/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. * * This file contains the functions and defines necessary to modify and use * the TILE page table tree. */ #ifndef _ASM_TILE_PGTABLE_H #define _ASM_TILE_PGTABLE_H #include #ifndef __ASSEMBLY__ #include #include #include #include #include #include #include struct mm_struct; struct vm_area_struct; /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) extern pgd_t swapper_pg_dir[]; extern pgprot_t swapper_pgprot; extern struct kmem_cache *pgd_cache; extern spinlock_t pgd_lock; extern struct list_head pgd_list; /* * The very last slots in the pgd_t are for addresses unusable by Linux * (pgd_addr_invalid() returns true). So we use them for the list structure. * The x86 code we are modelled on uses the page->private/index fields * (older 2.6 kernels) or the lru list (newer 2.6 kernels), but since * our pgds are so much smaller than a page, it seems a waste to * spend a whole page on each pgd. */ #define PGD_LIST_OFFSET \ ((PTRS_PER_PGD * sizeof(pgd_t)) - sizeof(struct list_head)) #define pgd_to_list(pgd) \ ((struct list_head *)((char *)(pgd) + PGD_LIST_OFFSET)) #define list_to_pgd(list) \ ((pgd_t *)((char *)(list) - PGD_LIST_OFFSET)) extern void pgtable_cache_init(void); extern void paging_init(void); extern void set_page_homes(void); #define FIRST_USER_ADDRESS 0 #define _PAGE_PRESENT HV_PTE_PRESENT #define _PAGE_HUGE_PAGE HV_PTE_PAGE #define _PAGE_READABLE HV_PTE_READABLE #define _PAGE_WRITABLE HV_PTE_WRITABLE #define _PAGE_EXECUTABLE HV_PTE_EXECUTABLE #define _PAGE_ACCESSED HV_PTE_ACCESSED #define _PAGE_DIRTY HV_PTE_DIRTY #define _PAGE_GLOBAL HV_PTE_GLOBAL #define _PAGE_USER HV_PTE_USER /* * All the "standard" bits. Cache-control bits are managed elsewhere. * This is used to test for valid level-2 page table pointers by checking * all the bits, and to mask away the cache control bits for mprotect. */ #define _PAGE_ALL (\ _PAGE_PRESENT | \ _PAGE_HUGE_PAGE | \ _PAGE_READABLE | \ _PAGE_WRITABLE | \ _PAGE_EXECUTABLE | \ _PAGE_ACCESSED | \ _PAGE_DIRTY | \ _PAGE_GLOBAL | \ _PAGE_USER \ ) #define PAGE_NONE \ __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) #define PAGE_SHARED \ __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \ _PAGE_USER | _PAGE_ACCESSED) #define PAGE_SHARED_EXEC \ __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \ _PAGE_EXECUTABLE | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_COPY_NOEXEC \ __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE) #define PAGE_COPY_EXEC \ __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \ _PAGE_READABLE | _PAGE_EXECUTABLE) #define PAGE_COPY \ PAGE_COPY_NOEXEC #define PAGE_READONLY \ __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE) #define PAGE_READONLY_EXEC \ __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \ _PAGE_READABLE | _PAGE_EXECUTABLE) #define _PAGE_KERNEL_RO \ (_PAGE_PRESENT | _PAGE_GLOBAL | _PAGE_READABLE | _PAGE_ACCESSED) #define _PAGE_KERNEL \ (_PAGE_KERNEL_RO | _PAGE_WRITABLE | _PAGE_DIRTY) #define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXECUTABLE) #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) #define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO) #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC) #define page_to_kpgprot(p) PAGE_KERNEL /* * We could tighten these up, but for now writable or executable * implies readable. */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY /* this is write-only, which we won't support */ #define __P011 PAGE_COPY #define __P100 PAGE_READONLY_EXEC #define __P101 PAGE_READONLY_EXEC #define __P110 PAGE_COPY_EXEC #define __P111 PAGE_COPY_EXEC #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY_EXEC #define __S101 PAGE_READONLY_EXEC #define __S110 PAGE_SHARED_EXEC #define __S111 PAGE_SHARED_EXEC /* * All the normal _PAGE_ALL bits are ignored for PMDs, except PAGE_PRESENT * and PAGE_HUGE_PAGE, which must be one and zero, respectively. * We set the ignored bits to zero. */ #define _PAGE_TABLE _PAGE_PRESENT /* Inherit the caching flags from the old protection bits. */ #define pgprot_modify(oldprot, newprot) \ (pgprot_t) { ((oldprot).val & ~_PAGE_ALL) | (newprot).val } /* Just setting the PFN to zero suffices. */ #define pte_pgprot(x) hv_pte_set_pfn((x), 0) /* * For PTEs and PDEs, we must clear the Present bit first when * clearing a page table entry, so clear the bottom half first and * enforce ordering with a barrier. */ static inline void __pte_clear(pte_t *ptep) { #ifdef __tilegx__ ptep->val = 0; #else u32 *tmp = (u32 *)ptep; tmp[0] = 0; barrier(); tmp[1] = 0; #endif } #define pte_clear(mm, addr, ptep) __pte_clear(ptep) /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ #define pte_present hv_pte_get_present #define pte_mknotpresent hv_pte_clear_present #define pte_user hv_pte_get_user #define pte_read hv_pte_get_readable #define pte_dirty hv_pte_get_dirty #define pte_young hv_pte_get_accessed #define pte_write hv_pte_get_writable #define pte_exec hv_pte_get_executable #define pte_huge hv_pte_get_page #define pte_rdprotect hv_pte_clear_readable #define pte_exprotect hv_pte_clear_executable #define pte_mkclean hv_pte_clear_dirty #define pte_mkold hv_pte_clear_accessed #define pte_wrprotect hv_pte_clear_writable #define pte_mksmall hv_pte_clear_page #define pte_mkread hv_pte_set_readable #define pte_mkexec hv_pte_set_executable #define pte_mkdirty hv_pte_set_dirty #define pte_mkyoung hv_pte_set_accessed #define pte_mkwrite hv_pte_set_writable #define pte_mkhuge hv_pte_set_page #define pte_special(pte) 0 #define pte_mkspecial(pte) (pte) /* * Use some spare bits in the PTE for user-caching tags. */ #define pte_set_forcecache hv_pte_set_client0 #define pte_get_forcecache hv_pte_get_client0 #define pte_clear_forcecache hv_pte_clear_client0 #define pte_set_anyhome hv_pte_set_client1 #define pte_get_anyhome hv_pte_get_client1 #define pte_clear_anyhome hv_pte_clear_client1 /* * A migrating PTE has PAGE_PRESENT clear but all the other bits preserved. */ #define pte_migrating hv_pte_get_migrating #define pte_mkmigrate(x) hv_pte_set_migrating(hv_pte_clear_present(x)) #define pte_donemigrate(x) hv_pte_set_present(hv_pte_clear_migrating(x)) #define pte_ERROR(e) \ pr_err("%s:%d: bad pte 0x%016llx.\n", __FILE__, __LINE__, pte_val(e)) #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd 0x%016llx.\n", __FILE__, __LINE__, pgd_val(e)) /* Return PA and protection info for a given kernel VA. */ int va_to_cpa_and_pte(void *va, phys_addr_t *cpa, pte_t *pte); /* * __set_pte() ensures we write the 64-bit PTE with 32-bit words in * the right order on 32-bit platforms and also allows us to write * hooks to check valid PTEs, etc., if we want. */ void __set_pte(pte_t *ptep, pte_t pte); /* * set_pte() sets the given PTE and also sanity-checks the * requested PTE against the page homecaching. Unspecified parts * of the PTE are filled in when it is written to memory, i.e. all * caching attributes if "!forcecache", or the home cpu if "anyhome". */ extern void set_pte(pte_t *ptep, pte_t pte); #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval) #define set_pte_atomic(pteptr, pteval) set_pte(pteptr, pteval) #define pte_page(x) pfn_to_page(pte_pfn(x)) static inline int pte_none(pte_t pte) { return !pte.val; } static inline unsigned long pte_pfn(pte_t pte) { return hv_pte_get_pfn(pte); } /* Set or get the remote cache cpu in a pgprot with remote caching. */ extern pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu); extern int get_remote_cache_cpu(pgprot_t prot); static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) { return hv_pte_set_pfn(prot, pfn); } /* Support for priority mappings. */ extern void start_mm_caching(struct mm_struct *mm); extern void check_mm_caching(struct mm_struct *prev, struct mm_struct *next); /* * Support non-linear file mappings (see sys_remap_file_pages). * This is defined by CLIENT1 set but CLIENT0 and _PAGE_PRESENT clear, and the * file offset in the 32 high bits. */ #define _PAGE_FILE HV_PTE_CLIENT1 #define PTE_FILE_MAX_BITS 32 #define pte_file(pte) (hv_pte_get_client1(pte) && !hv_pte_get_client0(pte)) #define pte_to_pgoff(pte) ((pte).val >> 32) #define pgoff_to_pte(off) ((pte_t) { (((long long)(off)) << 32) | _PAGE_FILE }) /* * Encode and de-code a swap entry (see ). * We put the swap file type+offset in the 32 high bits; * I believe we can just leave the low bits clear. */ #define __swp_type(swp) ((swp).val & 0x1f) #define __swp_offset(swp) ((swp).val >> 5) #define __swp_entry(type, off) ((swp_entry_t) { (type) | ((off) << 5) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).val >> 32 }) #define __swp_entry_to_pte(swp) ((pte_t) { (((long long) ((swp).val)) << 32) }) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) /* * If we are doing an mprotect(), just accept the new vma->vm_page_prot * value and combine it with the PFN from the old PTE to get a new PTE. */ static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { return pfn_pte(pte_pfn(pte), newprot); } /* * The pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] * * This macro returns the index of the entry in the pgd page which would * control the given virtual address. */ #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) /* * pgd_offset() returns a (pgd_t *) * pgd_index() is used get the offset into the pgd page's array of pgd_t's. */ #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) /* * A shortcut which implies the use of the kernel's pgd, instead * of a process's. */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) #if defined(CONFIG_HIGHPTE) extern pte_t *pte_offset_map(pmd_t *, unsigned long address); #define pte_unmap(pte) kunmap_atomic(pte) #else #define pte_offset_map(dir, address) pte_offset_kernel(dir, address) #define pte_unmap(pte) do { } while (0) #endif /* Clear a non-executable kernel PTE and flush it from the TLB. */ #define kpte_clear_flush(ptep, vaddr) \ do { \ pte_clear(&init_mm, (vaddr), (ptep)); \ local_flush_tlb_page(FLUSH_NONEXEC, (vaddr), PAGE_SIZE); \ } while (0) /* * The kernel page tables contain what we need, and we flush when we * change specific page table entries. */ #define update_mmu_cache(vma, address, pte) do { } while (0) #ifdef CONFIG_FLATMEM #define kern_addr_valid(addr) (1) #endif /* CONFIG_FLATMEM */ #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ remap_pfn_range(vma, vaddr, pfn, size, prot) extern void vmalloc_sync_all(void); #endif /* !__ASSEMBLY__ */ #ifdef __tilegx__ #include #else #include #endif #ifndef __ASSEMBLY__ static inline int pmd_none(pmd_t pmd) { /* * Only check low word on 32-bit platforms, since it might be * out of sync with upper half. */ return (unsigned long)pmd_val(pmd) == 0; } static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_PRESENT; } static inline int pmd_bad(pmd_t pmd) { return ((pmd_val(pmd) & _PAGE_ALL) != _PAGE_TABLE); } static inline unsigned long pages_to_mb(unsigned long npg) { return npg >> (20 - PAGE_SHIFT); } /* * The pmd can be thought of an array like this: pmd_t[PTRS_PER_PMD] * * This function returns the index of the entry in the pmd which would * control the given virtual address. */ static inline unsigned long pmd_index(unsigned long address) { return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); } #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { return ptep_test_and_clear_young(vma, address, pmdp_ptep(pmdp)); } #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { ptep_set_wrprotect(mm, address, pmdp_ptep(pmdp)); } #define __HAVE_ARCH_PMDP_GET_AND_CLEAR static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { return pte_pmd(ptep_get_and_clear(mm, address, pmdp_ptep(pmdp))); } static inline void __set_pmd(pmd_t *pmdp, pmd_t pmdval) { set_pte(pmdp_ptep(pmdp), pmd_pte(pmdval)); } #define set_pmd_at(mm, addr, pmdp, pmdval) __set_pmd(pmdp, pmdval) /* Create a pmd from a PTFN. */ static inline pmd_t ptfn_pmd(unsigned long ptfn, pgprot_t prot) { return pte_pmd(hv_pte_set_ptfn(prot, ptfn)); } /* Return the page-table frame number (ptfn) that a pmd_t points at. */ #define pmd_ptfn(pmd) hv_pte_get_ptfn(pmd_pte(pmd)) /* * A given kernel pmd_t maps to a specific virtual address (either a * kernel huge page or a kernel pte_t table). Since kernel pte_t * tables can be aligned at sub-page granularity, this function can * return non-page-aligned pointers, despite its name. */ static inline unsigned long pmd_page_vaddr(pmd_t pmd) { phys_addr_t pa = (phys_addr_t)pmd_ptfn(pmd) << HV_LOG2_PAGE_TABLE_ALIGN; return (unsigned long)__va(pa); } /* * A pmd_t points to the base of a huge page or to a pte_t array. * If a pte_t array, since we can have multiple per page, we don't * have a one-to-one mapping of pmd_t's to pages. However, this is * OK for pte_lockptr(), since we just end up with potentially one * lock being used for several pte_t arrays. */ #define pmd_page(pmd) pfn_to_page(HV_PTFN_TO_PFN(pmd_ptfn(pmd))) static inline void pmd_clear(pmd_t *pmdp) { __pte_clear(pmdp_ptep(pmdp)); } #define pmd_mknotpresent(pmd) pte_pmd(pte_mknotpresent(pmd_pte(pmd))) #define pmd_young(pmd) pte_young(pmd_pte(pmd)) #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) #define pmd_write(pmd) pte_write(pmd_pte(pmd)) #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) #define pmd_huge_page(pmd) pte_huge(pmd_pte(pmd)) #define pmd_mkhuge(pmd) pte_pmd(pte_mkhuge(pmd_pte(pmd))) #define __HAVE_ARCH_PMD_WRITE #define pfn_pmd(pfn, pgprot) pte_pmd(pfn_pte((pfn), (pgprot))) #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd)) #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { return pfn_pmd(pmd_pfn(pmd), newprot); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define has_transparent_hugepage() 1 #define pmd_trans_huge pmd_huge_page static inline pmd_t pmd_mksplitting(pmd_t pmd) { return pte_pmd(hv_pte_set_client2(pmd_pte(pmd))); } static inline int pmd_trans_splitting(pmd_t pmd) { return hv_pte_get_client2(pmd_pte(pmd)); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /* * The pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] * * This macro returns the index of the entry in the pte page which would * control the given virtual address. */ static inline unsigned long pte_index(unsigned long address) { return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); } static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) { return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); } #include /* Support /proc/NN/pgtable API. */ struct seq_file; int arch_proc_pgtable_show(struct seq_file *m, struct mm_struct *mm, unsigned long vaddr, pte_t *ptep, void **datap); #endif /* !__ASSEMBLY__ */ #endif /* _ASM_TILE_PGTABLE_H */