/* * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) * Licensed under the GPL */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int is_skas_winch(int pid, int fd, void *data) { return pid == getpgrp(); } static int ptrace_dump_regs(int pid) { unsigned long regs[MAX_REG_NR]; int i; if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0) return -errno; printk(UM_KERN_ERR "Stub registers -\n"); for (i = 0; i < ARRAY_SIZE(regs); i++) printk(UM_KERN_ERR "\t%d - %lx\n", i, regs[i]); return 0; } /* * Signals that are OK to receive in the stub - we'll just continue it. * SIGWINCH will happen when UML is inside a detached screen. */ #define STUB_SIG_MASK ((1 << SIGVTALRM) | (1 << SIGWINCH)) /* Signals that the stub will finish with - anything else is an error */ #define STUB_DONE_MASK (1 << SIGTRAP) void wait_stub_done(int pid) { int n, status, err, bad_stop = 0; while (1) { CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL)); if ((n < 0) || !WIFSTOPPED(status)) goto bad_wait; if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0) break; err = ptrace(PTRACE_CONT, pid, 0, 0); if (err) { printk(UM_KERN_ERR "wait_stub_done : continue failed, " "errno = %d\n", errno); fatal_sigsegv(); } } if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0) return; else bad_stop = 1; bad_wait: err = ptrace_dump_regs(pid); if (err) printk(UM_KERN_ERR "Failed to get registers from stub, " "errno = %d\n", -err); printk(UM_KERN_ERR "wait_stub_done : failed to wait for SIGTRAP, " "pid = %d, n = %d, errno = %d, status = 0x%x\n", pid, n, errno, status); if (bad_stop) kill(pid, SIGKILL); else fatal_sigsegv(); } extern unsigned long current_stub_stack(void); static void get_skas_faultinfo(int pid, struct faultinfo *fi) { int err; if (ptrace_faultinfo) { err = ptrace(PTRACE_FAULTINFO, pid, 0, fi); if (err) { printk(UM_KERN_ERR "get_skas_faultinfo - " "PTRACE_FAULTINFO failed, errno = %d\n", errno); fatal_sigsegv(); } /* Special handling for i386, which has different structs */ if (sizeof(struct ptrace_faultinfo) < sizeof(struct faultinfo)) memset((char *)fi + sizeof(struct ptrace_faultinfo), 0, sizeof(struct faultinfo) - sizeof(struct ptrace_faultinfo)); } else { unsigned long fpregs[FP_SIZE]; err = get_fp_registers(pid, fpregs); if (err < 0) { printk(UM_KERN_ERR "save_fp_registers returned %d\n", err); fatal_sigsegv(); } err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV); if (err) { printk(UM_KERN_ERR "Failed to continue stub, pid = %d, " "errno = %d\n", pid, errno); fatal_sigsegv(); } wait_stub_done(pid); /* * faultinfo is prepared by the stub-segv-handler at start of * the stub stack page. We just have to copy it. */ memcpy(fi, (void *)current_stub_stack(), sizeof(*fi)); err = put_fp_registers(pid, fpregs); if (err < 0) { printk(UM_KERN_ERR "put_fp_registers returned %d\n", err); fatal_sigsegv(); } } } static void handle_segv(int pid, struct uml_pt_regs * regs) { get_skas_faultinfo(pid, ®s->faultinfo); segv(regs->faultinfo, 0, 1, NULL); } /* * To use the same value of using_sysemu as the caller, ask it that value * (in local_using_sysemu */ static void handle_trap(int pid, struct uml_pt_regs *regs, int local_using_sysemu) { int err, status; if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END)) fatal_sigsegv(); /* Mark this as a syscall */ UPT_SYSCALL_NR(regs) = PT_SYSCALL_NR(regs->gp); if (!local_using_sysemu) { err = ptrace(PTRACE_POKEUSER, pid, PT_SYSCALL_NR_OFFSET, __NR_getpid); if (err < 0) { printk(UM_KERN_ERR "handle_trap - nullifying syscall " "failed, errno = %d\n", errno); fatal_sigsegv(); } err = ptrace(PTRACE_SYSCALL, pid, 0, 0); if (err < 0) { printk(UM_KERN_ERR "handle_trap - continuing to end of " "syscall failed, errno = %d\n", errno); fatal_sigsegv(); } CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL)); if ((err < 0) || !WIFSTOPPED(status) || (WSTOPSIG(status) != SIGTRAP + 0x80)) { err = ptrace_dump_regs(pid); if (err) printk(UM_KERN_ERR "Failed to get registers " "from process, errno = %d\n", -err); printk(UM_KERN_ERR "handle_trap - failed to wait at " "end of syscall, errno = %d, status = %d\n", errno, status); fatal_sigsegv(); } } handle_syscall(regs); } extern int __syscall_stub_start; static int userspace_tramp(void *stack) { void *addr; int err; ptrace(PTRACE_TRACEME, 0, 0, 0); signal(SIGTERM, SIG_DFL); signal(SIGWINCH, SIG_IGN); err = set_interval(); if (err) { printk(UM_KERN_ERR "userspace_tramp - setting timer failed, " "errno = %d\n", err); exit(1); } if (!proc_mm) { /* * This has a pte, but it can't be mapped in with the usual * tlb_flush mechanism because this is part of that mechanism */ int fd; unsigned long long offset; fd = phys_mapping(to_phys(&__syscall_stub_start), &offset); addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE, PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset); if (addr == MAP_FAILED) { printk(UM_KERN_ERR "mapping mmap stub at 0x%lx failed, " "errno = %d\n", STUB_CODE, errno); exit(1); } if (stack != NULL) { fd = phys_mapping(to_phys(stack), &offset); addr = mmap((void *) STUB_DATA, UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_SHARED, fd, offset); if (addr == MAP_FAILED) { printk(UM_KERN_ERR "mapping segfault stack " "at 0x%lx failed, errno = %d\n", STUB_DATA, errno); exit(1); } } } if (!ptrace_faultinfo && (stack != NULL)) { struct sigaction sa; unsigned long v = STUB_CODE + (unsigned long) stub_segv_handler - (unsigned long) &__syscall_stub_start; set_sigstack((void *) STUB_DATA, UM_KERN_PAGE_SIZE); sigemptyset(&sa.sa_mask); sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO; sa.sa_sigaction = (void *) v; sa.sa_restorer = NULL; if (sigaction(SIGSEGV, &sa, NULL) < 0) { printk(UM_KERN_ERR "userspace_tramp - setting SIGSEGV " "handler failed - errno = %d\n", errno); exit(1); } } kill(os_getpid(), SIGSTOP); return 0; } /* Each element set once, and only accessed by a single processor anyway */ #undef NR_CPUS #define NR_CPUS 1 int userspace_pid[NR_CPUS]; int start_userspace(unsigned long stub_stack) { void *stack; unsigned long sp; int pid, status, n, flags, err; stack = mmap(NULL, UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (stack == MAP_FAILED) { err = -errno; printk(UM_KERN_ERR "start_userspace : mmap failed, " "errno = %d\n", errno); return err; } sp = (unsigned long) stack + UM_KERN_PAGE_SIZE - sizeof(void *); flags = CLONE_FILES; if (proc_mm) flags |= CLONE_VM; else flags |= SIGCHLD; pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack); if (pid < 0) { err = -errno; printk(UM_KERN_ERR "start_userspace : clone failed, " "errno = %d\n", errno); return err; } do { CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL)); if (n < 0) { err = -errno; printk(UM_KERN_ERR "start_userspace : wait failed, " "errno = %d\n", errno); goto out_kill; } } while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGVTALRM)); if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) { err = -EINVAL; printk(UM_KERN_ERR "start_userspace : expected SIGSTOP, got " "status = %d\n", status); goto out_kill; } if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL, (void *) PTRACE_O_TRACESYSGOOD) < 0) { err = -errno; printk(UM_KERN_ERR "start_userspace : PTRACE_OLDSETOPTIONS " "failed, errno = %d\n", errno); goto out_kill; } if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) { err = -errno; printk(UM_KERN_ERR "start_userspace : munmap failed, " "errno = %d\n", errno); goto out_kill; } return pid; out_kill: os_kill_ptraced_process(pid, 1); return err; } void userspace(struct uml_pt_regs *regs) { struct itimerval timer; unsigned long long nsecs, now; int err, status, op, pid = userspace_pid[0]; /* To prevent races if using_sysemu changes under us.*/ int local_using_sysemu; siginfo_t si; /* Handle any immediate reschedules or signals */ interrupt_end(); if (getitimer(ITIMER_VIRTUAL, &timer)) printk(UM_KERN_ERR "Failed to get itimer, errno = %d\n", errno); nsecs = timer.it_value.tv_sec * UM_NSEC_PER_SEC + timer.it_value.tv_usec * UM_NSEC_PER_USEC; nsecs += os_nsecs(); while (1) { /* * This can legitimately fail if the process loads a * bogus value into a segment register. It will * segfault and PTRACE_GETREGS will read that value * out of the process. However, PTRACE_SETREGS will * fail. In this case, there is nothing to do but * just kill the process. */ if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) fatal_sigsegv(); if (put_fp_registers(pid, regs->fp)) fatal_sigsegv(); /* Now we set local_using_sysemu to be used for one loop */ local_using_sysemu = get_using_sysemu(); op = SELECT_PTRACE_OPERATION(local_using_sysemu, singlestepping(NULL)); if (ptrace(op, pid, 0, 0)) { printk(UM_KERN_ERR "userspace - ptrace continue " "failed, op = %d, errno = %d\n", op, errno); fatal_sigsegv(); } CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL)); if (err < 0) { printk(UM_KERN_ERR "userspace - wait failed, " "errno = %d\n", errno); fatal_sigsegv(); } regs->is_user = 1; if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) { printk(UM_KERN_ERR "userspace - PTRACE_GETREGS failed, " "errno = %d\n", errno); fatal_sigsegv(); } if (get_fp_registers(pid, regs->fp)) { printk(UM_KERN_ERR "userspace - get_fp_registers failed, " "errno = %d\n", errno); fatal_sigsegv(); } UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */ if (WIFSTOPPED(status)) { int sig = WSTOPSIG(status); ptrace(PTRACE_GETSIGINFO, pid, 0, &si); switch (sig) { case SIGSEGV: if (PTRACE_FULL_FAULTINFO || !ptrace_faultinfo) { get_skas_faultinfo(pid, ®s->faultinfo); (*sig_info[SIGSEGV])(SIGSEGV, &si, regs); } else handle_segv(pid, regs); break; case SIGTRAP + 0x80: handle_trap(pid, regs, local_using_sysemu); break; case SIGTRAP: relay_signal(SIGTRAP, &si, regs); break; case SIGVTALRM: now = os_nsecs(); if (now < nsecs) break; block_signals(); (*sig_info[sig])(sig, &si, regs); unblock_signals(); nsecs = timer.it_value.tv_sec * UM_NSEC_PER_SEC + timer.it_value.tv_usec * UM_NSEC_PER_USEC; nsecs += os_nsecs(); break; case SIGIO: case SIGILL: case SIGBUS: case SIGFPE: case SIGWINCH: block_signals(); (*sig_info[sig])(sig, &si, regs); unblock_signals(); break; default: printk(UM_KERN_ERR "userspace - child stopped " "with signal %d\n", sig); fatal_sigsegv(); } pid = userspace_pid[0]; interrupt_end(); /* Avoid -ERESTARTSYS handling in host */ if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET) PT_SYSCALL_NR(regs->gp) = -1; } } } static unsigned long thread_regs[MAX_REG_NR]; static unsigned long thread_fp_regs[FP_SIZE]; static int __init init_thread_regs(void) { get_safe_registers(thread_regs, thread_fp_regs); /* Set parent's instruction pointer to start of clone-stub */ thread_regs[REGS_IP_INDEX] = STUB_CODE + (unsigned long) stub_clone_handler - (unsigned long) &__syscall_stub_start; thread_regs[REGS_SP_INDEX] = STUB_DATA + UM_KERN_PAGE_SIZE - sizeof(void *); #ifdef __SIGNAL_FRAMESIZE thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE; #endif return 0; } __initcall(init_thread_regs); int copy_context_skas0(unsigned long new_stack, int pid) { struct timeval tv = { .tv_sec = 0, .tv_usec = UM_USEC_PER_SEC / UM_HZ }; int err; unsigned long current_stack = current_stub_stack(); struct stub_data *data = (struct stub_data *) current_stack; struct stub_data *child_data = (struct stub_data *) new_stack; unsigned long long new_offset; int new_fd = phys_mapping(to_phys((void *)new_stack), &new_offset); /* * prepare offset and fd of child's stack as argument for parent's * and child's mmap2 calls */ *data = ((struct stub_data) { .offset = MMAP_OFFSET(new_offset), .fd = new_fd, .timer = ((struct itimerval) { .it_value = tv, .it_interval = tv }) }); err = ptrace_setregs(pid, thread_regs); if (err < 0) { err = -errno; printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_SETREGS " "failed, pid = %d, errno = %d\n", pid, -err); return err; } err = put_fp_registers(pid, thread_fp_regs); if (err < 0) { printk(UM_KERN_ERR "copy_context_skas0 : put_fp_registers " "failed, pid = %d, err = %d\n", pid, err); return err; } /* set a well known return code for detection of child write failure */ child_data->err = 12345678; /* * Wait, until parent has finished its work: read child's pid from * parent's stack, and check, if bad result. */ err = ptrace(PTRACE_CONT, pid, 0, 0); if (err) { err = -errno; printk(UM_KERN_ERR "Failed to continue new process, pid = %d, " "errno = %d\n", pid, errno); return err; } wait_stub_done(pid); pid = data->err; if (pid < 0) { printk(UM_KERN_ERR "copy_context_skas0 - stub-parent reports " "error %d\n", -pid); return pid; } /* * Wait, until child has finished too: read child's result from * child's stack and check it. */ wait_stub_done(pid); if (child_data->err != STUB_DATA) { printk(UM_KERN_ERR "copy_context_skas0 - stub-child reports " "error %ld\n", child_data->err); err = child_data->err; goto out_kill; } if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL, (void *)PTRACE_O_TRACESYSGOOD) < 0) { err = -errno; printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_OLDSETOPTIONS " "failed, errno = %d\n", errno); goto out_kill; } return pid; out_kill: os_kill_ptraced_process(pid, 1); return err; } /* * This is used only, if stub pages are needed, while proc_mm is * available. Opening /proc/mm creates a new mm_context, which lacks * the stub-pages. Thus, we map them using /proc/mm-fd */ int map_stub_pages(int fd, unsigned long code, unsigned long data, unsigned long stack) { struct proc_mm_op mmop; int n; unsigned long long code_offset; int code_fd = phys_mapping(to_phys((void *) &__syscall_stub_start), &code_offset); mmop = ((struct proc_mm_op) { .op = MM_MMAP, .u = { .mmap = { .addr = code, .len = UM_KERN_PAGE_SIZE, .prot = PROT_EXEC, .flags = MAP_FIXED | MAP_PRIVATE, .fd = code_fd, .offset = code_offset } } }); CATCH_EINTR(n = write(fd, &mmop, sizeof(mmop))); if (n != sizeof(mmop)) { n = errno; printk(UM_KERN_ERR "mmap args - addr = 0x%lx, fd = %d, " "offset = %llx\n", code, code_fd, (unsigned long long) code_offset); printk(UM_KERN_ERR "map_stub_pages : /proc/mm map for code " "failed, err = %d\n", n); return -n; } if (stack) { unsigned long long map_offset; int map_fd = phys_mapping(to_phys((void *)stack), &map_offset); mmop = ((struct proc_mm_op) { .op = MM_MMAP, .u = { .mmap = { .addr = data, .len = UM_KERN_PAGE_SIZE, .prot = PROT_READ | PROT_WRITE, .flags = MAP_FIXED | MAP_SHARED, .fd = map_fd, .offset = map_offset } } }); CATCH_EINTR(n = write(fd, &mmop, sizeof(mmop))); if (n != sizeof(mmop)) { n = errno; printk(UM_KERN_ERR "map_stub_pages : /proc/mm map for " "data failed, err = %d\n", n); return -n; } } return 0; } void new_thread(void *stack, jmp_buf *buf, void (*handler)(void)) { (*buf)[0].JB_IP = (unsigned long) handler; (*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE - sizeof(void *); } #define INIT_JMP_NEW_THREAD 0 #define INIT_JMP_CALLBACK 1 #define INIT_JMP_HALT 2 #define INIT_JMP_REBOOT 3 void switch_threads(jmp_buf *me, jmp_buf *you) { if (UML_SETJMP(me) == 0) UML_LONGJMP(you, 1); } static jmp_buf initial_jmpbuf; /* XXX Make these percpu */ static void (*cb_proc)(void *arg); static void *cb_arg; static jmp_buf *cb_back; int start_idle_thread(void *stack, jmp_buf *switch_buf) { int n; set_handler(SIGWINCH); /* * Can't use UML_SETJMP or UML_LONGJMP here because they save * and restore signals, with the possible side-effect of * trying to handle any signals which came when they were * blocked, which can't be done on this stack. * Signals must be blocked when jumping back here and restored * after returning to the jumper. */ n = setjmp(initial_jmpbuf); switch (n) { case INIT_JMP_NEW_THREAD: (*switch_buf)[0].JB_IP = (unsigned long) new_thread_handler; (*switch_buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE - sizeof(void *); break; case INIT_JMP_CALLBACK: (*cb_proc)(cb_arg); longjmp(*cb_back, 1); break; case INIT_JMP_HALT: kmalloc_ok = 0; return 0; case INIT_JMP_REBOOT: kmalloc_ok = 0; return 1; default: printk(UM_KERN_ERR "Bad sigsetjmp return in " "start_idle_thread - %d\n", n); fatal_sigsegv(); } longjmp(*switch_buf, 1); } void initial_thread_cb_skas(void (*proc)(void *), void *arg) { jmp_buf here; cb_proc = proc; cb_arg = arg; cb_back = &here; block_signals(); if (UML_SETJMP(&here) == 0) UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK); unblock_signals(); cb_proc = NULL; cb_arg = NULL; cb_back = NULL; } void halt_skas(void) { block_signals(); UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT); } void reboot_skas(void) { block_signals(); UML_LONGJMP(&initial_jmpbuf, INIT_JMP_REBOOT); } void __switch_mm(struct mm_id *mm_idp) { int err; /* FIXME: need cpu pid in __switch_mm */ if (proc_mm) { err = ptrace(PTRACE_SWITCH_MM, userspace_pid[0], 0, mm_idp->u.mm_fd); if (err) { printk(UM_KERN_ERR "__switch_mm - PTRACE_SWITCH_MM " "failed, errno = %d\n", errno); fatal_sigsegv(); } } else userspace_pid[0] = mm_idp->u.pid; }