/* * Copyright (c) 2000 Mike Corrigan * Copyright (c) 1999-2000 Grant Erickson * * Module name: iSeries_setup.c * * Description: * Architecture- / platform-specific boot-time initialization code for * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and * code by Gary Thomas, Cort Dougan , and Dan Malek * . * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iSeries_setup.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void hvlog(char *fmt, ...); #ifdef DEBUG #define DBG(fmt...) hvlog(fmt) #else #define DBG(fmt...) #endif /* Function Prototypes */ extern void ppcdbg_initialize(void); static void build_iSeries_Memory_Map(void); static void setup_iSeries_cache_sizes(void); static int iseries_shared_idle(void); static int iseries_dedicated_idle(void); #ifdef CONFIG_PCI extern void iSeries_pci_final_fixup(void); #else static void iSeries_pci_final_fixup(void) { } #endif /* Global Variables */ static unsigned long procFreqHz; static unsigned long procFreqMhz; static unsigned long procFreqMhzHundreths; static unsigned long tbFreqHz; static unsigned long tbFreqMhz; static unsigned long tbFreqMhzHundreths; int piranha_simulator; extern int rd_size; /* Defined in drivers/block/rd.c */ extern unsigned long klimit; extern unsigned long embedded_sysmap_start; extern unsigned long embedded_sysmap_end; extern unsigned long iSeries_recal_tb; extern unsigned long iSeries_recal_titan; static int mf_initialized; struct MemoryBlock { unsigned long absStart; unsigned long absEnd; unsigned long logicalStart; unsigned long logicalEnd; }; /* * Process the main store vpd to determine where the holes in memory are * and return the number of physical blocks and fill in the array of * block data. */ static unsigned long iSeries_process_Condor_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries) { unsigned long holeFirstChunk, holeSizeChunks; unsigned long numMemoryBlocks = 1; struct IoHriMainStoreSegment4 *msVpd = (struct IoHriMainStoreSegment4 *)xMsVpd; unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr; unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr; unsigned long holeSize = holeEnd - holeStart; printk("Mainstore_VPD: Condor\n"); /* * Determine if absolute memory has any * holes so that we can interpret the * access map we get back from the hypervisor * correctly. */ mb_array[0].logicalStart = 0; mb_array[0].logicalEnd = 0x100000000; mb_array[0].absStart = 0; mb_array[0].absEnd = 0x100000000; if (holeSize) { numMemoryBlocks = 2; holeStart = holeStart & 0x000fffffffffffff; holeStart = addr_to_chunk(holeStart); holeFirstChunk = holeStart; holeSize = addr_to_chunk(holeSize); holeSizeChunks = holeSize; printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n", holeFirstChunk, holeSizeChunks ); mb_array[0].logicalEnd = holeFirstChunk; mb_array[0].absEnd = holeFirstChunk; mb_array[1].logicalStart = holeFirstChunk; mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks; mb_array[1].absStart = holeFirstChunk + holeSizeChunks; mb_array[1].absEnd = 0x100000000; } return numMemoryBlocks; } #define MaxSegmentAreas 32 #define MaxSegmentAdrRangeBlocks 128 #define MaxAreaRangeBlocks 4 static unsigned long iSeries_process_Regatta_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries) { struct IoHriMainStoreSegment5 *msVpdP = (struct IoHriMainStoreSegment5 *)xMsVpd; unsigned long numSegmentBlocks = 0; u32 existsBits = msVpdP->msAreaExists; unsigned long area_num; printk("Mainstore_VPD: Regatta\n"); for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) { unsigned long numAreaBlocks; struct IoHriMainStoreArea4 *currentArea; if (existsBits & 0x80000000) { unsigned long block_num; currentArea = &msVpdP->msAreaArray[area_num]; numAreaBlocks = currentArea->numAdrRangeBlocks; printk("ms_vpd: processing area %2ld blocks=%ld", area_num, numAreaBlocks); for (block_num = 0; block_num < numAreaBlocks; ++block_num ) { /* Process an address range block */ struct MemoryBlock tempBlock; unsigned long i; tempBlock.absStart = (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart; tempBlock.absEnd = (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd; tempBlock.logicalStart = 0; tempBlock.logicalEnd = 0; printk("\n block %ld absStart=%016lx absEnd=%016lx", block_num, tempBlock.absStart, tempBlock.absEnd); for (i = 0; i < numSegmentBlocks; ++i) { if (mb_array[i].absStart == tempBlock.absStart) break; } if (i == numSegmentBlocks) { if (numSegmentBlocks == max_entries) panic("iSeries_process_mainstore_vpd: too many memory blocks"); mb_array[numSegmentBlocks] = tempBlock; ++numSegmentBlocks; } else printk(" (duplicate)"); } printk("\n"); } existsBits <<= 1; } /* Now sort the blocks found into ascending sequence */ if (numSegmentBlocks > 1) { unsigned long m, n; for (m = 0; m < numSegmentBlocks - 1; ++m) { for (n = numSegmentBlocks - 1; m < n; --n) { if (mb_array[n].absStart < mb_array[n-1].absStart) { struct MemoryBlock tempBlock; tempBlock = mb_array[n]; mb_array[n] = mb_array[n-1]; mb_array[n-1] = tempBlock; } } } } /* * Assign "logical" addresses to each block. These * addresses correspond to the hypervisor "bitmap" space. * Convert all addresses into units of 256K chunks. */ { unsigned long i, nextBitmapAddress; printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks); nextBitmapAddress = 0; for (i = 0; i < numSegmentBlocks; ++i) { unsigned long length = mb_array[i].absEnd - mb_array[i].absStart; mb_array[i].logicalStart = nextBitmapAddress; mb_array[i].logicalEnd = nextBitmapAddress + length; nextBitmapAddress += length; printk(" Bitmap range: %016lx - %016lx\n" " Absolute range: %016lx - %016lx\n", mb_array[i].logicalStart, mb_array[i].logicalEnd, mb_array[i].absStart, mb_array[i].absEnd); mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart & 0x000fffffffffffff); mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd & 0x000fffffffffffff); mb_array[i].logicalStart = addr_to_chunk(mb_array[i].logicalStart); mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd); } } return numSegmentBlocks; } static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array, unsigned long max_entries) { unsigned long i; unsigned long mem_blocks = 0; if (cpu_has_feature(CPU_FTR_SLB)) mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array, max_entries); else mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array, max_entries); printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks); for (i = 0; i < mem_blocks; ++i) { printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n" " abs chunks %016lx - %016lx\n", i, mb_array[i].logicalStart, mb_array[i].logicalEnd, mb_array[i].absStart, mb_array[i].absEnd); } return mem_blocks; } static void __init iSeries_get_cmdline(void) { char *p, *q; /* copy the command line parameter from the primary VSP */ HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256, HvLpDma_Direction_RemoteToLocal); p = cmd_line; q = cmd_line + 255; while(p < q) { if (!*p || *p == '\n') break; ++p; } *p = 0; } static void __init iSeries_init_early(void) { extern unsigned long memory_limit; DBG(" -> iSeries_init_early()\n"); ppc64_firmware_features = FW_FEATURE_ISERIES; ppcdbg_initialize(); ppc64_interrupt_controller = IC_ISERIES; #if defined(CONFIG_BLK_DEV_INITRD) /* * If the init RAM disk has been configured and there is * a non-zero starting address for it, set it up */ if (naca.xRamDisk) { initrd_start = (unsigned long)__va(naca.xRamDisk); initrd_end = initrd_start + naca.xRamDiskSize * PAGE_SIZE; initrd_below_start_ok = 1; // ramdisk in kernel space ROOT_DEV = Root_RAM0; if (((rd_size * 1024) / PAGE_SIZE) < naca.xRamDiskSize) rd_size = (naca.xRamDiskSize * PAGE_SIZE) / 1024; } else #endif /* CONFIG_BLK_DEV_INITRD */ { /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */ } iSeries_recal_tb = get_tb(); iSeries_recal_titan = HvCallXm_loadTod(); /* * Cache sizes must be initialized before hpte_init_iSeries is called * as the later need them for flush_icache_range() */ setup_iSeries_cache_sizes(); /* * Initialize the hash table management pointers */ hpte_init_iSeries(); /* * Initialize the DMA/TCE management */ iommu_init_early_iSeries(); iSeries_get_cmdline(); /* Save unparsed command line copy for /proc/cmdline */ strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE); /* Parse early parameters, in particular mem=x */ parse_early_param(); if (memory_limit) { if (memory_limit < systemcfg->physicalMemorySize) systemcfg->physicalMemorySize = memory_limit; else { printk("Ignoring mem=%lu >= ram_top.\n", memory_limit); memory_limit = 0; } } lmb_init(); lmb_add(0, systemcfg->physicalMemorySize); lmb_analyze(); lmb_reserve(0, __pa(klimit)); /* Initialize machine-dependency vectors */ #ifdef CONFIG_SMP smp_init_iSeries(); #endif if (itLpNaca.xPirEnvironMode == 0) piranha_simulator = 1; /* Associate Lp Event Queue 0 with processor 0 */ HvCallEvent_setLpEventQueueInterruptProc(0, 0); mf_init(); mf_initialized = 1; mb(); /* If we were passed an initrd, set the ROOT_DEV properly if the values * look sensible. If not, clear initrd reference. */ #ifdef CONFIG_BLK_DEV_INITRD if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE && initrd_end > initrd_start) ROOT_DEV = Root_RAM0; else initrd_start = initrd_end = 0; #endif /* CONFIG_BLK_DEV_INITRD */ DBG(" <- iSeries_init_early()\n"); } struct mschunks_map mschunks_map = { /* XXX We don't use these, but Piranha might need them. */ .chunk_size = MSCHUNKS_CHUNK_SIZE, .chunk_shift = MSCHUNKS_CHUNK_SHIFT, .chunk_mask = MSCHUNKS_OFFSET_MASK, }; EXPORT_SYMBOL(mschunks_map); void mschunks_alloc(unsigned long num_chunks) { klimit = _ALIGN(klimit, sizeof(u32)); mschunks_map.mapping = (u32 *)klimit; klimit += num_chunks * sizeof(u32); mschunks_map.num_chunks = num_chunks; } /* * The iSeries may have very large memories ( > 128 GB ) and a partition * may get memory in "chunks" that may be anywhere in the 2**52 real * address space. The chunks are 256K in size. To map this to the * memory model Linux expects, the AS/400 specific code builds a * translation table to translate what Linux thinks are "physical" * addresses to the actual real addresses. This allows us to make * it appear to Linux that we have contiguous memory starting at * physical address zero while in fact this could be far from the truth. * To avoid confusion, I'll let the words physical and/or real address * apply to the Linux addresses while I'll use "absolute address" to * refer to the actual hardware real address. * * build_iSeries_Memory_Map gets information from the Hypervisor and * looks at the Main Store VPD to determine the absolute addresses * of the memory that has been assigned to our partition and builds * a table used to translate Linux's physical addresses to these * absolute addresses. Absolute addresses are needed when * communicating with the hypervisor (e.g. to build HPT entries) */ static void __init build_iSeries_Memory_Map(void) { u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize; u32 nextPhysChunk; u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages; u32 num_ptegs; u32 totalChunks,moreChunks; u32 currChunk, thisChunk, absChunk; u32 currDword; u32 chunkBit; u64 map; struct MemoryBlock mb[32]; unsigned long numMemoryBlocks, curBlock; /* Chunk size on iSeries is 256K bytes */ totalChunks = (u32)HvLpConfig_getMsChunks(); mschunks_alloc(totalChunks); /* * Get absolute address of our load area * and map it to physical address 0 * This guarantees that the loadarea ends up at physical 0 * otherwise, it might not be returned by PLIC as the first * chunks */ loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr); loadAreaSize = itLpNaca.xLoadAreaChunks; /* * Only add the pages already mapped here. * Otherwise we might add the hpt pages * The rest of the pages of the load area * aren't in the HPT yet and can still * be assigned an arbitrary physical address */ if ((loadAreaSize * 64) > HvPagesToMap) loadAreaSize = HvPagesToMap / 64; loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1; /* * TODO Do we need to do something if the HPT is in the 64MB load area? * This would be required if the itLpNaca.xLoadAreaChunks includes * the HPT size */ printk("Mapping load area - physical addr = 0000000000000000\n" " absolute addr = %016lx\n", chunk_to_addr(loadAreaFirstChunk)); printk("Load area size %dK\n", loadAreaSize * 256); for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk) mschunks_map.mapping[nextPhysChunk] = loadAreaFirstChunk + nextPhysChunk; /* * Get absolute address of our HPT and remember it so * we won't map it to any physical address */ hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress()); hptSizePages = (u32)HvCallHpt_getHptPages(); hptSizeChunks = hptSizePages >> (MSCHUNKS_CHUNK_SHIFT - PAGE_SHIFT); hptLastChunk = hptFirstChunk + hptSizeChunks - 1; printk("HPT absolute addr = %016lx, size = %dK\n", chunk_to_addr(hptFirstChunk), hptSizeChunks * 256); /* Fill in the hashed page table hash mask */ num_ptegs = hptSizePages * (PAGE_SIZE / (sizeof(hpte_t) * HPTES_PER_GROUP)); htab_hash_mask = num_ptegs - 1; /* * The actual hashed page table is in the hypervisor, * we have no direct access */ htab_address = NULL; /* * Determine if absolute memory has any * holes so that we can interpret the * access map we get back from the hypervisor * correctly. */ numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32); /* * Process the main store access map from the hypervisor * to build up our physical -> absolute translation table */ curBlock = 0; currChunk = 0; currDword = 0; moreChunks = totalChunks; while (moreChunks) { map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex, currDword); thisChunk = currChunk; while (map) { chunkBit = map >> 63; map <<= 1; if (chunkBit) { --moreChunks; while (thisChunk >= mb[curBlock].logicalEnd) { ++curBlock; if (curBlock >= numMemoryBlocks) panic("out of memory blocks"); } if (thisChunk < mb[curBlock].logicalStart) panic("memory block error"); absChunk = mb[curBlock].absStart + (thisChunk - mb[curBlock].logicalStart); if (((absChunk < hptFirstChunk) || (absChunk > hptLastChunk)) && ((absChunk < loadAreaFirstChunk) || (absChunk > loadAreaLastChunk))) { mschunks_map.mapping[nextPhysChunk] = absChunk; ++nextPhysChunk; } } ++thisChunk; } ++currDword; currChunk += 64; } /* * main store size (in chunks) is * totalChunks - hptSizeChunks * which should be equal to * nextPhysChunk */ systemcfg->physicalMemorySize = chunk_to_addr(nextPhysChunk); } /* * Set up the variables that describe the cache line sizes * for this machine. */ static void __init setup_iSeries_cache_sizes(void) { unsigned int i, n; unsigned int procIx = get_paca()->lppaca.dyn_hv_phys_proc_index; systemcfg->icache_size = ppc64_caches.isize = xIoHriProcessorVpd[procIx].xInstCacheSize * 1024; systemcfg->icache_line_size = ppc64_caches.iline_size = xIoHriProcessorVpd[procIx].xInstCacheOperandSize; systemcfg->dcache_size = ppc64_caches.dsize = xIoHriProcessorVpd[procIx].xDataL1CacheSizeKB * 1024; systemcfg->dcache_line_size = ppc64_caches.dline_size = xIoHriProcessorVpd[procIx].xDataCacheOperandSize; ppc64_caches.ilines_per_page = PAGE_SIZE / ppc64_caches.iline_size; ppc64_caches.dlines_per_page = PAGE_SIZE / ppc64_caches.dline_size; i = ppc64_caches.iline_size; n = 0; while ((i = (i / 2))) ++n; ppc64_caches.log_iline_size = n; i = ppc64_caches.dline_size; n = 0; while ((i = (i / 2))) ++n; ppc64_caches.log_dline_size = n; printk("D-cache line size = %d\n", (unsigned int)ppc64_caches.dline_size); printk("I-cache line size = %d\n", (unsigned int)ppc64_caches.iline_size); } /* * Document me. */ static void __init iSeries_setup_arch(void) { unsigned procIx = get_paca()->lppaca.dyn_hv_phys_proc_index; if (get_paca()->lppaca.shared_proc) { ppc_md.idle_loop = iseries_shared_idle; printk(KERN_INFO "Using shared processor idle loop\n"); } else { ppc_md.idle_loop = iseries_dedicated_idle; printk(KERN_INFO "Using dedicated idle loop\n"); } /* Add an eye catcher and the systemcfg layout version number */ strcpy(systemcfg->eye_catcher, "SYSTEMCFG:PPC64"); systemcfg->version.major = SYSTEMCFG_MAJOR; systemcfg->version.minor = SYSTEMCFG_MINOR; /* Setup the Lp Event Queue */ setup_hvlpevent_queue(); /* Compute processor frequency */ procFreqHz = ((1UL << 34) * 1000000) / xIoHriProcessorVpd[procIx].xProcFreq; procFreqMhz = procFreqHz / 1000000; procFreqMhzHundreths = (procFreqHz / 10000) - (procFreqMhz * 100); ppc_proc_freq = procFreqHz; /* Compute time base frequency */ tbFreqHz = ((1UL << 32) * 1000000) / xIoHriProcessorVpd[procIx].xTimeBaseFreq; tbFreqMhz = tbFreqHz / 1000000; tbFreqMhzHundreths = (tbFreqHz / 10000) - (tbFreqMhz * 100); ppc_tb_freq = tbFreqHz; printk("Max logical processors = %d\n", itVpdAreas.xSlicMaxLogicalProcs); printk("Max physical processors = %d\n", itVpdAreas.xSlicMaxPhysicalProcs); printk("Processor frequency = %lu.%02lu\n", procFreqMhz, procFreqMhzHundreths); printk("Time base frequency = %lu.%02lu\n", tbFreqMhz, tbFreqMhzHundreths); systemcfg->processor = xIoHriProcessorVpd[procIx].xPVR; printk("Processor version = %x\n", systemcfg->processor); } static void iSeries_get_cpuinfo(struct seq_file *m) { seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n"); } /* * Document me. * and Implement me. */ static int iSeries_get_irq(struct pt_regs *regs) { /* -2 means ignore this interrupt */ return -2; } /* * Document me. */ static void iSeries_restart(char *cmd) { mf_reboot(); } /* * Document me. */ static void iSeries_power_off(void) { mf_power_off(); } /* * Document me. */ static void iSeries_halt(void) { mf_power_off(); } /* * void __init iSeries_calibrate_decr() * * Description: * This routine retrieves the internal processor frequency from the VPD, * and sets up the kernel timer decrementer based on that value. * */ static void __init iSeries_calibrate_decr(void) { unsigned long cyclesPerUsec; struct div_result divres; /* Compute decrementer (and TB) frequency in cycles/sec */ cyclesPerUsec = ppc_tb_freq / 1000000; /* * Set the amount to refresh the decrementer by. This * is the number of decrementer ticks it takes for * 1/HZ seconds. */ tb_ticks_per_jiffy = ppc_tb_freq / HZ; #if 0 /* TEST CODE FOR ADJTIME */ tb_ticks_per_jiffy += tb_ticks_per_jiffy / 5000; /* END OF TEST CODE */ #endif /* * tb_ticks_per_sec = freq; would give better accuracy * but tb_ticks_per_sec = tb_ticks_per_jiffy*HZ; assures * that jiffies (and xtime) will match the time returned * by do_gettimeofday. */ tb_ticks_per_sec = tb_ticks_per_jiffy * HZ; tb_ticks_per_usec = cyclesPerUsec; tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); div128_by_32(1024 * 1024, 0, tb_ticks_per_sec, &divres); tb_to_xs = divres.result_low; setup_default_decr(); } static void __init iSeries_progress(char * st, unsigned short code) { printk("Progress: [%04x] - %s\n", (unsigned)code, st); if (!piranha_simulator && mf_initialized) { if (code != 0xffff) mf_display_progress(code); else mf_clear_src(); } } static void __init iSeries_fixup_klimit(void) { /* * Change klimit to take into account any ram disk * that may be included */ if (naca.xRamDisk) klimit = KERNELBASE + (u64)naca.xRamDisk + (naca.xRamDiskSize * PAGE_SIZE); else { /* * No ram disk was included - check and see if there * was an embedded system map. Change klimit to take * into account any embedded system map */ if (embedded_sysmap_end) klimit = KERNELBASE + ((embedded_sysmap_end + 4095) & 0xfffffffffffff000); } } static int __init iSeries_src_init(void) { /* clear the progress line */ ppc_md.progress(" ", 0xffff); return 0; } late_initcall(iSeries_src_init); static inline void process_iSeries_events(void) { asm volatile ("li 0,0x5555; sc" : : : "r0", "r3"); } static void yield_shared_processor(void) { unsigned long tb; HvCall_setEnabledInterrupts(HvCall_MaskIPI | HvCall_MaskLpEvent | HvCall_MaskLpProd | HvCall_MaskTimeout); tb = get_tb(); /* Compute future tb value when yield should expire */ HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy); /* * The decrementer stops during the yield. Force a fake decrementer * here and let the timer_interrupt code sort out the actual time. */ get_paca()->lppaca.int_dword.fields.decr_int = 1; process_iSeries_events(); } static int iseries_shared_idle(void) { while (1) { while (!need_resched() && !hvlpevent_is_pending()) { local_irq_disable(); ppc64_runlatch_off(); /* Recheck with irqs off */ if (!need_resched() && !hvlpevent_is_pending()) yield_shared_processor(); HMT_medium(); local_irq_enable(); } ppc64_runlatch_on(); if (hvlpevent_is_pending()) process_iSeries_events(); schedule(); } return 0; } static int iseries_dedicated_idle(void) { long oldval; while (1) { oldval = test_and_clear_thread_flag(TIF_NEED_RESCHED); if (!oldval) { set_thread_flag(TIF_POLLING_NRFLAG); while (!need_resched()) { ppc64_runlatch_off(); HMT_low(); if (hvlpevent_is_pending()) { HMT_medium(); ppc64_runlatch_on(); process_iSeries_events(); } } HMT_medium(); clear_thread_flag(TIF_POLLING_NRFLAG); } else { set_need_resched(); } ppc64_runlatch_on(); schedule(); } return 0; } #ifndef CONFIG_PCI void __init iSeries_init_IRQ(void) { } #endif static int __init iseries_probe(int platform) { return PLATFORM_ISERIES_LPAR == platform; } struct machdep_calls __initdata iseries_md = { .setup_arch = iSeries_setup_arch, .get_cpuinfo = iSeries_get_cpuinfo, .init_IRQ = iSeries_init_IRQ, .get_irq = iSeries_get_irq, .init_early = iSeries_init_early, .pcibios_fixup = iSeries_pci_final_fixup, .restart = iSeries_restart, .power_off = iSeries_power_off, .halt = iSeries_halt, .get_boot_time = iSeries_get_boot_time, .set_rtc_time = iSeries_set_rtc_time, .get_rtc_time = iSeries_get_rtc_time, .calibrate_decr = iSeries_calibrate_decr, .progress = iSeries_progress, .probe = iseries_probe, /* XXX Implement enable_pmcs for iSeries */ }; struct blob { unsigned char data[PAGE_SIZE]; unsigned long next; }; struct iseries_flat_dt { struct boot_param_header header; u64 reserve_map[2]; struct blob dt; struct blob strings; }; struct iseries_flat_dt iseries_dt; void dt_init(struct iseries_flat_dt *dt) { dt->header.off_mem_rsvmap = offsetof(struct iseries_flat_dt, reserve_map); dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt); dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings); dt->header.totalsize = sizeof(struct iseries_flat_dt); dt->header.dt_strings_size = sizeof(struct blob); /* There is no notion of hardware cpu id on iSeries */ dt->header.boot_cpuid_phys = smp_processor_id(); dt->dt.next = (unsigned long)&dt->dt.data; dt->strings.next = (unsigned long)&dt->strings.data; dt->header.magic = OF_DT_HEADER; dt->header.version = 0x10; dt->header.last_comp_version = 0x10; dt->reserve_map[0] = 0; dt->reserve_map[1] = 0; } void dt_check_blob(struct blob *b) { if (b->next >= (unsigned long)&b->next) { DBG("Ran out of space in flat device tree blob!\n"); BUG(); } } void dt_push_u32(struct iseries_flat_dt *dt, u32 value) { *((u32*)dt->dt.next) = value; dt->dt.next += sizeof(u32); dt_check_blob(&dt->dt); } void dt_push_u64(struct iseries_flat_dt *dt, u64 value) { *((u64*)dt->dt.next) = value; dt->dt.next += sizeof(u64); dt_check_blob(&dt->dt); } unsigned long dt_push_bytes(struct blob *blob, char *data, int len) { unsigned long start = blob->next - (unsigned long)blob->data; memcpy((char *)blob->next, data, len); blob->next = _ALIGN(blob->next + len, 4); dt_check_blob(blob); return start; } void dt_start_node(struct iseries_flat_dt *dt, char *name) { dt_push_u32(dt, OF_DT_BEGIN_NODE); dt_push_bytes(&dt->dt, name, strlen(name) + 1); } #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE) void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len) { unsigned long offset; dt_push_u32(dt, OF_DT_PROP); /* Length of the data */ dt_push_u32(dt, len); /* Put the property name in the string blob. */ offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1); /* The offset of the properties name in the string blob. */ dt_push_u32(dt, (u32)offset); /* The actual data. */ dt_push_bytes(&dt->dt, data, len); } void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data) { dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */ } void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data) { dt_prop(dt, name, (char *)&data, sizeof(u32)); } void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data) { dt_prop(dt, name, (char *)&data, sizeof(u64)); } void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n) { dt_prop(dt, name, (char *)data, sizeof(u64) * n); } void dt_prop_empty(struct iseries_flat_dt *dt, char *name) { dt_prop(dt, name, NULL, 0); } void build_flat_dt(struct iseries_flat_dt *dt) { dt_init(dt); dt_start_node(dt, ""); dt_end_node(dt); dt_push_u32(dt, OF_DT_END); } void * __init iSeries_early_setup(void) { iSeries_fixup_klimit(); /* * Initialize the table which translate Linux physical addresses to * AS/400 absolute addresses */ build_iSeries_Memory_Map(); build_flat_dt(&iseries_dt); return (void *) __pa(&iseries_dt); }