/* * Cryptographic API. * * Glue code for the SHA1 Secure Hash Algorithm assembler implementation using * Supplemental SSE3 instructions. * * This file is based on sha1_generic.c * * Copyright (c) Alan Smithee. * Copyright (c) Andrew McDonald * Copyright (c) Jean-Francois Dive * Copyright (c) Mathias Krause * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include asmlinkage void sha1_transform_ssse3(u32 *digest, const char *data, unsigned int rounds); #ifdef SHA1_ENABLE_AVX_SUPPORT asmlinkage void sha1_transform_avx(u32 *digest, const char *data, unsigned int rounds); #endif static asmlinkage void (*sha1_transform_asm)(u32 *, const char *, unsigned int); static int sha1_ssse3_init(struct shash_desc *desc) { struct sha1_state *sctx = shash_desc_ctx(desc); *sctx = (struct sha1_state){ .state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 }, }; return 0; } static int __sha1_ssse3_update(struct shash_desc *desc, const u8 *data, unsigned int len, unsigned int partial) { struct sha1_state *sctx = shash_desc_ctx(desc); unsigned int done = 0; sctx->count += len; if (partial) { done = SHA1_BLOCK_SIZE - partial; memcpy(sctx->buffer + partial, data, done); sha1_transform_asm(sctx->state, sctx->buffer, 1); } if (len - done >= SHA1_BLOCK_SIZE) { const unsigned int rounds = (len - done) / SHA1_BLOCK_SIZE; sha1_transform_asm(sctx->state, data + done, rounds); done += rounds * SHA1_BLOCK_SIZE; } memcpy(sctx->buffer, data + done, len - done); return 0; } static int sha1_ssse3_update(struct shash_desc *desc, const u8 *data, unsigned int len) { struct sha1_state *sctx = shash_desc_ctx(desc); unsigned int partial = sctx->count % SHA1_BLOCK_SIZE; int res; /* Handle the fast case right here */ if (partial + len < SHA1_BLOCK_SIZE) { sctx->count += len; memcpy(sctx->buffer + partial, data, len); return 0; } if (!irq_fpu_usable()) { res = crypto_sha1_update(desc, data, len); } else { kernel_fpu_begin(); res = __sha1_ssse3_update(desc, data, len, partial); kernel_fpu_end(); } return res; } /* Add padding and return the message digest. */ static int sha1_ssse3_final(struct shash_desc *desc, u8 *out) { struct sha1_state *sctx = shash_desc_ctx(desc); unsigned int i, index, padlen; __be32 *dst = (__be32 *)out; __be64 bits; static const u8 padding[SHA1_BLOCK_SIZE] = { 0x80, }; bits = cpu_to_be64(sctx->count << 3); /* Pad out to 56 mod 64 and append length */ index = sctx->count % SHA1_BLOCK_SIZE; padlen = (index < 56) ? (56 - index) : ((SHA1_BLOCK_SIZE+56) - index); if (!irq_fpu_usable()) { crypto_sha1_update(desc, padding, padlen); crypto_sha1_update(desc, (const u8 *)&bits, sizeof(bits)); } else { kernel_fpu_begin(); /* We need to fill a whole block for __sha1_ssse3_update() */ if (padlen <= 56) { sctx->count += padlen; memcpy(sctx->buffer + index, padding, padlen); } else { __sha1_ssse3_update(desc, padding, padlen, index); } __sha1_ssse3_update(desc, (const u8 *)&bits, sizeof(bits), 56); kernel_fpu_end(); } /* Store state in digest */ for (i = 0; i < 5; i++) dst[i] = cpu_to_be32(sctx->state[i]); /* Wipe context */ memset(sctx, 0, sizeof(*sctx)); return 0; } static int sha1_ssse3_export(struct shash_desc *desc, void *out) { struct sha1_state *sctx = shash_desc_ctx(desc); memcpy(out, sctx, sizeof(*sctx)); return 0; } static int sha1_ssse3_import(struct shash_desc *desc, const void *in) { struct sha1_state *sctx = shash_desc_ctx(desc); memcpy(sctx, in, sizeof(*sctx)); return 0; } static struct shash_alg alg = { .digestsize = SHA1_DIGEST_SIZE, .init = sha1_ssse3_init, .update = sha1_ssse3_update, .final = sha1_ssse3_final, .export = sha1_ssse3_export, .import = sha1_ssse3_import, .descsize = sizeof(struct sha1_state), .statesize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name= "sha1-ssse3", .cra_priority = 150, .cra_flags = CRYPTO_ALG_TYPE_SHASH, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_module = THIS_MODULE, } }; #ifdef SHA1_ENABLE_AVX_SUPPORT static bool __init avx_usable(void) { u64 xcr0; if (!cpu_has_avx || !cpu_has_osxsave) return false; xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); if ((xcr0 & (XSTATE_SSE | XSTATE_YMM)) != (XSTATE_SSE | XSTATE_YMM)) { pr_info("AVX detected but unusable.\n"); return false; } return true; } #endif static int __init sha1_ssse3_mod_init(void) { /* test for SSSE3 first */ if (cpu_has_ssse3) sha1_transform_asm = sha1_transform_ssse3; #ifdef SHA1_ENABLE_AVX_SUPPORT /* allow AVX to override SSSE3, it's a little faster */ if (avx_usable()) sha1_transform_asm = sha1_transform_avx; #endif if (sha1_transform_asm) { pr_info("Using %s optimized SHA-1 implementation\n", sha1_transform_asm == sha1_transform_ssse3 ? "SSSE3" : "AVX"); return crypto_register_shash(&alg); } pr_info("Neither AVX nor SSSE3 is available/usable.\n"); return -ENODEV; } static void __exit sha1_ssse3_mod_fini(void) { crypto_unregister_shash(&alg); } module_init(sha1_ssse3_mod_init); module_exit(sha1_ssse3_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, Supplemental SSE3 accelerated"); MODULE_ALIAS_CRYPTO("sha1");