/* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs * * Pentium III FXSR, SSE support * Gareth Hughes , May 2000 */ /* * Handle hardware traps and faults. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_EISA #include #include #endif #if defined(CONFIG_EDAC) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_X86_64 #include #include #include /* No need to be aligned, but done to keep all IDTs defined the same way. */ gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss; #else #include #include asmlinkage int system_call(void); #endif /* Must be page-aligned because the real IDT is used in a fixmap. */ gate_desc idt_table[NR_VECTORS] __page_aligned_bss; DECLARE_BITMAP(used_vectors, NR_VECTORS); EXPORT_SYMBOL_GPL(used_vectors); static inline void conditional_sti(struct pt_regs *regs) { if (regs->flags & X86_EFLAGS_IF) local_irq_enable(); } static inline void preempt_conditional_sti(struct pt_regs *regs) { preempt_count_inc(); if (regs->flags & X86_EFLAGS_IF) local_irq_enable(); } static inline void conditional_cli(struct pt_regs *regs) { if (regs->flags & X86_EFLAGS_IF) local_irq_disable(); } static inline void preempt_conditional_cli(struct pt_regs *regs) { if (regs->flags & X86_EFLAGS_IF) local_irq_disable(); preempt_count_dec(); } enum ctx_state ist_enter(struct pt_regs *regs) { enum ctx_state prev_state; if (user_mode(regs)) { /* Other than that, we're just an exception. */ prev_state = exception_enter(); } else { /* * We might have interrupted pretty much anything. In * fact, if we're a machine check, we can even interrupt * NMI processing. We don't want in_nmi() to return true, * but we need to notify RCU. */ rcu_nmi_enter(); prev_state = CONTEXT_KERNEL; /* the value is irrelevant. */ } /* * We are atomic because we're on the IST stack (or we're on x86_32, * in which case we still shouldn't schedule). * * This must be after exception_enter(), because exception_enter() * won't do anything if in_interrupt() returns true. */ preempt_count_add(HARDIRQ_OFFSET); /* This code is a bit fragile. Test it. */ rcu_lockdep_assert(rcu_is_watching(), "ist_enter didn't work"); return prev_state; } void ist_exit(struct pt_regs *regs, enum ctx_state prev_state) { /* Must be before exception_exit. */ preempt_count_sub(HARDIRQ_OFFSET); if (user_mode(regs)) return exception_exit(prev_state); else rcu_nmi_exit(); } /** * ist_begin_non_atomic() - begin a non-atomic section in an IST exception * @regs: regs passed to the IST exception handler * * IST exception handlers normally cannot schedule. As a special * exception, if the exception interrupted userspace code (i.e. * user_mode(regs) would return true) and the exception was not * a double fault, it can be safe to schedule. ist_begin_non_atomic() * begins a non-atomic section within an ist_enter()/ist_exit() region. * Callers are responsible for enabling interrupts themselves inside * the non-atomic section, and callers must call is_end_non_atomic() * before ist_exit(). */ void ist_begin_non_atomic(struct pt_regs *regs) { BUG_ON(!user_mode(regs)); /* * Sanity check: we need to be on the normal thread stack. This * will catch asm bugs and any attempt to use ist_preempt_enable * from double_fault. */ BUG_ON((unsigned long)(current_top_of_stack() - current_stack_pointer()) >= THREAD_SIZE); preempt_count_sub(HARDIRQ_OFFSET); } /** * ist_end_non_atomic() - begin a non-atomic section in an IST exception * * Ends a non-atomic section started with ist_begin_non_atomic(). */ void ist_end_non_atomic(void) { preempt_count_add(HARDIRQ_OFFSET); } static nokprobe_inline int do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str, struct pt_regs *regs, long error_code) { if (v8086_mode(regs)) { /* * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. * On nmi (interrupt 2), do_trap should not be called. */ if (trapnr < X86_TRAP_UD) { if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr)) return 0; } return -1; } if (!user_mode(regs)) { if (!fixup_exception(regs)) { tsk->thread.error_code = error_code; tsk->thread.trap_nr = trapnr; die(str, regs, error_code); } return 0; } return -1; } static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr, siginfo_t *info) { unsigned long siaddr; int sicode; switch (trapnr) { default: return SEND_SIG_PRIV; case X86_TRAP_DE: sicode = FPE_INTDIV; siaddr = uprobe_get_trap_addr(regs); break; case X86_TRAP_UD: sicode = ILL_ILLOPN; siaddr = uprobe_get_trap_addr(regs); break; case X86_TRAP_AC: sicode = BUS_ADRALN; siaddr = 0; break; } info->si_signo = signr; info->si_errno = 0; info->si_code = sicode; info->si_addr = (void __user *)siaddr; return info; } static void do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, long error_code, siginfo_t *info) { struct task_struct *tsk = current; if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) return; /* * We want error_code and trap_nr set for userspace faults and * kernelspace faults which result in die(), but not * kernelspace faults which are fixed up. die() gives the * process no chance to handle the signal and notice the * kernel fault information, so that won't result in polluting * the information about previously queued, but not yet * delivered, faults. See also do_general_protection below. */ tsk->thread.error_code = error_code; tsk->thread.trap_nr = trapnr; #ifdef CONFIG_X86_64 if (show_unhandled_signals && unhandled_signal(tsk, signr) && printk_ratelimit()) { pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx", tsk->comm, tsk->pid, str, regs->ip, regs->sp, error_code); print_vma_addr(" in ", regs->ip); pr_cont("\n"); } #endif force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk); } NOKPROBE_SYMBOL(do_trap); static void do_error_trap(struct pt_regs *regs, long error_code, char *str, unsigned long trapnr, int signr) { enum ctx_state prev_state = exception_enter(); siginfo_t info; if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != NOTIFY_STOP) { conditional_sti(regs); do_trap(trapnr, signr, str, regs, error_code, fill_trap_info(regs, signr, trapnr, &info)); } exception_exit(prev_state); } #define DO_ERROR(trapnr, signr, str, name) \ dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ { \ do_error_trap(regs, error_code, str, trapnr, signr); \ } DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error) DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow) DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op) DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun) DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS) DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present) DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment) DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check) #ifdef CONFIG_X86_64 /* Runs on IST stack */ dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) { static const char str[] = "double fault"; struct task_struct *tsk = current; #ifdef CONFIG_X86_ESPFIX64 extern unsigned char native_irq_return_iret[]; /* * If IRET takes a non-IST fault on the espfix64 stack, then we * end up promoting it to a doublefault. In that case, modify * the stack to make it look like we just entered the #GP * handler from user space, similar to bad_iret. * * No need for ist_enter here because we don't use RCU. */ if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY && regs->cs == __KERNEL_CS && regs->ip == (unsigned long)native_irq_return_iret) { struct pt_regs *normal_regs = task_pt_regs(current); /* Fake a #GP(0) from userspace. */ memmove(&normal_regs->ip, (void *)regs->sp, 5*8); normal_regs->orig_ax = 0; /* Missing (lost) #GP error code */ regs->ip = (unsigned long)general_protection; regs->sp = (unsigned long)&normal_regs->orig_ax; return; } #endif ist_enter(regs); /* Discard prev_state because we won't return. */ notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); tsk->thread.error_code = error_code; tsk->thread.trap_nr = X86_TRAP_DF; #ifdef CONFIG_DOUBLEFAULT df_debug(regs, error_code); #endif /* * This is always a kernel trap and never fixable (and thus must * never return). */ for (;;) die(str, regs, error_code); } #endif dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) { struct task_struct *tsk = current; struct xsave_struct *xsave_buf; enum ctx_state prev_state; struct bndcsr *bndcsr; siginfo_t *info; prev_state = exception_enter(); if (notify_die(DIE_TRAP, "bounds", regs, error_code, X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) goto exit; conditional_sti(regs); if (!user_mode(regs)) die("bounds", regs, error_code); if (!cpu_feature_enabled(X86_FEATURE_MPX)) { /* The exception is not from Intel MPX */ goto exit_trap; } /* * We need to look at BNDSTATUS to resolve this exception. * It is not directly accessible, though, so we need to * do an xsave and then pull it out of the xsave buffer. */ fpu_save_init(&tsk->thread.fpu); xsave_buf = &(tsk->thread.fpu.state->xsave); bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR); if (!bndcsr) goto exit_trap; /* * The error code field of the BNDSTATUS register communicates status * information of a bound range exception #BR or operation involving * bound directory. */ switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) { case 2: /* Bound directory has invalid entry. */ if (mpx_handle_bd_fault(xsave_buf)) goto exit_trap; break; /* Success, it was handled */ case 1: /* Bound violation. */ info = mpx_generate_siginfo(regs, xsave_buf); if (IS_ERR(info)) { /* * We failed to decode the MPX instruction. Act as if * the exception was not caused by MPX. */ goto exit_trap; } /* * Success, we decoded the instruction and retrieved * an 'info' containing the address being accessed * which caused the exception. This information * allows and application to possibly handle the * #BR exception itself. */ do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info); kfree(info); break; case 0: /* No exception caused by Intel MPX operations. */ goto exit_trap; default: die("bounds", regs, error_code); } exit: exception_exit(prev_state); return; exit_trap: /* * This path out is for all the cases where we could not * handle the exception in some way (like allocating a * table or telling userspace about it. We will also end * up here if the kernel has MPX turned off at compile * time.. */ do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL); exception_exit(prev_state); } dotraplinkage void do_general_protection(struct pt_regs *regs, long error_code) { struct task_struct *tsk; enum ctx_state prev_state; prev_state = exception_enter(); conditional_sti(regs); if (v8086_mode(regs)) { local_irq_enable(); handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); goto exit; } tsk = current; if (!user_mode(regs)) { if (fixup_exception(regs)) goto exit; tsk->thread.error_code = error_code; tsk->thread.trap_nr = X86_TRAP_GP; if (notify_die(DIE_GPF, "general protection fault", regs, error_code, X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP) die("general protection fault", regs, error_code); goto exit; } tsk->thread.error_code = error_code; tsk->thread.trap_nr = X86_TRAP_GP; if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && printk_ratelimit()) { pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx", tsk->comm, task_pid_nr(tsk), regs->ip, regs->sp, error_code); print_vma_addr(" in ", regs->ip); pr_cont("\n"); } force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk); exit: exception_exit(prev_state); } NOKPROBE_SYMBOL(do_general_protection); /* May run on IST stack. */ dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) { enum ctx_state prev_state; #ifdef CONFIG_DYNAMIC_FTRACE /* * ftrace must be first, everything else may cause a recursive crash. * See note by declaration of modifying_ftrace_code in ftrace.c */ if (unlikely(atomic_read(&modifying_ftrace_code)) && ftrace_int3_handler(regs)) return; #endif if (poke_int3_handler(regs)) return; prev_state = ist_enter(regs); #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, SIGTRAP) == NOTIFY_STOP) goto exit; #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ #ifdef CONFIG_KPROBES if (kprobe_int3_handler(regs)) goto exit; #endif if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, SIGTRAP) == NOTIFY_STOP) goto exit; /* * Let others (NMI) know that the debug stack is in use * as we may switch to the interrupt stack. */ debug_stack_usage_inc(); preempt_conditional_sti(regs); do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL); preempt_conditional_cli(regs); debug_stack_usage_dec(); exit: ist_exit(regs, prev_state); } NOKPROBE_SYMBOL(do_int3); #ifdef CONFIG_X86_64 /* * Help handler running on IST stack to switch off the IST stack if the * interrupted code was in user mode. The actual stack switch is done in * entry_64.S */ asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) { struct pt_regs *regs = task_pt_regs(current); *regs = *eregs; return regs; } NOKPROBE_SYMBOL(sync_regs); struct bad_iret_stack { void *error_entry_ret; struct pt_regs regs; }; asmlinkage __visible notrace struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) { /* * This is called from entry_64.S early in handling a fault * caused by a bad iret to user mode. To handle the fault * correctly, we want move our stack frame to task_pt_regs * and we want to pretend that the exception came from the * iret target. */ struct bad_iret_stack *new_stack = container_of(task_pt_regs(current), struct bad_iret_stack, regs); /* Copy the IRET target to the new stack. */ memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); /* Copy the remainder of the stack from the current stack. */ memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); BUG_ON(!user_mode(&new_stack->regs)); return new_stack; } NOKPROBE_SYMBOL(fixup_bad_iret); #endif /* * Our handling of the processor debug registers is non-trivial. * We do not clear them on entry and exit from the kernel. Therefore * it is possible to get a watchpoint trap here from inside the kernel. * However, the code in ./ptrace.c has ensured that the user can * only set watchpoints on userspace addresses. Therefore the in-kernel * watchpoint trap can only occur in code which is reading/writing * from user space. Such code must not hold kernel locks (since it * can equally take a page fault), therefore it is safe to call * force_sig_info even though that claims and releases locks. * * Code in ./signal.c ensures that the debug control register * is restored before we deliver any signal, and therefore that * user code runs with the correct debug control register even though * we clear it here. * * Being careful here means that we don't have to be as careful in a * lot of more complicated places (task switching can be a bit lazy * about restoring all the debug state, and ptrace doesn't have to * find every occurrence of the TF bit that could be saved away even * by user code) * * May run on IST stack. */ dotraplinkage void do_debug(struct pt_regs *regs, long error_code) { struct task_struct *tsk = current; enum ctx_state prev_state; int user_icebp = 0; unsigned long dr6; int si_code; prev_state = ist_enter(regs); get_debugreg(dr6, 6); /* Filter out all the reserved bits which are preset to 1 */ dr6 &= ~DR6_RESERVED; /* * If dr6 has no reason to give us about the origin of this trap, * then it's very likely the result of an icebp/int01 trap. * User wants a sigtrap for that. */ if (!dr6 && user_mode(regs)) user_icebp = 1; /* Catch kmemcheck conditions first of all! */ if ((dr6 & DR_STEP) && kmemcheck_trap(regs)) goto exit; /* DR6 may or may not be cleared by the CPU */ set_debugreg(0, 6); /* * The processor cleared BTF, so don't mark that we need it set. */ clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); /* Store the virtualized DR6 value */ tsk->thread.debugreg6 = dr6; #ifdef CONFIG_KPROBES if (kprobe_debug_handler(regs)) goto exit; #endif if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, SIGTRAP) == NOTIFY_STOP) goto exit; /* * Let others (NMI) know that the debug stack is in use * as we may switch to the interrupt stack. */ debug_stack_usage_inc(); /* It's safe to allow irq's after DR6 has been saved */ preempt_conditional_sti(regs); if (v8086_mode(regs)) { handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, X86_TRAP_DB); preempt_conditional_cli(regs); debug_stack_usage_dec(); goto exit; } /* * Single-stepping through system calls: ignore any exceptions in * kernel space, but re-enable TF when returning to user mode. * * We already checked v86 mode above, so we can check for kernel mode * by just checking the CPL of CS. */ if ((dr6 & DR_STEP) && !user_mode(regs)) { tsk->thread.debugreg6 &= ~DR_STEP; set_tsk_thread_flag(tsk, TIF_SINGLESTEP); regs->flags &= ~X86_EFLAGS_TF; } si_code = get_si_code(tsk->thread.debugreg6); if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) send_sigtrap(tsk, regs, error_code, si_code); preempt_conditional_cli(regs); debug_stack_usage_dec(); exit: ist_exit(regs, prev_state); } NOKPROBE_SYMBOL(do_debug); /* * Note that we play around with the 'TS' bit in an attempt to get * the correct behaviour even in the presence of the asynchronous * IRQ13 behaviour */ static void math_error(struct pt_regs *regs, int error_code, int trapnr) { struct task_struct *task = current; siginfo_t info; unsigned short err; char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : "simd exception"; if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP) return; conditional_sti(regs); if (!user_mode(regs)) { if (!fixup_exception(regs)) { task->thread.error_code = error_code; task->thread.trap_nr = trapnr; die(str, regs, error_code); } return; } /* * Save the info for the exception handler and clear the error. */ unlazy_fpu(task); task->thread.trap_nr = trapnr; task->thread.error_code = error_code; info.si_signo = SIGFPE; info.si_errno = 0; info.si_addr = (void __user *)uprobe_get_trap_addr(regs); if (trapnr == X86_TRAP_MF) { unsigned short cwd, swd; /* * (~cwd & swd) will mask out exceptions that are not set to unmasked * status. 0x3f is the exception bits in these regs, 0x200 is the * C1 reg you need in case of a stack fault, 0x040 is the stack * fault bit. We should only be taking one exception at a time, * so if this combination doesn't produce any single exception, * then we have a bad program that isn't synchronizing its FPU usage * and it will suffer the consequences since we won't be able to * fully reproduce the context of the exception */ cwd = get_fpu_cwd(task); swd = get_fpu_swd(task); err = swd & ~cwd; } else { /* * The SIMD FPU exceptions are handled a little differently, as there * is only a single status/control register. Thus, to determine which * unmasked exception was caught we must mask the exception mask bits * at 0x1f80, and then use these to mask the exception bits at 0x3f. */ unsigned short mxcsr = get_fpu_mxcsr(task); err = ~(mxcsr >> 7) & mxcsr; } if (err & 0x001) { /* Invalid op */ /* * swd & 0x240 == 0x040: Stack Underflow * swd & 0x240 == 0x240: Stack Overflow * User must clear the SF bit (0x40) if set */ info.si_code = FPE_FLTINV; } else if (err & 0x004) { /* Divide by Zero */ info.si_code = FPE_FLTDIV; } else if (err & 0x008) { /* Overflow */ info.si_code = FPE_FLTOVF; } else if (err & 0x012) { /* Denormal, Underflow */ info.si_code = FPE_FLTUND; } else if (err & 0x020) { /* Precision */ info.si_code = FPE_FLTRES; } else { /* * If we're using IRQ 13, or supposedly even some trap * X86_TRAP_MF implementations, it's possible * we get a spurious trap, which is not an error. */ return; } force_sig_info(SIGFPE, &info, task); } dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) { enum ctx_state prev_state; prev_state = exception_enter(); math_error(regs, error_code, X86_TRAP_MF); exception_exit(prev_state); } dotraplinkage void do_simd_coprocessor_error(struct pt_regs *regs, long error_code) { enum ctx_state prev_state; prev_state = exception_enter(); math_error(regs, error_code, X86_TRAP_XF); exception_exit(prev_state); } dotraplinkage void do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) { conditional_sti(regs); } /* * 'math_state_restore()' saves the current math information in the * old math state array, and gets the new ones from the current task * * Careful.. There are problems with IBM-designed IRQ13 behaviour. * Don't touch unless you *really* know how it works. * * Must be called with kernel preemption disabled (eg with local * local interrupts as in the case of do_device_not_available). */ void math_state_restore(void) { struct task_struct *tsk = current; if (!tsk_used_math(tsk)) { local_irq_enable(); /* * does a slab alloc which can sleep */ if (init_fpu(tsk)) { /* * ran out of memory! */ do_group_exit(SIGKILL); return; } local_irq_disable(); } /* Avoid __kernel_fpu_begin() right after __thread_fpu_begin() */ kernel_fpu_disable(); __thread_fpu_begin(tsk); if (unlikely(restore_fpu_checking(tsk))) { fpu_reset_state(tsk); force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk); } else { tsk->thread.fpu_counter++; } kernel_fpu_enable(); } EXPORT_SYMBOL_GPL(math_state_restore); dotraplinkage void do_device_not_available(struct pt_regs *regs, long error_code) { enum ctx_state prev_state; prev_state = exception_enter(); BUG_ON(use_eager_fpu()); #ifdef CONFIG_MATH_EMULATION if (read_cr0() & X86_CR0_EM) { struct math_emu_info info = { }; conditional_sti(regs); info.regs = regs; math_emulate(&info); exception_exit(prev_state); return; } #endif math_state_restore(); /* interrupts still off */ #ifdef CONFIG_X86_32 conditional_sti(regs); #endif exception_exit(prev_state); } NOKPROBE_SYMBOL(do_device_not_available); #ifdef CONFIG_X86_32 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) { siginfo_t info; enum ctx_state prev_state; prev_state = exception_enter(); local_irq_enable(); info.si_signo = SIGILL; info.si_errno = 0; info.si_code = ILL_BADSTK; info.si_addr = NULL; if (notify_die(DIE_TRAP, "iret exception", regs, error_code, X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, &info); } exception_exit(prev_state); } #endif /* Set of traps needed for early debugging. */ void __init early_trap_init(void) { /* * Don't use IST to set DEBUG_STACK as it doesn't work until TSS * is ready in cpu_init() <-- trap_init(). Before trap_init(), * CPU runs at ring 0 so it is impossible to hit an invalid * stack. Using the original stack works well enough at this * early stage. DEBUG_STACK will be equipped after cpu_init() in * trap_init(). * * We don't need to set trace_idt_table like set_intr_gate(), * since we don't have trace_debug and it will be reset to * 'debug' in trap_init() by set_intr_gate_ist(). */ set_intr_gate_notrace(X86_TRAP_DB, debug); /* int3 can be called from all */ set_system_intr_gate(X86_TRAP_BP, &int3); #ifdef CONFIG_X86_32 set_intr_gate(X86_TRAP_PF, page_fault); #endif load_idt(&idt_descr); } void __init early_trap_pf_init(void) { #ifdef CONFIG_X86_64 set_intr_gate(X86_TRAP_PF, page_fault); #endif } void __init trap_init(void) { int i; #ifdef CONFIG_EISA void __iomem *p = early_ioremap(0x0FFFD9, 4); if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24)) EISA_bus = 1; early_iounmap(p, 4); #endif set_intr_gate(X86_TRAP_DE, divide_error); set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK); /* int4 can be called from all */ set_system_intr_gate(X86_TRAP_OF, &overflow); set_intr_gate(X86_TRAP_BR, bounds); set_intr_gate(X86_TRAP_UD, invalid_op); set_intr_gate(X86_TRAP_NM, device_not_available); #ifdef CONFIG_X86_32 set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS); #else set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK); #endif set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun); set_intr_gate(X86_TRAP_TS, invalid_TSS); set_intr_gate(X86_TRAP_NP, segment_not_present); set_intr_gate(X86_TRAP_SS, stack_segment); set_intr_gate(X86_TRAP_GP, general_protection); set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug); set_intr_gate(X86_TRAP_MF, coprocessor_error); set_intr_gate(X86_TRAP_AC, alignment_check); #ifdef CONFIG_X86_MCE set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK); #endif set_intr_gate(X86_TRAP_XF, simd_coprocessor_error); /* Reserve all the builtin and the syscall vector: */ for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++) set_bit(i, used_vectors); #ifdef CONFIG_IA32_EMULATION set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall); set_bit(IA32_SYSCALL_VECTOR, used_vectors); #endif #ifdef CONFIG_X86_32 set_system_trap_gate(IA32_SYSCALL_VECTOR, &system_call); set_bit(IA32_SYSCALL_VECTOR, used_vectors); #endif /* * Set the IDT descriptor to a fixed read-only location, so that the * "sidt" instruction will not leak the location of the kernel, and * to defend the IDT against arbitrary memory write vulnerabilities. * It will be reloaded in cpu_init() */ __set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO); idt_descr.address = fix_to_virt(FIX_RO_IDT); /* * Should be a barrier for any external CPU state: */ cpu_init(); /* * X86_TRAP_DB and X86_TRAP_BP have been set * in early_trap_init(). However, ITS works only after * cpu_init() loads TSS. See comments in early_trap_init(). */ set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK); /* int3 can be called from all */ set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK); x86_init.irqs.trap_init(); #ifdef CONFIG_X86_64 memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16); set_nmi_gate(X86_TRAP_DB, &debug); set_nmi_gate(X86_TRAP_BP, &int3); #endif }