, 0x31E, 250000000, mux_pllp_plld_pllc_clkm, MUX | DIV_U71), /* requires min voltage */ PERIPH_CLK("tvo", "tvo", NULL, 49, 0x188, 0x31E, 250000000, mux_pllp_plld_pllc_clkm, MUX | DIV_U71), /* requires min voltage */ PERIPH_CLK("hdmi", "hdmi", NULL, 51, 0x18c, 0x31E, 600000000, mux_pllp_plld_pllc_clkm, MUX | DIV_U71), /* requires min voltage */ PERIPH_CLK("tvdac", "tvdac", NULL, 53, 0x194, 0x31E, 250000000, mux_pllp_plld_pllc_clkm, MUX | DIV_U71), /* requires min voltage */ PERIPH_CLK("disp1", "tegradc.0", NULL, 27, 0x138, 0x31E, 600000000, mux_pllp_plld_pllc_clkm, MUX), /* scales with voltage and process_id */ PERIPH_CLK("disp2", "tegradc.1", NULL, 26, 0x13c, 0x31E, 600000000, mux_pllp_plld_pllc_clkm, MUX), /* scales with voltage and process_id */ PERIPH_CLK("usbd", "fsl-tegra-udc", NULL, 22, 0, 0x31E, 480000000, mux_clk_m, 0), /* requires min voltage */ PERIPH_CLK("usb2", "tegra-ehci.1", NULL, 58, 0, 0x31E, 480000000, mux_clk_m, 0), /* requires min voltage */ PERIPH_CLK("usb3", "tegra-ehci.2", NULL, 59, 0, 0x31E, 480000000, mux_clk_m, 0), /* requires min voltage */ PERIPH_CLK("dsia", "tegradc.0", "dsia", 48, 0, 0x31E, 500000000, mux_plld_out0, 0), /* scales with voltage */ PERIPH_CLK("csi", "tegra_camera", "csi", 52, 0, 0x31E, 72000000, mux_pllp_out3, 0), PERIPH_CLK("isp", "tegra_camera", "isp", 23, 0, 0x31E, 150000000, mux_clk_m, 0), /* same frequency as VI */ PERIPH_CLK("csus", "tegra_camera", "csus", 92, 0, 0x31E, 150000000, mux_clk_m, PERIPH_NO_RESET), PERIPH_CLK("pex", NULL, "pex", 70, 0, 0x31E, 26000000, mux_clk_m, PERIPH_MANUAL_RESET), PERIPH_CLK("afi", NULL, "afi", 72, 0, 0x31E, 26000000, mux_clk_m, PERIPH_MANUAL_RESET), PERIPH_CLK("pcie_xclk", NULL, "pcie_xclk", 74, 0, 0x31E, 26000000, mux_clk_m, PERIPH_MANUAL_RESET), PERIPH_CLK("stat_mon", "tegra-stat-mon", NULL, 37, 0, 0x31E, 26000000, mux_clk_m, 0), }; struct clk tegra_list_shared_clks[] = { SHARED_CLK("avp.sclk", "tegra-avp", "sclk", &tegra_clk_virtual_sclk), SHARED_CLK("mon.sclk", "tegra-stat-mon", "sclk", &tegra_clk_virtual_sclk), SHARED_CLK("bsea.sclk", "tegra-aes", "sclk", &tegra_clk_virtual_sclk), SHARED_CLK("usbd.sclk", "fsl-tegra-udc", "sclk", &tegra_clk_virtual_sclk), SHARED_CLK("usb1.sclk", "tegra-ehci.0", "sclk", &tegra_clk_virtual_sclk), SHARED_CLK("usb2.sclk", "tegra-ehci.1", "sclk", &tegra_clk_virtual_sclk), SHARED_CLK("usb3.sclk", "tegra-ehci.2", "sclk", &tegra_clk_virtual_sclk), SHARED_CLK("avp.emc", "tegra-avp", "emc", &tegra_clk_emc), SHARED_CLK("cpu.emc", "cpu", "emc", &tegra_clk_emc), SHARED_CLK("disp1.emc", "tegradc.0", "emc", &tegra_clk_emc), SHARED_CLK("disp2.emc", "tegradc.1", "emc", &tegra_clk_emc), SHARED_CLK("hdmi.emc", "hdmi", "emc", &tegra_clk_emc), SHARED_CLK("3d.emc", "tegra_gr3d", "emc", &tegra_clk_emc), SHARED_CLK("2d.emc", "tegra_gr2d", "emc", &tegra_clk_emc), SHARED_CLK("mpe.emc", "tegra_mpe", "emc", &tegra_clk_emc), SHARED_CLK("usbd.emc", "fsl-tegra-udc", "emc", &tegra_clk_emc), SHARED_CLK("usb1.emc", "tegra-ehci.0", "emc", &tegra_clk_emc), SHARED_CLK("usb2.emc", "tegra-ehci.1", "emc", &tegra_clk_emc), SHARED_CLK("usb3.emc", "tegra-ehci.2", "emc", &tegra_clk_emc), }; #define CLK_DUPLICATE(_name, _dev, _con) \ { \ .name = _name, \ .lookup = { \ .dev_id = _dev, \ .con_id = _con, \ }, \ } /* Some clocks may be used by different drivers depending on the board * configuration. List those here to register them twice in the clock lookup * table under two names. */ struct clk_duplicate tegra_clk_duplicates[] = { CLK_DUPLICATE("uarta", "serial8250.0", "uarta"), CLK_DUPLICATE("uartb", "serial8250.0", "uartb"), CLK_DUPLICATE("uartc", "serial8250.0", "uartc"), CLK_DUPLICATE("uartd", "serial8250.0", "uartd"), CLK_DUPLICATE("uarte", "serial8250.0", "uarte"), CLK_DUPLICATE("usbd", "utmip-pad", NULL), CLK_DUPLICATE("usbd", "tegra-ehci.0", NULL), CLK_DUPLICATE("usbd", "tegra-otg", NULL), CLK_DUPLICATE("hdmi", "tegradc.0", "hdmi"), CLK_DUPLICATE("hdmi", "tegradc.1", "hdmi"), CLK_DUPLICATE("dsia", "tegradc.1", "dsia"), CLK_DUPLICATE("pwm", "tegra_pwm.0", NULL), CLK_DUPLICATE("pwm", "tegra_pwm.1", NULL), CLK_DUPLICATE("pwm", "tegra_pwm.2", NULL), CLK_DUPLICATE("pwm", "tegra_pwm.3", NULL), CLK_DUPLICATE("host1x", "tegra_host1x", "host1x"), CLK_DUPLICATE("2d", "tegra_gr2d", "gr2d"), CLK_DUPLICATE("3d", "tegra_gr3d", "gr3d"), CLK_DUPLICATE("epp", "tegra_gr2d", "epp"), CLK_DUPLICATE("mpe", "tegra_mpe", "mpe"), CLK_DUPLICATE("cop", "tegra-avp", "cop"), CLK_DUPLICATE("vde", "tegra-aes", "vde"), CLK_DUPLICATE("twd", "smp_twd", NULL), CLK_DUPLICATE("bsea", "tegra-aes", "bsea"), }; #define CLK(dev, con, ck) \ { \ .dev_id = dev, \ .con_id = con, \ .clk = ck, \ } struct clk *tegra_ptr_clks[] = { &tegra_clk_32k, &tegra_pll_s, &tegra_clk_m, &tegra_pll_m, &tegra_pll_m_out1, &tegra_pll_c, &tegra_pll_c_out1, &tegra_pll_p, &tegra_pll_p_out1, &tegra_pll_p_out2, &tegra_pll_p_out3, &tegra_pll_p_out4, &tegra_pll_a, &tegra_pll_a_out0, &tegra_pll_d, &tegra_pll_d_out0, &tegra_pll_u, &tegra_pll_x, &tegra_pll_e, &tegra_clk_cclk, &tegra_clk_sclk, &tegra_clk_hclk, &tegra_clk_pclk, &tegra_clk_d, &tegra_clk_cdev1, &tegra_clk_cdev2, &tegra_clk_virtual_cpu, &tegra_clk_virtual_sclk, &tegra_clk_blink, &tegra_clk_cop, &tegra_clk_emc, &tegra2_clk_twd, }; /* For some clocks maximum rate limits depend on tegra2 SKU */ #define RATE_LIMIT(_name, _max_rate, _skus...) \ { \ .clk_name = _name, \ .max_rate = _max_rate, \ .sku_ids = {_skus} \ } static struct tegra_sku_rate_limit sku_limits[] = { RATE_LIMIT("cpu", 750000000, 0x07, 0x10), RATE_LIMIT("cclk", 750000000, 0x07, 0x10), RATE_LIMIT("pll_x", 750000000, 0x07, 0x10), RATE_LIMIT("cpu", 1000000000, 0x04, 0x08, 0x0F), RATE_LIMIT("cclk", 1000000000, 0x04, 0x08, 0x0F), RATE_LIMIT("pll_x", 1000000000, 0x04, 0x08, 0x0F), RATE_LIMIT("cpu", 1200000000, 0x14, 0x17, 0x18, 0x1B, 0x1C), RATE_LIMIT("cclk", 1200000000, 0x14, 0x17, 0x18, 0x1B, 0x1C), RATE_LIMIT("pll_x", 1200000000, 0x14, 0x17, 0x18, 0x1B, 0x1C), RATE_LIMIT("sclk", 240000000, 0x04, 0x7, 0x08, 0x0F, 0x10), RATE_LIMIT("hclk", 240000000, 0x04, 0x7, 0x08, 0x0F, 0x10), RATE_LIMIT("vde", 240000000, 0x04, 0x7, 0x08, 0x0F, 0x10), RATE_LIMIT("3d", 300000000, 0x04, 0x7, 0x08, 0x0F, 0x10), RATE_LIMIT("host1x", 108000000, 0x0F), RATE_LIMIT("sclk", 300000000, 0x14, 0x17, 0x18, 0x1B, 0x1C), RATE_LIMIT("virt_sclk", 300000000, 0x14, 0x17, 0x18, 0x1B, 0x1C), RATE_LIMIT("hclk", 300000000, 0x14, 0x17, 0x18, 0x1B, 0x1C), RATE_LIMIT("pclk", 150000000, 0x14, 0x17, 0x18, 0x1B, 0x1C), RATE_LIMIT("vde", 300000000, 0x14, 0x17, 0x18, 0x1B, 0x1C), RATE_LIMIT("3d", 400000000, 0x14, 0x17, 0x18, 0x1B, 0x1C), RATE_LIMIT("uarta", 800000000, 0x14, 0x17, 0x18, 0x1B, 0x1C), RATE_LIMIT("uartb", 800000000, 0x14, 0x17, 0x18, 0x1B, 0x1C), RATE_LIMIT("uartc", 800000000, 0x14, 0x17, 0x18, 0x1B, 0x1C), RATE_LIMIT("uartd", 800000000, 0x14, 0x17, 0x18, 0x1B, 0x1C), RATE_LIMIT("uarte", 800000000, 0x14, 0x17, 0x18, 0x1B, 0x1C), }; static void tegra2_init_sku_limits(void) { int i, j; struct clk *c; int sku_id = tegra_sku_id(); for (i = 0; i < ARRAY_SIZE(sku_limits); i++) { struct tegra_sku_rate_limit *limit = &sku_limits[i]; for (j = 0; (j < MAX_SAME_LIMIT_SKU_IDS) && (limit->sku_ids[j] != 0); j++) { if (limit->sku_ids[j] == sku_id) { c = tegra_get_clock_by_name(limit->clk_name); if (!c) { pr_err("%s: Unknown sku clock %s\n", __func__, limit->clk_name); continue; } c->max_rate = limit->max_rate; } } } } static void tegra2_init_one_clock(struct clk *c) { clk_init(c); INIT_LIST_HEAD(&c->shared_bus_list); if (!c->lookup.dev_id && !c->lookup.con_id) c->lookup.con_id = c->name; c->lookup.clk = c; clkdev_add(&c->lookup); } #ifdef CONFIG_CPU_FREQ /* * Frequency table index must be sequential starting at 0 and frequencies * must be ascending. */ static struct cpufreq_frequency_table freq_table_750MHz[] = { { 0, 216000 }, { 1, 312000 }, { 2, 456000 }, { 3, 608000 }, { 4, 750000 }, { 5, CPUFREQ_TABLE_END }, }; static struct cpufreq_frequency_table freq_table_1p0GHz[] = { { 0, 216000 }, { 1, 312000 }, { 2, 456000 }, { 3, 608000 }, { 4, 760000 }, { 5, 816000 }, { 6, 912000 }, { 7, 1000000 }, { 8, CPUFREQ_TABLE_END }, }; static struct cpufreq_frequency_table freq_table_1p2GHz[] = { { 0, 216000 }, { 1, 312000 }, { 2, 456000 }, { 3, 608000 }, { 4, 760000 }, { 5, 816000 }, { 6, 912000 }, { 7, 1000000 }, { 8, 1200000 }, { 9, CPUFREQ_TABLE_END }, }; static struct tegra_cpufreq_table_data cpufreq_tables[] = { { freq_table_750MHz, 1, 4 }, { freq_table_1p0GHz, 2, 6 }, { freq_table_1p2GHz, 2, 7 }, }; struct tegra_cpufreq_table_data *tegra_cpufreq_table_get(void) { int i, ret; struct clk *cpu_clk = tegra_get_clock_by_name("cpu"); for (i = 0; i < ARRAY_SIZE(cpufreq_tables); i++) { struct cpufreq_policy policy; ret = cpufreq_frequency_table_cpuinfo( &policy, cpufreq_tables[i].freq_table); BUG_ON(ret); if ((policy.max * 1000) == cpu_clk->max_rate) return &cpufreq_tables[i]; } pr_err("%s: No cpufreq table matching cpu range", __func__); BUG(); return &cpufreq_tables[0]; } unsigned long tegra_emc_to_cpu_ratio(unsigned long cpu_rate) { /* Vote on memory bus frequency based on cpu frequency */ if (cpu_rate > 1000000000) return 760000000; else if (cpu_rate >= 816000) return 600000000; /* cpu 816 MHz, emc max */ else if (cpu_rate >= 608000) return 300000000; /* cpu 608 MHz, emc 150Mhz */ else if (cpu_rate >= 456000) return 150000000; /* cpu 456 MHz, emc 75Mhz */ else if (cpu_rate >= 312000) return 100000000; /* cpu 312 MHz, emc 50Mhz */ else return 50000000; /* emc 25Mhz */ } #endif #ifdef CONFIG_PM_SLEEP static u32 clk_rst_suspend[RST_DEVICES_NUM + CLK_OUT_ENB_NUM + PERIPH_CLK_SOURCE_NUM + 22]; static int tegra_clk_suspend(void) { unsigned long off, i; u32 *ctx = clk_rst_suspend; *ctx++ = clk_readl(OSC_CTRL) & OSC_CTRL_MASK; *ctx++ = clk_readl(tegra_pll_c.reg + PLL_BASE); *ctx++ = clk_readl(tegra_pll_c.reg + PLL_MISC(&tegra_pll_c)); *ctx++ = clk_readl(tegra_pll_a.reg + PLL_BASE); *ctx++ = clk_readl(tegra_pll_a.reg + PLL_MISC(&tegra_pll_a)); *ctx++ = clk_readl(tegra_pll_s.reg + PLL_BASE); *ctx++ = clk_readl(tegra_pll_s.reg + PLL_MISC(&tegra_pll_s)); *ctx++ = clk_readl(tegra_pll_d.reg + PLL_BASE); *ctx++ = clk_readl(tegra_pll_d.reg + PLL_MISC(&tegra_pll_d)); *ctx++ = clk_readl(tegra_pll_u.reg + PLL_BASE); *ctx++ = clk_readl(tegra_pll_u.reg + PLL_MISC(&tegra_pll_u)); *ctx++ = clk_readl(tegra_pll_m_out1.reg); *ctx++ = clk_readl(tegra_pll_a_out0.reg); *ctx++ = clk_readl(tegra_pll_c_out1.reg); *ctx++ = clk_readl(tegra_clk_cclk.reg); *ctx++ = clk_readl(tegra_clk_cclk.reg + SUPER_CLK_DIVIDER); *ctx++ = clk_readl(tegra_clk_sclk.reg); *ctx++ = clk_readl(tegra_clk_sclk.reg + SUPER_CLK_DIVIDER); *ctx++ = clk_readl(tegra_clk_pclk.reg); *ctx++ = clk_readl(tegra_clk_audio.reg); for (off = PERIPH_CLK_SOURCE_I2S1; off <= PERIPH_CLK_SOURCE_OSC; off += 4) { if (off == PERIPH_CLK_SOURCE_EMC) continue; *ctx++ = clk_readl(off); } off = RST_DEVICES; for (i = 0; i < RST_DEVICES_NUM; i++, off += 4) *ctx++ = clk_readl(off); off = CLK_OUT_ENB; for (i = 0; i < CLK_OUT_ENB_NUM; i++, off += 4) *ctx++ = clk_readl(off); *ctx++ = clk_readl(MISC_CLK_ENB); *ctx++ = clk_readl(CLK_MASK_ARM); BUG_ON(ctx - clk_rst_suspend != ARRAY_SIZE(clk_rst_suspend)); return 0; } static void tegra_clk_resume(void) { unsigned long off, i; const u32 *ctx = clk_rst_suspend; u32 val; val = clk_readl(OSC_CTRL) & ~OSC_CTRL_MASK; val |= *ctx++; clk_writel(val, OSC_CTRL); clk_writel(*ctx++, tegra_pll_c.reg + PLL_BASE); clk_writel(*ctx++, tegra_pll_c.reg + PLL_MISC(&tegra_pll_c)); clk_writel(*ctx++, tegra_pll_a.reg + PLL_BASE); clk_writel(*ctx++, tegra_pll_a.reg + PLL_MISC(&tegra_pll_a)); clk_writel(*ctx++, tegra_pll_s.reg + PLL_BASE); clk_writel(*ctx++, tegra_pll_s.reg + PLL_MISC(&tegra_pll_s)); clk_writel(*ctx++, tegra_pll_d.reg + PLL_BASE); clk_writel(*ctx++, tegra_pll_d.reg + PLL_MISC(&tegra_pll_d)); clk_writel(*ctx++, tegra_pll_u.reg + PLL_BASE); clk_writel(*ctx++, tegra_pll_u.reg + PLL_MISC(&tegra_pll_u)); udelay(1000); clk_writel(*ctx++, tegra_pll_m_out1.reg); clk_writel(*ctx++, tegra_pll_a_out0.reg); clk_writel(*ctx++, tegra_pll_c_out1.reg); clk_writel(*ctx++, tegra_clk_cclk.reg); clk_writel(*ctx++, tegra_clk_cclk.reg + SUPER_CLK_DIVIDER); clk_writel(*ctx++, tegra_clk_sclk.reg); clk_writel(*ctx++, tegra_clk_sclk.reg + SUPER_CLK_DIVIDER); clk_writel(*ctx++, tegra_clk_pclk.reg); clk_writel(*ctx++, tegra_clk_audio.reg); /* enable all clocks before configuring clock sources */ clk_writel(0xbffffff9ul, CLK_OUT_ENB); clk_writel(0xfefffff7ul, CLK_OUT_ENB + 4); clk_writel(0x77f01bfful, CLK_OUT_ENB + 8); wmb(); for (off = PERIPH_CLK_SOURCE_I2S1; off <= PERIPH_CLK_SOURCE_OSC; off += 4) { if (off == PERIPH_CLK_SOURCE_EMC) continue; clk_writel(*ctx++, off); } wmb(); off = RST_DEVICES; for (i = 0; i < RST_DEVICES_NUM; i++, off += 4) clk_writel(*ctx++, off); wmb(); off = CLK_OUT_ENB; for (i = 0; i < CLK_OUT_ENB_NUM; i++, off += 4) clk_writel(*ctx++, off); wmb(); clk_writel(*ctx++, MISC_CLK_ENB); clk_writel(*ctx++, CLK_MASK_ARM); } #else #define tegra_clk_suspend NULL #define tegra_clk_resume NULL #endif static struct syscore_ops tegra_clk_syscore_ops = { .suspend = tegra_clk_suspend, .resume = tegra_clk_resume, }; void __init tegra_soc_init_clocks(void) { int i; struct clk *c; for (i = 0; i < ARRAY_SIZE(tegra_ptr_clks); i++) tegra2_init_one_clock(tegra_ptr_clks[i]); for (i = 0; i < ARRAY_SIZE(tegra_list_periph_clks); i++) tegra2_init_one_clock(&tegra_list_periph_clks[i]); for (i = 0; i < ARRAY_SIZE(tegra_clk_duplicates); i++) { c = tegra_get_clock_by_name(tegra_clk_duplicates[i].name); if (!c) { pr_err("%s: Unknown duplicate clock %s\n", __func__, tegra_clk_duplicates[i].name); continue; } tegra_clk_duplicates[i].lookup.clk = c; clkdev_add(&tegra_clk_duplicates[i].lookup); } init_audio_sync_clock_mux(); tegra2_init_sku_limits(); for (i = 0; i < ARRAY_SIZE(tegra_list_shared_clks); i++) tegra2_init_one_clock(&tegra_list_shared_clks[i]); register_syscore_ops(&tegra_clk_syscore_ops); }