/* * Kernel-based Virtual Machine driver for Linux * * derived from drivers/kvm/kvm_main.c * * Copyright (C) 2006 Qumranet, Inc. * Copyright (C) 2008 Qumranet, Inc. * Copyright IBM Corporation, 2008 * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Avi Kivity * Yaniv Kamay * Amit Shah * Ben-Ami Yassour * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include #include "irq.h" #include "mmu.h" #include "i8254.h" #include "tss.h" #include "kvm_cache_regs.h" #include "x86.h" #include "cpuid.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include "trace.h" #include #include #include #include #include #include #include /* Ugh! */ #include #include #include #define MAX_IO_MSRS 256 #define KVM_MAX_MCE_BANKS 32 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) #define emul_to_vcpu(ctxt) \ container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) /* EFER defaults: * - enable syscall per default because its emulated by KVM * - enable LME and LMA per default on 64 bit KVM */ #ifdef CONFIG_X86_64 static u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); #else static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); #endif #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU static void update_cr8_intercept(struct kvm_vcpu *vcpu); static void process_nmi(struct kvm_vcpu *vcpu); struct kvm_x86_ops *kvm_x86_ops; EXPORT_SYMBOL_GPL(kvm_x86_ops); static bool ignore_msrs = 0; module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); bool kvm_has_tsc_control; EXPORT_SYMBOL_GPL(kvm_has_tsc_control); u32 kvm_max_guest_tsc_khz; EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ static u32 tsc_tolerance_ppm = 250; module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); #define KVM_NR_SHARED_MSRS 16 struct kvm_shared_msrs_global { int nr; u32 msrs[KVM_NR_SHARED_MSRS]; }; struct kvm_shared_msrs { struct user_return_notifier urn; bool registered; struct kvm_shared_msr_values { u64 host; u64 curr; } values[KVM_NR_SHARED_MSRS]; }; static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs); struct kvm_stats_debugfs_item debugfs_entries[] = { { "pf_fixed", VCPU_STAT(pf_fixed) }, { "pf_guest", VCPU_STAT(pf_guest) }, { "tlb_flush", VCPU_STAT(tlb_flush) }, { "invlpg", VCPU_STAT(invlpg) }, { "exits", VCPU_STAT(exits) }, { "io_exits", VCPU_STAT(io_exits) }, { "mmio_exits", VCPU_STAT(mmio_exits) }, { "signal_exits", VCPU_STAT(signal_exits) }, { "irq_window", VCPU_STAT(irq_window_exits) }, { "nmi_window", VCPU_STAT(nmi_window_exits) }, { "halt_exits", VCPU_STAT(halt_exits) }, { "halt_wakeup", VCPU_STAT(halt_wakeup) }, { "hypercalls", VCPU_STAT(hypercalls) }, { "request_irq", VCPU_STAT(request_irq_exits) }, { "irq_exits", VCPU_STAT(irq_exits) }, { "host_state_reload", VCPU_STAT(host_state_reload) }, { "efer_reload", VCPU_STAT(efer_reload) }, { "fpu_reload", VCPU_STAT(fpu_reload) }, { "insn_emulation", VCPU_STAT(insn_emulation) }, { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, { "irq_injections", VCPU_STAT(irq_injections) }, { "nmi_injections", VCPU_STAT(nmi_injections) }, { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, { "mmu_pte_write", VM_STAT(mmu_pte_write) }, { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, { "mmu_flooded", VM_STAT(mmu_flooded) }, { "mmu_recycled", VM_STAT(mmu_recycled) }, { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, { "mmu_unsync", VM_STAT(mmu_unsync) }, { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, { "largepages", VM_STAT(lpages) }, { NULL } }; u64 __read_mostly host_xcr0; int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) { int i; for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) vcpu->arch.apf.gfns[i] = ~0; } static void kvm_on_user_return(struct user_return_notifier *urn) { unsigned slot; struct kvm_shared_msrs *locals = container_of(urn, struct kvm_shared_msrs, urn); struct kvm_shared_msr_values *values; for (slot = 0; slot < shared_msrs_global.nr; ++slot) { values = &locals->values[slot]; if (values->host != values->curr) { wrmsrl(shared_msrs_global.msrs[slot], values->host); values->curr = values->host; } } locals->registered = false; user_return_notifier_unregister(urn); } static void shared_msr_update(unsigned slot, u32 msr) { struct kvm_shared_msrs *smsr; u64 value; smsr = &__get_cpu_var(shared_msrs); /* only read, and nobody should modify it at this time, * so don't need lock */ if (slot >= shared_msrs_global.nr) { printk(KERN_ERR "kvm: invalid MSR slot!"); return; } rdmsrl_safe(msr, &value); smsr->values[slot].host = value; smsr->values[slot].curr = value; } void kvm_define_shared_msr(unsigned slot, u32 msr) { if (slot >= shared_msrs_global.nr) shared_msrs_global.nr = slot + 1; shared_msrs_global.msrs[slot] = msr; /* we need ensured the shared_msr_global have been updated */ smp_wmb(); } EXPORT_SYMBOL_GPL(kvm_define_shared_msr); static void kvm_shared_msr_cpu_online(void) { unsigned i; for (i = 0; i < shared_msrs_global.nr; ++i) shared_msr_update(i, shared_msrs_global.msrs[i]); } void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) { struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); if (((value ^ smsr->values[slot].curr) & mask) == 0) return; smsr->values[slot].curr = value; wrmsrl(shared_msrs_global.msrs[slot], value); if (!smsr->registered) { smsr->urn.on_user_return = kvm_on_user_return; user_return_notifier_register(&smsr->urn); smsr->registered = true; } } EXPORT_SYMBOL_GPL(kvm_set_shared_msr); static void drop_user_return_notifiers(void *ignore) { struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); if (smsr->registered) kvm_on_user_return(&smsr->urn); } u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) { if (irqchip_in_kernel(vcpu->kvm)) return vcpu->arch.apic_base; else return vcpu->arch.apic_base; } EXPORT_SYMBOL_GPL(kvm_get_apic_base); void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) { /* TODO: reserve bits check */ if (irqchip_in_kernel(vcpu->kvm)) kvm_lapic_set_base(vcpu, data); else vcpu->arch.apic_base = data; } EXPORT_SYMBOL_GPL(kvm_set_apic_base); #define EXCPT_BENIGN 0 #define EXCPT_CONTRIBUTORY 1 #define EXCPT_PF 2 static int exception_class(int vector) { switch (vector) { case PF_VECTOR: return EXCPT_PF; case DE_VECTOR: case TS_VECTOR: case NP_VECTOR: case SS_VECTOR: case GP_VECTOR: return EXCPT_CONTRIBUTORY; default: break; } return EXCPT_BENIGN; } static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned nr, bool has_error, u32 error_code, bool reinject) { u32 prev_nr; int class1, class2; kvm_make_request(KVM_REQ_EVENT, vcpu); if (!vcpu->arch.exception.pending) { queue: vcpu->arch.exception.pending = true; vcpu->arch.exception.has_error_code = has_error; vcpu->arch.exception.nr = nr; vcpu->arch.exception.error_code = error_code; vcpu->arch.exception.reinject = reinject; return; } /* to check exception */ prev_nr = vcpu->arch.exception.nr; if (prev_nr == DF_VECTOR) { /* triple fault -> shutdown */ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return; } class1 = exception_class(prev_nr); class2 = exception_class(nr); if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { /* generate double fault per SDM Table 5-5 */ vcpu->arch.exception.pending = true; vcpu->arch.exception.has_error_code = true; vcpu->arch.exception.nr = DF_VECTOR; vcpu->arch.exception.error_code = 0; } else /* replace previous exception with a new one in a hope that instruction re-execution will regenerate lost exception */ goto queue; } void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) { kvm_multiple_exception(vcpu, nr, false, 0, false); } EXPORT_SYMBOL_GPL(kvm_queue_exception); void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) { kvm_multiple_exception(vcpu, nr, false, 0, true); } EXPORT_SYMBOL_GPL(kvm_requeue_exception); void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) { if (err) kvm_inject_gp(vcpu, 0); else kvm_x86_ops->skip_emulated_instruction(vcpu); } EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) { ++vcpu->stat.pf_guest; vcpu->arch.cr2 = fault->address; kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); } EXPORT_SYMBOL_GPL(kvm_inject_page_fault); void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) { if (mmu_is_nested(vcpu) && !fault->nested_page_fault) vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); else vcpu->arch.mmu.inject_page_fault(vcpu, fault); } void kvm_inject_nmi(struct kvm_vcpu *vcpu) { atomic_inc(&vcpu->arch.nmi_queued); kvm_make_request(KVM_REQ_NMI, vcpu); } EXPORT_SYMBOL_GPL(kvm_inject_nmi); void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) { kvm_multiple_exception(vcpu, nr, true, error_code, false); } EXPORT_SYMBOL_GPL(kvm_queue_exception_e); void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) { kvm_multiple_exception(vcpu, nr, true, error_code, true); } EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); /* * Checks if cpl <= required_cpl; if true, return true. Otherwise queue * a #GP and return false. */ bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) { if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) return true; kvm_queue_exception_e(vcpu, GP_VECTOR, 0); return false; } EXPORT_SYMBOL_GPL(kvm_require_cpl); /* * This function will be used to read from the physical memory of the currently * running guest. The difference to kvm_read_guest_page is that this function * can read from guest physical or from the guest's guest physical memory. */ int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, gfn_t ngfn, void *data, int offset, int len, u32 access) { gfn_t real_gfn; gpa_t ngpa; ngpa = gfn_to_gpa(ngfn); real_gfn = mmu->translate_gpa(vcpu, ngpa, access); if (real_gfn == UNMAPPED_GVA) return -EFAULT; real_gfn = gpa_to_gfn(real_gfn); return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); } EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, int len, u32 access) { return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, data, offset, len, access); } /* * Load the pae pdptrs. Return true is they are all valid. */ int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) { gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; int i; int ret; u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, offset * sizeof(u64), sizeof(pdpte), PFERR_USER_MASK|PFERR_WRITE_MASK); if (ret < 0) { ret = 0; goto out; } for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { if (is_present_gpte(pdpte[i]) && (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { ret = 0; goto out; } } ret = 1; memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); __set_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_avail); __set_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_dirty); out: return ret; } EXPORT_SYMBOL_GPL(load_pdptrs); static bool pdptrs_changed(struct kvm_vcpu *vcpu) { u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; bool changed = true; int offset; gfn_t gfn; int r; if (is_long_mode(vcpu) || !is_pae(vcpu)) return false; if (!test_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_avail)) return true; gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), PFERR_USER_MASK | PFERR_WRITE_MASK); if (r < 0) goto out; changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; out: return changed; } int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { unsigned long old_cr0 = kvm_read_cr0(vcpu); unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | X86_CR0_CD | X86_CR0_NW; cr0 |= X86_CR0_ET; #ifdef CONFIG_X86_64 if (cr0 & 0xffffffff00000000UL) return 1; #endif cr0 &= ~CR0_RESERVED_BITS; if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) return 1; if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) return 1; if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { #ifdef CONFIG_X86_64 if ((vcpu->arch.efer & EFER_LME)) { int cs_db, cs_l; if (!is_pae(vcpu)) return 1; kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); if (cs_l) return 1; } else #endif if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu))) return 1; } kvm_x86_ops->set_cr0(vcpu, cr0); if ((cr0 ^ old_cr0) & X86_CR0_PG) { kvm_clear_async_pf_completion_queue(vcpu); kvm_async_pf_hash_reset(vcpu); } if ((cr0 ^ old_cr0) & update_bits) kvm_mmu_reset_context(vcpu); return 0; } EXPORT_SYMBOL_GPL(kvm_set_cr0); void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) { (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); } EXPORT_SYMBOL_GPL(kvm_lmsw); int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) { u64 xcr0; /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ if (index != XCR_XFEATURE_ENABLED_MASK) return 1; xcr0 = xcr; if (kvm_x86_ops->get_cpl(vcpu) != 0) return 1; if (!(xcr0 & XSTATE_FP)) return 1; if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) return 1; if (xcr0 & ~host_xcr0) return 1; vcpu->arch.xcr0 = xcr0; vcpu->guest_xcr0_loaded = 0; return 0; } int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) { if (__kvm_set_xcr(vcpu, index, xcr)) { kvm_inject_gp(vcpu, 0); return 1; } return 0; } EXPORT_SYMBOL_GPL(kvm_set_xcr); int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { unsigned long old_cr4 = kvm_read_cr4(vcpu); unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_SMEP; if (cr4 & CR4_RESERVED_BITS) return 1; if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) return 1; if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) return 1; if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS)) return 1; if (is_long_mode(vcpu)) { if (!(cr4 & X86_CR4_PAE)) return 1; } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) && ((cr4 ^ old_cr4) & pdptr_bits) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu))) return 1; if (kvm_x86_ops->set_cr4(vcpu, cr4)) return 1; if ((cr4 ^ old_cr4) & pdptr_bits) kvm_mmu_reset_context(vcpu); if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) kvm_update_cpuid(vcpu); return 0; } EXPORT_SYMBOL_GPL(kvm_set_cr4); int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) { if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { kvm_mmu_sync_roots(vcpu); kvm_mmu_flush_tlb(vcpu); return 0; } if (is_long_mode(vcpu)) { if (cr3 & CR3_L_MODE_RESERVED_BITS) return 1; } else { if (is_pae(vcpu)) { if (cr3 & CR3_PAE_RESERVED_BITS) return 1; if (is_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) return 1; } /* * We don't check reserved bits in nonpae mode, because * this isn't enforced, and VMware depends on this. */ } /* * Does the new cr3 value map to physical memory? (Note, we * catch an invalid cr3 even in real-mode, because it would * cause trouble later on when we turn on paging anyway.) * * A real CPU would silently accept an invalid cr3 and would * attempt to use it - with largely undefined (and often hard * to debug) behavior on the guest side. */ if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) return 1; vcpu->arch.cr3 = cr3; __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); vcpu->arch.mmu.new_cr3(vcpu); return 0; } EXPORT_SYMBOL_GPL(kvm_set_cr3); int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) { if (cr8 & CR8_RESERVED_BITS) return 1; if (irqchip_in_kernel(vcpu->kvm)) kvm_lapic_set_tpr(vcpu, cr8); else vcpu->arch.cr8 = cr8; return 0; } EXPORT_SYMBOL_GPL(kvm_set_cr8); unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) { if (irqchip_in_kernel(vcpu->kvm)) return kvm_lapic_get_cr8(vcpu); else return vcpu->arch.cr8; } EXPORT_SYMBOL_GPL(kvm_get_cr8); static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) { switch (dr) { case 0 ... 3: vcpu->arch.db[dr] = val; if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) vcpu->arch.eff_db[dr] = val; break; case 4: if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) return 1; /* #UD */ /* fall through */ case 6: if (val & 0xffffffff00000000ULL) return -1; /* #GP */ vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; break; case 5: if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) return 1; /* #UD */ /* fall through */ default: /* 7 */ if (val & 0xffffffff00000000ULL) return -1; /* #GP */ vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7); vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK); } break; } return 0; } int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) { int res; res = __kvm_set_dr(vcpu, dr, val); if (res > 0) kvm_queue_exception(vcpu, UD_VECTOR); else if (res < 0) kvm_inject_gp(vcpu, 0); return res; } EXPORT_SYMBOL_GPL(kvm_set_dr); static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) { switch (dr) { case 0 ... 3: *val = vcpu->arch.db[dr]; break; case 4: if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) return 1; /* fall through */ case 6: *val = vcpu->arch.dr6; break; case 5: if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) return 1; /* fall through */ default: /* 7 */ *val = vcpu->arch.dr7; break; } return 0; } int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) { if (_kvm_get_dr(vcpu, dr, val)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } return 0; } EXPORT_SYMBOL_GPL(kvm_get_dr); bool kvm_rdpmc(struct kvm_vcpu *vcpu) { u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); u64 data; int err; err = kvm_pmu_read_pmc(vcpu, ecx, &data); if (err) return err; kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); return err; } EXPORT_SYMBOL_GPL(kvm_rdpmc); /* * List of msr numbers which we expose to userspace through KVM_GET_MSRS * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. * * This list is modified at module load time to reflect the * capabilities of the host cpu. This capabilities test skips MSRs that are * kvm-specific. Those are put in the beginning of the list. */ #define KVM_SAVE_MSRS_BEGIN 9 static u32 msrs_to_save[] = { MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, MSR_STAR, #ifdef CONFIG_X86_64 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, #endif MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA }; static unsigned num_msrs_to_save; static u32 emulated_msrs[] = { MSR_IA32_TSCDEADLINE, MSR_IA32_MISC_ENABLE, MSR_IA32_MCG_STATUS, MSR_IA32_MCG_CTL, }; static int set_efer(struct kvm_vcpu *vcpu, u64 efer) { u64 old_efer = vcpu->arch.efer; if (efer & efer_reserved_bits) return 1; if (is_paging(vcpu) && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) return 1; if (efer & EFER_FFXSR) { struct kvm_cpuid_entry2 *feat; feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) return 1; } if (efer & EFER_SVME) { struct kvm_cpuid_entry2 *feat; feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) return 1; } efer &= ~EFER_LMA; efer |= vcpu->arch.efer & EFER_LMA; kvm_x86_ops->set_efer(vcpu, efer); vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled; /* Update reserved bits */ if ((efer ^ old_efer) & EFER_NX) kvm_mmu_reset_context(vcpu); return 0; } void kvm_enable_efer_bits(u64 mask) { efer_reserved_bits &= ~mask; } EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); /* * Writes msr value into into the appropriate "register". * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) { return kvm_x86_ops->set_msr(vcpu, msr_index, data); } /* * Adapt set_msr() to msr_io()'s calling convention */ static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) { return kvm_set_msr(vcpu, index, *data); } static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) { int version; int r; struct pvclock_wall_clock wc; struct timespec boot; if (!wall_clock) return; r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); if (r) return; if (version & 1) ++version; /* first time write, random junk */ ++version; kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); /* * The guest calculates current wall clock time by adding * system time (updated by kvm_guest_time_update below) to the * wall clock specified here. guest system time equals host * system time for us, thus we must fill in host boot time here. */ getboottime(&boot); wc.sec = boot.tv_sec; wc.nsec = boot.tv_nsec; wc.version = version; kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); version++; kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); } static uint32_t div_frac(uint32_t dividend, uint32_t divisor) { uint32_t quotient, remainder; /* Don't try to replace with do_div(), this one calculates * "(dividend << 32) / divisor" */ __asm__ ( "divl %4" : "=a" (quotient), "=d" (remainder) : "0" (0), "1" (dividend), "r" (divisor) ); return quotient; } static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, s8 *pshift, u32 *pmultiplier) { uint64_t scaled64; int32_t shift = 0; uint64_t tps64; uint32_t tps32; tps64 = base_khz * 1000LL; scaled64 = scaled_khz * 1000LL; while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { tps64 >>= 1; shift--; } tps32 = (uint32_t)tps64; while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) scaled64 >>= 1; else tps32 <<= 1; shift++; } *pshift = shift; *pmultiplier = div_frac(scaled64, tps32); pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", __func__, base_khz, scaled_khz, shift, *pmultiplier); } static inline u64 get_kernel_ns(void) { struct timespec ts; WARN_ON(preemptible()); ktime_get_ts(&ts); monotonic_to_bootbased(&ts); return timespec_to_ns(&ts); } static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); unsigned long max_tsc_khz; static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) { return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, vcpu->arch.virtual_tsc_shift); } static u32 adjust_tsc_khz(u32 khz, s32 ppm) { u64 v = (u64)khz * (1000000 + ppm); do_div(v, 1000000); return v; } static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) { u32 thresh_lo, thresh_hi; int use_scaling = 0; /* Compute a scale to convert nanoseconds in TSC cycles */ kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, &vcpu->arch.virtual_tsc_shift, &vcpu->arch.virtual_tsc_mult); vcpu->arch.virtual_tsc_khz = this_tsc_khz; /* * Compute the variation in TSC rate which is acceptable * within the range of tolerance and decide if the * rate being applied is within that bounds of the hardware * rate. If so, no scaling or compensation need be done. */ thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); use_scaling = 1; } kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); } static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) { u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, vcpu->arch.virtual_tsc_mult, vcpu->arch.virtual_tsc_shift); tsc += vcpu->arch.this_tsc_write; return tsc; } void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data) { struct kvm *kvm = vcpu->kvm; u64 offset, ns, elapsed; unsigned long flags; s64 usdiff; raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); ns = get_kernel_ns(); elapsed = ns - kvm->arch.last_tsc_nsec; /* n.b - signed multiplication and division required */ usdiff = data - kvm->arch.last_tsc_write; #ifdef CONFIG_X86_64 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; #else /* do_div() only does unsigned */ asm("idivl %2; xor %%edx, %%edx" : "=A"(usdiff) : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz)); #endif do_div(elapsed, 1000); usdiff -= elapsed; if (usdiff < 0) usdiff = -usdiff; /* * Special case: TSC write with a small delta (1 second) of virtual * cycle time against real time is interpreted as an attempt to * synchronize the CPU. * * For a reliable TSC, we can match TSC offsets, and for an unstable * TSC, we add elapsed time in this computation. We could let the * compensation code attempt to catch up if we fall behind, but * it's better to try to match offsets from the beginning. */ if (usdiff < USEC_PER_SEC && vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { if (!check_tsc_unstable()) { offset = kvm->arch.cur_tsc_offset; pr_debug("kvm: matched tsc offset for %llu\n", data); } else { u64 delta = nsec_to_cycles(vcpu, elapsed); data += delta; offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); pr_debug("kvm: adjusted tsc offset by %llu\n", delta); } } else { /* * We split periods of matched TSC writes into generations. * For each generation, we track the original measured * nanosecond time, offset, and write, so if TSCs are in * sync, we can match exact offset, and if not, we can match * exact software computaion in compute_guest_tsc() * * These values are tracked in kvm->arch.cur_xxx variables. */ kvm->arch.cur_tsc_generation++; kvm->arch.cur_tsc_nsec = ns; kvm->arch.cur_tsc_write = data; kvm->arch.cur_tsc_offset = offset; pr_debug("kvm: new tsc generation %u, clock %llu\n", kvm->arch.cur_tsc_generation, data); } /* * We also track th most recent recorded KHZ, write and time to * allow the matching interval to be extended at each write. */ kvm->arch.last_tsc_nsec = ns; kvm->arch.last_tsc_write = data; kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; /* Reset of TSC must disable overshoot protection below */ vcpu->arch.hv_clock.tsc_timestamp = 0; vcpu->arch.last_guest_tsc = data; /* Keep track of which generation this VCPU has synchronized to */ vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; kvm_x86_ops->write_tsc_offset(vcpu, offset); raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); } EXPORT_SYMBOL_GPL(kvm_write_tsc); static int kvm_guest_time_update(struct kvm_vcpu *v) { unsigned long flags; struct kvm_vcpu_arch *vcpu = &v->arch; void *shared_kaddr; unsigned long this_tsc_khz; s64 kernel_ns, max_kernel_ns; u64 tsc_timestamp; /* Keep irq disabled to prevent changes to the clock */ local_irq_save(flags); tsc_timestamp = kvm_x86_ops->read_l1_tsc(v); kernel_ns = get_kernel_ns(); this_tsc_khz = __get_cpu_var(cpu_tsc_khz); if (unlikely(this_tsc_khz == 0)) { local_irq_restore(flags); kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); return 1; } /* * We may have to catch up the TSC to match elapsed wall clock * time for two reasons, even if kvmclock is used. * 1) CPU could have been running below the maximum TSC rate * 2) Broken TSC compensation resets the base at each VCPU * entry to avoid unknown leaps of TSC even when running * again on the same CPU. This may cause apparent elapsed * time to disappear, and the guest to stand still or run * very slowly. */ if (vcpu->tsc_catchup) { u64 tsc = compute_guest_tsc(v, kernel_ns); if (tsc > tsc_timestamp) { adjust_tsc_offset_guest(v, tsc - tsc_timestamp); tsc_timestamp = tsc; } } local_irq_restore(flags); if (!vcpu->time_page) return 0; /* * Time as measured by the TSC may go backwards when resetting the base * tsc_timestamp. The reason for this is that the TSC resolution is * higher than the resolution of the other clock scales. Thus, many * possible measurments of the TSC correspond to one measurement of any * other clock, and so a spread of values is possible. This is not a * problem for the computation of the nanosecond clock; with TSC rates * around 1GHZ, there can only be a few cycles which correspond to one * nanosecond value, and any path through this code will inevitably * take longer than that. However, with the kernel_ns value itself, * the precision may be much lower, down to HZ granularity. If the * first sampling of TSC against kernel_ns ends in the low part of the * range, and the second in the high end of the range, we can get: * * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new * * As the sampling errors potentially range in the thousands of cycles, * it is possible such a time value has already been observed by the * guest. To protect against this, we must compute the system time as * observed by the guest and ensure the new system time is greater. */ max_kernel_ns = 0; if (vcpu->hv_clock.tsc_timestamp) { max_kernel_ns = vcpu->last_guest_tsc - vcpu->hv_clock.tsc_timestamp; max_kernel_ns = pvclock_scale_delta(max_kernel_ns, vcpu->hv_clock.tsc_to_system_mul, vcpu->hv_clock.tsc_shift); max_kernel_ns += vcpu->last_kernel_ns; } if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, &vcpu->hv_clock.tsc_shift, &vcpu->hv_clock.tsc_to_system_mul); vcpu->hw_tsc_khz = this_tsc_khz; } if (max_kernel_ns > kernel_ns) kernel_ns = max_kernel_ns; /* With all the info we got, fill in the values */ vcpu->hv_clock.tsc_timestamp = tsc_timestamp; vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; vcpu->last_kernel_ns = kernel_ns; vcpu->last_guest_tsc = tsc_timestamp; vcpu->hv_clock.flags = 0; /* * The interface expects us to write an even number signaling that the * update is finished. Since the guest won't see the intermediate * state, we just increase by 2 at the end. */ vcpu->hv_clock.version += 2; shared_kaddr = kmap_atomic(vcpu->time_page); memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, sizeof(vcpu->hv_clock)); kunmap_atomic(shared_kaddr); mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); return 0; } static bool msr_mtrr_valid(unsigned msr) { switch (msr) { case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: case MSR_MTRRfix64K_00000: case MSR_MTRRfix16K_80000: case MSR_MTRRfix16K_A0000: case MSR_MTRRfix4K_C0000: case MSR_MTRRfix4K_C8000: case MSR_MTRRfix4K_D0000: case MSR_MTRRfix4K_D8000: case MSR_MTRRfix4K_E0000: case MSR_MTRRfix4K_E8000: case MSR_MTRRfix4K_F0000: case MSR_MTRRfix4K_F8000: case MSR_MTRRdefType: case MSR_IA32_CR_PAT: return true; case 0x2f8: return true; } return false; } static bool valid_pat_type(unsigned t) { return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ } static bool valid_mtrr_type(unsigned t) { return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ } static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) { int i; if (!msr_mtrr_valid(msr)) return false; if (msr == MSR_IA32_CR_PAT) { for (i = 0; i < 8; i++) if (!valid_pat_type((data >> (i * 8)) & 0xff)) return false; return true; } else if (msr == MSR_MTRRdefType) { if (data & ~0xcff) return false; return valid_mtrr_type(data & 0xff); } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { for (i = 0; i < 8 ; i++) if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) return false; return true; } /* variable MTRRs */ return valid_mtrr_type(data & 0xff); } static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) { u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; if (!mtrr_valid(vcpu, msr, data)) return 1; if (msr == MSR_MTRRdefType) { vcpu->arch.mtrr_state.def_type = data; vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; } else if (msr == MSR_MTRRfix64K_00000) p[0] = data; else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) p[1 + msr - MSR_MTRRfix16K_80000] = data; else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) p[3 + msr - MSR_MTRRfix4K_C0000] = data; else if (msr == MSR_IA32_CR_PAT) vcpu->arch.pat = data; else { /* Variable MTRRs */ int idx, is_mtrr_mask; u64 *pt; idx = (msr - 0x200) / 2; is_mtrr_mask = msr - 0x200 - 2 * idx; if (!is_mtrr_mask) pt = (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; else pt = (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; *pt = data; } kvm_mmu_reset_context(vcpu); return 0; } static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) { u64 mcg_cap = vcpu->arch.mcg_cap; unsigned bank_num = mcg_cap & 0xff; switch (msr) { case MSR_IA32_MCG_STATUS: vcpu->arch.mcg_status = data; break; case MSR_IA32_MCG_CTL: if (!(mcg_cap & MCG_CTL_P)) return 1; if (data != 0 && data != ~(u64)0) return -1; vcpu->arch.mcg_ctl = data; break; default: if (msr >= MSR_IA32_MC0_CTL && msr < MSR_IA32_MC0_CTL + 4 * bank_num) { u32 offset = msr - MSR_IA32_MC0_CTL; /* only 0 or all 1s can be written to IA32_MCi_CTL * some Linux kernels though clear bit 10 in bank 4 to * workaround a BIOS/GART TBL issue on AMD K8s, ignore * this to avoid an uncatched #GP in the guest */ if ((offset & 0x3) == 0 && data != 0 && (data | (1 << 10)) != ~(u64)0) return -1; vcpu->arch.mce_banks[offset] = data; break; } return 1; } return 0; } static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) { struct kvm *kvm = vcpu->kvm; int lm = is_long_mode(vcpu); u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 : kvm->arch.xen_hvm_config.blob_size_32; u32 page_num = data & ~PAGE_MASK; u64 page_addr = data & PAGE_MASK; u8 *page; int r; r = -E2BIG; if (page_num >= blob_size) goto out; r = -ENOMEM; page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); if (IS_ERR(page)) { r = PTR_ERR(page); goto out; } if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) goto out_free; r = 0; out_free: kfree(page); out: return r; } static bool kvm_hv_hypercall_enabled(struct kvm *kvm) { return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; } static bool kvm_hv_msr_partition_wide(u32 msr) { bool r = false; switch (msr) { case HV_X64_MSR_GUEST_OS_ID: case HV_X64_MSR_HYPERCALL: r = true; break; } return r; } static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) { struct kvm *kvm = vcpu->kvm; switch (msr) { case HV_X64_MSR_GUEST_OS_ID: kvm->arch.hv_guest_os_id = data; /* setting guest os id to zero disables hypercall page */ if (!kvm->arch.hv_guest_os_id) kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; break; case HV_X64_MSR_HYPERCALL: { u64 gfn; unsigned long addr; u8 instructions[4]; /* if guest os id is not set hypercall should remain disabled */ if (!kvm->arch.hv_guest_os_id) break; if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { kvm->arch.hv_hypercall = data; break; } gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; addr = gfn_to_hva(kvm, gfn); if (kvm_is_error_hva(addr)) return 1; kvm_x86_ops->patch_hypercall(vcpu, instructions); ((unsigned char *)instructions)[3] = 0xc3; /* ret */ if (__copy_to_user((void __user *)addr, instructions, 4)) return 1; kvm->arch.hv_hypercall = data; break; } default: pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " "data 0x%llx\n", msr, data); return 1; } return 0; } static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) { switch (msr) { case HV_X64_MSR_APIC_ASSIST_PAGE: { unsigned long addr; if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { vcpu->arch.hv_vapic = data; break; } addr = gfn_to_hva(vcpu->kvm, data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); if (kvm_is_error_hva(addr)) return 1; if (__clear_user((void __user *)addr, PAGE_SIZE)) return 1; vcpu->arch.hv_vapic = data; break; } case HV_X64_MSR_EOI: return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); case HV_X64_MSR_ICR: return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); case HV_X64_MSR_TPR: return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); default: pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " "data 0x%llx\n", msr, data); return 1; } return 0; } static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) { gpa_t gpa = data & ~0x3f; /* Bits 2:5 are resrved, Should be zero */ if (data & 0x3c) return 1; vcpu->arch.apf.msr_val = data; if (!(data & KVM_ASYNC_PF_ENABLED)) { kvm_clear_async_pf_completion_queue(vcpu); kvm_async_pf_hash_reset(vcpu); return 0; } if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa)) return 1; vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); kvm_async_pf_wakeup_all(vcpu); return 0; } static void kvmclock_reset(struct kvm_vcpu *vcpu) { if (vcpu->arch.time_page) { kvm_release_page_dirty(vcpu->arch.time_page); vcpu->arch.time_page = NULL; } } static void accumulate_steal_time(struct kvm_vcpu *vcpu) { u64 delta; if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) return; delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; vcpu->arch.st.last_steal = current->sched_info.run_delay; vcpu->arch.st.accum_steal = delta; } static void record_steal_time(struct kvm_vcpu *vcpu) { if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) return; if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) return; vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; vcpu->arch.st.steal.version += 2; vcpu->arch.st.accum_steal = 0; kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); } int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) { bool pr = false; switch (msr) { case MSR_EFER: return set_efer(vcpu, data); case MSR_K7_HWCR: data &= ~(u64)0x40; /* ignore flush filter disable */ data &= ~(u64)0x100; /* ignore ignne emulation enable */ data &= ~(u64)0x8; /* ignore TLB cache disable */ if (data != 0) { pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", data); return 1; } break; case MSR_FAM10H_MMIO_CONF_BASE: if (data != 0) { pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " "0x%llx\n", data); return 1; } break; case MSR_AMD64_NB_CFG: break; case MSR_IA32_DEBUGCTLMSR: if (!data) { /* We support the non-activated case already */ break; } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { /* Values other than LBR and BTF are vendor-specific, thus reserved and should throw a #GP */ return 1; } pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", __func__, data); break; case MSR_IA32_UCODE_REV: case MSR_IA32_UCODE_WRITE: case MSR_VM_HSAVE_PA: case MSR_AMD64_PATCH_LOADER: break; case 0x200 ... 0x2ff: return set_msr_mtrr(vcpu, msr, data); case MSR_IA32_APICBASE: kvm_set_apic_base(vcpu, data); break; case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: return kvm_x2apic_msr_write(vcpu, msr, data); case MSR_IA32_TSCDEADLINE: kvm_set_lapic_tscdeadline_msr(vcpu, data); break; case MSR_IA32_MISC_ENABLE: vcpu->arch.ia32_misc_enable_msr = data; break; case MSR_KVM_WALL_CLOCK_NEW: case MSR_KVM_WALL_CLOCK: vcpu->kvm->arch.wall_clock = data; kvm_write_wall_clock(vcpu->kvm, data); break; case MSR_KVM_SYSTEM_TIME_NEW: case MSR_KVM_SYSTEM_TIME: { kvmclock_reset(vcpu); vcpu->arch.time = data; kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); /* we verify if the enable bit is set... */ if (!(data & 1)) break; /* ...but clean it before doing the actual write */ vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); vcpu->arch.time_page = gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); if (is_error_page(vcpu->arch.time_page)) { kvm_release_page_clean(vcpu->arch.time_page); vcpu->arch.time_page = NULL; } break; } case MSR_KVM_ASYNC_PF_EN: if (kvm_pv_enable_async_pf(vcpu, data)) return 1; break; case MSR_KVM_STEAL_TIME: if (unlikely(!sched_info_on())) return 1; if (data & KVM_STEAL_RESERVED_MASK) return 1; if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, data & KVM_STEAL_VALID_BITS)) return 1; vcpu->arch.st.msr_val = data; if (!(data & KVM_MSR_ENABLED)) break; vcpu->arch.st.last_steal = current->sched_info.run_delay; preempt_disable(); accumulate_steal_time(vcpu); preempt_enable(); kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); break; case MSR_IA32_MCG_CTL: case MSR_IA32_MCG_STATUS: case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: return set_msr_mce(vcpu, msr, data); /* Performance counters are not protected by a CPUID bit, * so we should check all of them in the generic path for the sake of * cross vendor migration. * Writing a zero into the event select MSRs disables them, * which we perfectly emulate ;-). Any other value should be at least * reported, some guests depend on them. */ case MSR_K7_EVNTSEL0: case MSR_K7_EVNTSEL1: case MSR_K7_EVNTSEL2: case MSR_K7_EVNTSEL3: if (data != 0) pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " "0x%x data 0x%llx\n", msr, data); break; /* at least RHEL 4 unconditionally writes to the perfctr registers, * so we ignore writes to make it happy. */ case MSR_K7_PERFCTR0: case MSR_K7_PERFCTR1: case MSR_K7_PERFCTR2: case MSR_K7_PERFCTR3: pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " "0x%x data 0x%llx\n", msr, data); break; case MSR_P6_PERFCTR0: case MSR_P6_PERFCTR1: pr = true; case MSR_P6_EVNTSEL0: case MSR_P6_EVNTSEL1: if (kvm_pmu_msr(vcpu, msr)) return kvm_pmu_set_msr(vcpu, msr, data); if (pr || data != 0) pr_unimpl(vcpu, "disabled perfctr wrmsr: " "0x%x data 0x%llx\n", msr, data); break; case MSR_K7_CLK_CTL: /* * Ignore all writes to this no longer documented MSR. * Writes are only relevant for old K7 processors, * all pre-dating SVM, but a recommended workaround from * AMD for these chips. It is possible to speicify the * affected processor models on the command line, hence * the need to ignore the workaround. */ break; case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: if (kvm_hv_msr_partition_wide(msr)) { int r; mutex_lock(&vcpu->kvm->lock); r = set_msr_hyperv_pw(vcpu, msr, data); mutex_unlock(&vcpu->kvm->lock); return r; } else return set_msr_hyperv(vcpu, msr, data); break; case MSR_IA32_BBL_CR_CTL3: /* Drop writes to this legacy MSR -- see rdmsr * counterpart for further detail. */ pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); break; case MSR_AMD64_OSVW_ID_LENGTH: if (!guest_cpuid_has_osvw(vcpu)) return 1; vcpu->arch.osvw.length = data; break; case MSR_AMD64_OSVW_STATUS: if (!guest_cpuid_has_osvw(vcpu)) return 1; vcpu->arch.osvw.status = data; break; default: if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) return xen_hvm_config(vcpu, data); if (kvm_pmu_msr(vcpu, msr)) return kvm_pmu_set_msr(vcpu, msr, data); if (!ignore_msrs) { pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data); return 1; } else { pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); break; } } return 0; } EXPORT_SYMBOL_GPL(kvm_set_msr_common); /* * Reads an msr value (of 'msr_index') into 'pdata'. * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) { return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); } static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) { u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; if (!msr_mtrr_valid(msr)) return 1; if (msr == MSR_MTRRdefType) *pdata = vcpu->arch.mtrr_state.def_type + (vcpu->arch.mtrr_state.enabled << 10); else if (msr == MSR_MTRRfix64K_00000) *pdata = p[0]; else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; else if (msr == MSR_IA32_CR_PAT) *pdata = vcpu->arch.pat; else { /* Variable MTRRs */ int idx, is_mtrr_mask; u64 *pt; idx = (msr - 0x200) / 2; is_mtrr_mask = msr - 0x200 - 2 * idx; if (!is_mtrr_mask) pt = (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; else pt = (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; *pdata = *pt; } return 0; } static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) { u64 data; u64 mcg_cap = vcpu->arch.mcg_cap; unsigned bank_num = mcg_cap & 0xff; switch (msr) { case MSR_IA32_P5_MC_ADDR: case MSR_IA32_P5_MC_TYPE: data = 0; break; case MSR_IA32_MCG_CAP: data = vcpu->arch.mcg_cap; break; case MSR_IA32_MCG_CTL: if (!(mcg_cap & MCG_CTL_P)) return 1; data = vcpu->arch.mcg_ctl; break; case MSR_IA32_MCG_STATUS: data = vcpu->arch.mcg_status; break; default: if (msr >= MSR_IA32_MC0_CTL && msr < MSR_IA32_MC0_CTL + 4 * bank_num) { u32 offset = msr - MSR_IA32_MC0_CTL; data = vcpu->arch.mce_banks[offset]; break; } return 1; } *pdata = data; return 0; } static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) { u64 data = 0; struct kvm *kvm = vcpu->kvm; switch (msr) { case HV_X64_MSR_GUEST_OS_ID: data = kvm->arch.hv_guest_os_id; break; case HV_X64_MSR_HYPERCALL: data = kvm->arch.hv_hypercall; break; default: pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); return 1; } *pdata = data; return 0; } static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) { u64 data = 0; switch (msr) { case HV_X64_MSR_VP_INDEX: { int r; struct kvm_vcpu *v; kvm_for_each_vcpu(r, v, vcpu->kvm) if (v == vcpu) data = r; break; } case HV_X64_MSR_EOI: return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); case HV_X64_MSR_ICR: return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); case HV_X64_MSR_TPR: return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); case HV_X64_MSR_APIC_ASSIST_PAGE: data = vcpu->arch.hv_vapic; break; default: pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); return 1; } *pdata = data; return 0; } int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) { u64 data; switch (msr) { case MSR_IA32_PLATFORM_ID: case MSR_IA32_EBL_CR_POWERON: case MSR_IA32_DEBUGCTLMSR: case MSR_IA32_LASTBRANCHFROMIP: case MSR_IA32_LASTBRANCHTOIP: case MSR_IA32_LASTINTFROMIP: case MSR_IA32_LASTINTTOIP: case MSR_K8_SYSCFG: case MSR_K7_HWCR: case MSR_VM_HSAVE_PA: case MSR_K7_EVNTSEL0: case MSR_K7_PERFCTR0: case MSR_K8_INT_PENDING_MSG: case MSR_AMD64_NB_CFG: case MSR_FAM10H_MMIO_CONF_BASE: data = 0; break; case MSR_P6_PERFCTR0: case MSR_P6_PERFCTR1: case MSR_P6_EVNTSEL0: case MSR_P6_EVNTSEL1: if (kvm_pmu_msr(vcpu, msr)) return kvm_pmu_get_msr(vcpu, msr, pdata); data = 0; break; case MSR_IA32_UCODE_REV: data = 0x100000000ULL; break; case MSR_MTRRcap: data = 0x500 | KVM_NR_VAR_MTRR; break; case 0x200 ... 0x2ff: return get_msr_mtrr(vcpu, msr, pdata); case 0xcd: /* fsb frequency */ data = 3; break; /* * MSR_EBC_FREQUENCY_ID * Conservative value valid for even the basic CPU models. * Models 0,1: 000 in bits 23:21 indicating a bus speed of * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, * and 266MHz for model 3, or 4. Set Core Clock * Frequency to System Bus Frequency Ratio to 1 (bits * 31:24) even though these are only valid for CPU * models > 2, however guests may end up dividing or * multiplying by zero otherwise. */ case MSR_EBC_FREQUENCY_ID: data = 1 << 24; break; case MSR_IA32_APICBASE: data = kvm_get_apic_base(vcpu); break; case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: return kvm_x2apic_msr_read(vcpu, msr, pdata); break; case MSR_IA32_TSCDEADLINE: data = kvm_get_lapic_tscdeadline_msr(vcpu); break; case MSR_IA32_MISC_ENABLE: data = vcpu->arch.ia32_misc_enable_msr; break; case MSR_IA32_PERF_STATUS: /* TSC increment by tick */ data = 1000ULL; /* CPU multiplier */ data |= (((uint64_t)4ULL) << 40); break; case MSR_EFER: data = vcpu->arch.efer; break; case MSR_KVM_WALL_CLOCK: case MSR_KVM_WALL_CLOCK_NEW: data = vcpu->kvm->arch.wall_clock; break; case MSR_KVM_SYSTEM_TIME: case MSR_KVM_SYSTEM_TIME_NEW: data = vcpu->arch.time; break; case MSR_KVM_ASYNC_PF_EN: data = vcpu->arch.apf.msr_val; break; case MSR_KVM_STEAL_TIME: data = vcpu->arch.st.msr_val; break; case MSR_IA32_P5_MC_ADDR: case MSR_IA32_P5_MC_TYPE: case MSR_IA32_MCG_CAP: case MSR_IA32_MCG_CTL: case MSR_IA32_MCG_STATUS: case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: return get_msr_mce(vcpu, msr, pdata); case MSR_K7_CLK_CTL: /* * Provide expected ramp-up count for K7. All other * are set to zero, indicating minimum divisors for * every field. * * This prevents guest kernels on AMD host with CPU * type 6, model 8 and higher from exploding due to * the rdmsr failing. */ data = 0x20000000; break; case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: if (kvm_hv_msr_partition_wide(msr)) { int r; mutex_lock(&vcpu->kvm->lock); r = get_msr_hyperv_pw(vcpu, msr, pdata); mutex_unlock(&vcpu->kvm->lock); return r; } else return get_msr_hyperv(vcpu, msr, pdata); break; case MSR_IA32_BBL_CR_CTL3: /* This legacy MSR exists but isn't fully documented in current * silicon. It is however accessed by winxp in very narrow * scenarios where it sets bit #19, itself documented as * a "reserved" bit. Best effort attempt to source coherent * read data here should the balance of the register be * interpreted by the guest: * * L2 cache control register 3: 64GB range, 256KB size, * enabled, latency 0x1, configured */ data = 0xbe702111; break; case MSR_AMD64_OSVW_ID_LENGTH: if (!guest_cpuid_has_osvw(vcpu)) return 1; data = vcpu->arch.osvw.length; break; case MSR_AMD64_OSVW_STATUS: if (!guest_cpuid_has_osvw(vcpu)) return 1; data = vcpu->arch.osvw.status; break; default: if (kvm_pmu_msr(vcpu, msr)) return kvm_pmu_get_msr(vcpu, msr, pdata); if (!ignore_msrs) { pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); return 1; } else { pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); data = 0; } break; } *pdata = data; return 0; } EXPORT_SYMBOL_GPL(kvm_get_msr_common); /* * Read or write a bunch of msrs. All parameters are kernel addresses. * * @return number of msrs set successfully. */ static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, struct kvm_msr_entry *entries, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data)) { int i, idx; idx = srcu_read_lock(&vcpu->kvm->srcu); for (i = 0; i < msrs->nmsrs; ++i) if (do_msr(vcpu, entries[i].index, &entries[i].data)) break; srcu_read_unlock(&vcpu->kvm->srcu, idx); return i; } /* * Read or write a bunch of msrs. Parameters are user addresses. * * @return number of msrs set successfully. */ static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data), int writeback) { struct kvm_msrs msrs; struct kvm_msr_entry *entries; int r, n; unsigned size; r = -EFAULT; if (copy_from_user(&msrs, user_msrs, sizeof msrs)) goto out; r = -E2BIG; if (msrs.nmsrs >= MAX_IO_MSRS) goto out; size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; entries = memdup_user(user_msrs->entries, size); if (IS_ERR(entries)) { r = PTR_ERR(entries); goto out; } r = n = __msr_io(vcpu, &msrs, entries, do_msr); if (r < 0) goto out_free; r = -EFAULT; if (writeback && copy_to_user(user_msrs->entries, entries, size)) goto out_free; r = n; out_free: kfree(entries); out: return r; } int kvm_dev_ioctl_check_extension(long ext) { int r; switch (ext) { case KVM_CAP_IRQCHIP: case KVM_CAP_HLT: case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: case KVM_CAP_SET_TSS_ADDR: case KVM_CAP_EXT_CPUID: case KVM_CAP_CLOCKSOURCE: case KVM_CAP_PIT: case KVM_CAP_NOP_IO_DELAY: case KVM_CAP_MP_STATE: case KVM_CAP_SYNC_MMU: case KVM_CAP_USER_NMI: case KVM_CAP_REINJECT_CONTROL: case KVM_CAP_IRQ_INJECT_STATUS: case KVM_CAP_ASSIGN_DEV_IRQ: case KVM_CAP_IRQFD: case KVM_CAP_IOEVENTFD: case KVM_CAP_PIT2: case KVM_CAP_PIT_STATE2: case KVM_CAP_SET_IDENTITY_MAP_ADDR: case KVM_CAP_XEN_HVM: case KVM_CAP_ADJUST_CLOCK: case KVM_CAP_VCPU_EVENTS: case KVM_CAP_HYPERV: case KVM_CAP_HYPERV_VAPIC: case KVM_CAP_HYPERV_SPIN: case KVM_CAP_PCI_SEGMENT: case KVM_CAP_DEBUGREGS: case KVM_CAP_X86_ROBUST_SINGLESTEP: case KVM_CAP_XSAVE: case KVM_CAP_ASYNC_PF: case KVM_CAP_GET_TSC_KHZ: case KVM_CAP_PCI_2_3: r = 1; break; case KVM_CAP_COALESCED_MMIO: r = KVM_COALESCED_MMIO_PAGE_OFFSET; break; case KVM_CAP_VAPIC: r = !kvm_x86_ops->cpu_has_accelerated_tpr(); break; case KVM_CAP_NR_VCPUS: r = KVM_SOFT_MAX_VCPUS; break; case KVM_CAP_MAX_VCPUS: r = KVM_MAX_VCPUS; break; case KVM_CAP_NR_MEMSLOTS: r = KVM_MEMORY_SLOTS; break; case KVM_CAP_PV_MMU: /* obsolete */ r = 0; break; case KVM_CAP_IOMMU: r = iommu_present(&pci_bus_type); break; case KVM_CAP_MCE: r = KVM_MAX_MCE_BANKS; break; case KVM_CAP_XCRS: r = cpu_has_xsave; break; case KVM_CAP_TSC_CONTROL: r = kvm_has_tsc_control; break; case KVM_CAP_TSC_DEADLINE_TIMER: r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); break; default: r = 0; break; } return r; } long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { void __user *argp = (void __user *)arg; long r; switch (ioctl) { case KVM_GET_MSR_INDEX_LIST: { struct kvm_msr_list __user *user_msr_list = argp; struct kvm_msr_list msr_list; unsigned n; r = -EFAULT; if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) goto out; n = msr_list.nmsrs; msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) goto out; r = -E2BIG; if (n < msr_list.nmsrs) goto out; r = -EFAULT; if (copy_to_user(user_msr_list->indices, &msrs_to_save, num_msrs_to_save * sizeof(u32))) goto out; if (copy_to_user(user_msr_list->indices + num_msrs_to_save, &emulated_msrs, ARRAY_SIZE(emulated_msrs) * sizeof(u32))) goto out; r = 0; break; } case KVM_GET_SUPPORTED_CPUID: { struct kvm_cpuid2 __user *cpuid_arg = argp; struct kvm_cpuid2 cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, cpuid_arg->entries); if (r) goto out; r = -EFAULT; if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) goto out; r = 0; break; } case KVM_X86_GET_MCE_CAP_SUPPORTED: { u64 mce_cap; mce_cap = KVM_MCE_CAP_SUPPORTED; r = -EFAULT; if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) goto out; r = 0; break; } default: r = -EINVAL; } out: return r; } static void wbinvd_ipi(void *garbage) { wbinvd(); } static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) { return vcpu->kvm->arch.iommu_domain && !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); } void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { /* Address WBINVD may be executed by guest */ if (need_emulate_wbinvd(vcpu)) { if (kvm_x86_ops->has_wbinvd_exit()) cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); else if (vcpu->cpu != -1 && vcpu->cpu != cpu) smp_call_function_single(vcpu->cpu, wbinvd_ipi, NULL, 1); } kvm_x86_ops->vcpu_load(vcpu, cpu); /* Apply any externally detected TSC adjustments (due to suspend) */ if (unlikely(vcpu->arch.tsc_offset_adjustment)) { adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); vcpu->arch.tsc_offset_adjustment = 0; set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); } if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : native_read_tsc() - vcpu->arch.last_host_tsc; if (tsc_delta < 0) mark_tsc_unstable("KVM discovered backwards TSC"); if (check_tsc_unstable()) { u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, vcpu->arch.last_guest_tsc); kvm_x86_ops->write_tsc_offset(vcpu, offset); vcpu->arch.tsc_catchup = 1; } kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); if (vcpu->cpu != cpu) kvm_migrate_timers(vcpu); vcpu->cpu = cpu; } accumulate_steal_time(vcpu); kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); } void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { kvm_x86_ops->vcpu_put(vcpu); kvm_put_guest_fpu(vcpu); vcpu->arch.last_host_tsc = native_read_tsc(); } static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) { memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); return 0; } static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) { memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s); kvm_apic_post_state_restore(vcpu); update_cr8_intercept(vcpu); return 0; } static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) { if (irq->irq < 0 || irq->irq >= 256) return -EINVAL; if (irqchip_in_kernel(vcpu->kvm)) return -ENXIO; kvm_queue_interrupt(vcpu, irq->irq, false); kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) { kvm_inject_nmi(vcpu); return 0; } static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, struct kvm_tpr_access_ctl *tac) { if (tac->flags) return -EINVAL; vcpu->arch.tpr_access_reporting = !!tac->enabled; return 0; } static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, u64 mcg_cap) { int r; unsigned bank_num = mcg_cap & 0xff, bank; r = -EINVAL; if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) goto out; if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) goto out; r = 0; vcpu->arch.mcg_cap = mcg_cap; /* Init IA32_MCG_CTL to all 1s */ if (mcg_cap & MCG_CTL_P) vcpu->arch.mcg_ctl = ~(u64)0; /* Init IA32_MCi_CTL to all 1s */ for (bank = 0; bank < bank_num; bank++) vcpu->arch.mce_banks[bank*4] = ~(u64)0; out: return r; } static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce) { u64 mcg_cap = vcpu->arch.mcg_cap; unsigned bank_num = mcg_cap & 0xff; u64 *banks = vcpu->arch.mce_banks; if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) return -EINVAL; /* * if IA32_MCG_CTL is not all 1s, the uncorrected error * reporting is disabled */ if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && vcpu->arch.mcg_ctl != ~(u64)0) return 0; banks += 4 * mce->bank; /* * if IA32_MCi_CTL is not all 1s, the uncorrected error * reporting is disabled for the bank */ if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) return 0; if (mce->status & MCI_STATUS_UC) { if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return 0; } if (banks[1] & MCI_STATUS_VAL) mce->status |= MCI_STATUS_OVER; banks[2] = mce->addr; banks[3] = mce->misc; vcpu->arch.mcg_status = mce->mcg_status; banks[1] = mce->status; kvm_queue_exception(vcpu, MC_VECTOR); } else if (!(banks[1] & MCI_STATUS_VAL) || !(banks[1] & MCI_STATUS_UC)) { if (banks[1] & MCI_STATUS_VAL) mce->status |= MCI_STATUS_OVER; banks[2] = mce->addr; banks[3] = mce->misc; banks[1] = mce->status; } else banks[1] |= MCI_STATUS_OVER; return 0; } static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events) { process_nmi(vcpu); events->exception.injected = vcpu->arch.exception.pending && !kvm_exception_is_soft(vcpu->arch.exception.nr); events->exception.nr = vcpu->arch.exception.nr; events->exception.has_error_code = vcpu->arch.exception.has_error_code; events->exception.pad = 0; events->exception.error_code = vcpu->arch.exception.error_code; events->interrupt.injected = vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; events->interrupt.nr = vcpu->arch.interrupt.nr; events->interrupt.soft = 0; events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); events->nmi.injected = vcpu->arch.nmi_injected; events->nmi.pending = vcpu->arch.nmi_pending != 0; events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); events->nmi.pad = 0; events->sipi_vector = vcpu->arch.sipi_vector; events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR | KVM_VCPUEVENT_VALID_SHADOW); memset(&events->reserved, 0, sizeof(events->reserved)); } static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events) { if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR | KVM_VCPUEVENT_VALID_SHADOW)) return -EINVAL; process_nmi(vcpu); vcpu->arch.exception.pending = events->exception.injected; vcpu->arch.exception.nr = events->exception.nr; vcpu->arch.exception.has_error_code = events->exception.has_error_code; vcpu->arch.exception.error_code = events->exception.error_code; vcpu->arch.interrupt.pending = events->interrupt.injected; vcpu->arch.interrupt.nr = events->interrupt.nr; vcpu->arch.interrupt.soft = events->interrupt.soft; if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) kvm_x86_ops->set_interrupt_shadow(vcpu, events->interrupt.shadow); vcpu->arch.nmi_injected = events->nmi.injected; if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) vcpu->arch.nmi_pending = events->nmi.pending; kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) vcpu->arch.sipi_vector = events->sipi_vector; kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, struct kvm_debugregs *dbgregs) { memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); dbgregs->dr6 = vcpu->arch.dr6; dbgregs->dr7 = vcpu->arch.dr7; dbgregs->flags = 0; memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); } static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, struct kvm_debugregs *dbgregs) { if (dbgregs->flags) return -EINVAL; memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); vcpu->arch.dr6 = dbgregs->dr6; vcpu->arch.dr7 = dbgregs->dr7; return 0; } static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, struct kvm_xsave *guest_xsave) { if (cpu_has_xsave) memcpy(guest_xsave->region, &vcpu->arch.guest_fpu.state->xsave, xstate_size); else { memcpy(guest_xsave->region, &vcpu->arch.guest_fpu.state->fxsave, sizeof(struct i387_fxsave_struct)); *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = XSTATE_FPSSE; } } static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, struct kvm_xsave *guest_xsave) { u64 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; if (cpu_has_xsave) memcpy(&vcpu->arch.guest_fpu.state->xsave, guest_xsave->region, xstate_size); else { if (xstate_bv & ~XSTATE_FPSSE) return -EINVAL; memcpy(&vcpu->arch.guest_fpu.state->fxsave, guest_xsave->region, sizeof(struct i387_fxsave_struct)); } return 0; } static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, struct kvm_xcrs *guest_xcrs) { if (!cpu_has_xsave) { guest_xcrs->nr_xcrs = 0; return; } guest_xcrs->nr_xcrs = 1; guest_xcrs->flags = 0; guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; } static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, struct kvm_xcrs *guest_xcrs) { int i, r = 0; if (!cpu_has_xsave) return -EINVAL; if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) return -EINVAL; for (i = 0; i < guest_xcrs->nr_xcrs; i++) /* Only support XCR0 currently */ if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, guest_xcrs->xcrs[0].value); break; } if (r) r = -EINVAL; return r; } long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; int r; union { struct kvm_lapic_state *lapic; struct kvm_xsave *xsave; struct kvm_xcrs *xcrs; void *buffer; } u; u.buffer = NULL; switch (ioctl) { case KVM_GET_LAPIC: { r = -EINVAL; if (!vcpu->arch.apic) goto out; u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); r = -ENOMEM; if (!u.lapic) goto out; r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) goto out; r = 0; break; } case KVM_SET_LAPIC: { r = -EINVAL; if (!vcpu->arch.apic) goto out; u.lapic = memdup_user(argp, sizeof(*u.lapic)); if (IS_ERR(u.lapic)) { r = PTR_ERR(u.lapic); goto out; } r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); if (r) goto out; r = 0; break; } case KVM_INTERRUPT: { struct kvm_interrupt irq; r = -EFAULT; if (copy_from_user(&irq, argp, sizeof irq)) goto out; r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); if (r) goto out; r = 0; break; } case KVM_NMI: { r = kvm_vcpu_ioctl_nmi(vcpu); if (r) goto out; r = 0; break; } case KVM_SET_CPUID: { struct kvm_cpuid __user *cpuid_arg = argp; struct kvm_cpuid cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); if (r) goto out; break; } case KVM_SET_CPUID2: { struct kvm_cpuid2 __user *cpuid_arg = argp; struct kvm_cpuid2 cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, cpuid_arg->entries); if (r) goto out; break; } case KVM_GET_CPUID2: { struct kvm_cpuid2 __user *cpuid_arg = argp; struct kvm_cpuid2 cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, cpuid_arg->entries); if (r) goto out; r = -EFAULT; if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) goto out; r = 0; break; } case KVM_GET_MSRS: r = msr_io(vcpu, argp, kvm_get_msr, 1); break; case KVM_SET_MSRS: r = msr_io(vcpu, argp, do_set_msr, 0); break; case KVM_TPR_ACCESS_REPORTING: { struct kvm_tpr_access_ctl tac; r = -EFAULT; if (copy_from_user(&tac, argp, sizeof tac)) goto out; r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &tac, sizeof tac)) goto out; r = 0; break; }; case KVM_SET_VAPIC_ADDR: { struct kvm_vapic_addr va; r = -EINVAL; if (!irqchip_in_kernel(vcpu->kvm)) goto out; r = -EFAULT; if (copy_from_user(&va, argp, sizeof va)) goto out; r = 0; kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); break; } case KVM_X86_SETUP_MCE: { u64 mcg_cap; r = -EFAULT; if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) goto out; r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); break; } case KVM_X86_SET_MCE: { struct kvm_x86_mce mce; r = -EFAULT; if (copy_from_user(&mce, argp, sizeof mce)) goto out; r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); break; } case KVM_GET_VCPU_EVENTS: { struct kvm_vcpu_events events; kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); r = -EFAULT; if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) break; r = 0; break; } case KVM_SET_VCPU_EVENTS: { struct kvm_vcpu_events events; r = -EFAULT; if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) break; r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); break; } case KVM_GET_DEBUGREGS: { struct kvm_debugregs dbgregs; kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); r = -EFAULT; if (copy_to_user(argp, &dbgregs, sizeof(struct kvm_debugregs))) break; r = 0; break; } case KVM_SET_DEBUGREGS: { struct kvm_debugregs dbgregs; r = -EFAULT; if (copy_from_user(&dbgregs, argp, sizeof(struct kvm_debugregs))) break; r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); break; } case KVM_GET_XSAVE: { u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); r = -ENOMEM; if (!u.xsave) break; kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); r = -EFAULT; if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) break; r = 0; break; } case KVM_SET_XSAVE: { u.xsave = memdup_user(argp, sizeof(*u.xsave)); if (IS_ERR(u.xsave)) { r = PTR_ERR(u.xsave); goto out; } r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); break; } case KVM_GET_XCRS: { u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); r = -ENOMEM; if (!u.xcrs) break; kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); r = -EFAULT; if (copy_to_user(argp, u.xcrs, sizeof(struct kvm_xcrs))) break; r = 0; break; } case KVM_SET_XCRS: { u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); if (IS_ERR(u.xcrs)) { r = PTR_ERR(u.xcrs); goto out; } r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); break; } case KVM_SET_TSC_KHZ: { u32 user_tsc_khz; r = -EINVAL; user_tsc_khz = (u32)arg; if (user_tsc_khz >= kvm_max_guest_tsc_khz) goto out; if (user_tsc_khz == 0) user_tsc_khz = tsc_khz; kvm_set_tsc_khz(vcpu, user_tsc_khz); r = 0; goto out; } case KVM_GET_TSC_KHZ: { r = vcpu->arch.virtual_tsc_khz; goto out; } default: r = -EINVAL; } out: kfree(u.buffer); return r; } int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) { return VM_FAULT_SIGBUS; } static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) { int ret; if (addr > (unsigned int)(-3 * PAGE_SIZE)) return -1; ret = kvm_x86_ops->set_tss_addr(kvm, addr); return ret; } static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) { kvm->arch.ept_identity_map_addr = ident_addr; return 0; } static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, u32 kvm_nr_mmu_pages) { if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) return -EINVAL; mutex_lock(&kvm->slots_lock); spin_lock(&kvm->mmu_lock); kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; spin_unlock(&kvm->mmu_lock); mutex_unlock(&kvm->slots_lock); return 0; } static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) { return kvm->arch.n_max_mmu_pages; } static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) { int r; r = 0; switch (chip->chip_id) { case KVM_IRQCHIP_PIC_MASTER: memcpy(&chip->chip.pic, &pic_irqchip(kvm)->pics[0], sizeof(struct kvm_pic_state)); break; case KVM_IRQCHIP_PIC_SLAVE: memcpy(&chip->chip.pic, &pic_irqchip(kvm)->pics[1], sizeof(struct kvm_pic_state)); break; case KVM_IRQCHIP_IOAPIC: r = kvm_get_ioapic(kvm, &chip->chip.ioapic); break; default: r = -EINVAL; break; } return r; } static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) { int r; r = 0; switch (chip->chip_id) { case KVM_IRQCHIP_PIC_MASTER: spin_lock(&pic_irqchip(kvm)->lock); memcpy(&pic_irqchip(kvm)->pics[0], &chip->chip.pic, sizeof(struct kvm_pic_state)); spin_unlock(&pic_irqchip(kvm)->lock); break; case KVM_IRQCHIP_PIC_SLAVE: spin_lock(&pic_irqchip(kvm)->lock); memcpy(&pic_irqchip(kvm)->pics[1], &chip->chip.pic, sizeof(struct kvm_pic_state)); spin_unlock(&pic_irqchip(kvm)->lock); break; case KVM_IRQCHIP_IOAPIC: r = kvm_set_ioapic(kvm, &chip->chip.ioapic); break; default: r = -EINVAL; break; } kvm_pic_update_irq(pic_irqchip(kvm)); return r; } static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) { int r = 0; mutex_lock(&kvm->arch.vpit->pit_state.lock); memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); mutex_unlock(&kvm->arch.vpit->pit_state.lock); return r; } static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) { int r = 0; mutex_lock(&kvm->arch.vpit->pit_state.lock); memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); mutex_unlock(&kvm->arch.vpit->pit_state.lock); return r; } static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) { int r = 0; mutex_lock(&kvm->arch.vpit->pit_state.lock); memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, sizeof(ps->channels)); ps->flags = kvm->arch.vpit->pit_state.flags; mutex_unlock(&kvm->arch.vpit->pit_state.lock); memset(&ps->reserved, 0, sizeof(ps->reserved)); return r; } static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) { int r = 0, start = 0; u32 prev_legacy, cur_legacy; mutex_lock(&kvm->arch.vpit->pit_state.lock); prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; if (!prev_legacy && cur_legacy) start = 1; memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, sizeof(kvm->arch.vpit->pit_state.channels)); kvm->arch.vpit->pit_state.flags = ps->flags; kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); mutex_unlock(&kvm->arch.vpit->pit_state.lock); return r; } static int kvm_vm_ioctl_reinject(struct kvm *kvm, struct kvm_reinject_control *control) { if (!kvm->arch.vpit) return -ENXIO; mutex_lock(&kvm->arch.vpit->pit_state.lock); kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject; mutex_unlock(&kvm->arch.vpit->pit_state.lock); return 0; } /** * write_protect_slot - write protect a slot for dirty logging * @kvm: the kvm instance * @memslot: the slot we protect * @dirty_bitmap: the bitmap indicating which pages are dirty * @nr_dirty_pages: the number of dirty pages * * We have two ways to find all sptes to protect: * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and * checks ones that have a spte mapping a page in the slot. * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap. * * Generally speaking, if there are not so many dirty pages compared to the * number of shadow pages, we should use the latter. * * Note that letting others write into a page marked dirty in the old bitmap * by using the remaining tlb entry is not a problem. That page will become * write protected again when we flush the tlb and then be reported dirty to * the user space by copying the old bitmap. */ static void write_protect_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long *dirty_bitmap, unsigned long nr_dirty_pages) { spin_lock(&kvm->mmu_lock); /* Not many dirty pages compared to # of shadow pages. */ if (nr_dirty_pages < kvm->arch.n_used_mmu_pages) { unsigned long gfn_offset; for_each_set_bit(gfn_offset, dirty_bitmap, memslot->npages) { unsigned long gfn = memslot->base_gfn + gfn_offset; kvm_mmu_rmap_write_protect(kvm, gfn, memslot); } kvm_flush_remote_tlbs(kvm); } else kvm_mmu_slot_remove_write_access(kvm, memslot->id); spin_unlock(&kvm->mmu_lock); } /* * Get (and clear) the dirty memory log for a memory slot. */ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { int r; struct kvm_memory_slot *memslot; unsigned long n, nr_dirty_pages; mutex_lock(&kvm->slots_lock); r = -EINVAL; if (log->slot >= KVM_MEMORY_SLOTS) goto out; memslot = id_to_memslot(kvm->memslots, log->slot); r = -ENOENT; if (!memslot->dirty_bitmap) goto out; n = kvm_dirty_bitmap_bytes(memslot); nr_dirty_pages = memslot->nr_dirty_pages; /* If nothing is dirty, don't bother messing with page tables. */ if (nr_dirty_pages) { struct kvm_memslots *slots, *old_slots; unsigned long *dirty_bitmap, *dirty_bitmap_head; dirty_bitmap = memslot->dirty_bitmap; dirty_bitmap_head = memslot->dirty_bitmap_head; if (dirty_bitmap == dirty_bitmap_head) dirty_bitmap_head += n / sizeof(long); memset(dirty_bitmap_head, 0, n); r = -ENOMEM; slots = kmemdup(kvm->memslots, sizeof(*kvm->memslots), GFP_KERNEL); if (!slots) goto out; memslot = id_to_memslot(slots, log->slot); memslot->nr_dirty_pages = 0; memslot->dirty_bitmap = dirty_bitmap_head; update_memslots(slots, NULL); old_slots = kvm->memslots; rcu_assign_pointer(kvm->memslots, slots); synchronize_srcu_expedited(&kvm->srcu); kfree(old_slots); write_protect_slot(kvm, memslot, dirty_bitmap, nr_dirty_pages); r = -EFAULT; if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) goto out; } else { r = -EFAULT; if (clear_user(log->dirty_bitmap, n)) goto out; } r = 0; out: mutex_unlock(&kvm->slots_lock); return r; } long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm *kvm = filp->private_data; void __user *argp = (void __user *)arg; int r = -ENOTTY; /* * This union makes it completely explicit to gcc-3.x * that these two variables' stack usage should be * combined, not added together. */ union { struct kvm_pit_state ps; struct kvm_pit_state2 ps2; struct kvm_pit_config pit_config; } u; switch (ioctl) { case KVM_SET_TSS_ADDR: r = kvm_vm_ioctl_set_tss_addr(kvm, arg); if (r < 0) goto out; break; case KVM_SET_IDENTITY_MAP_ADDR: { u64 ident_addr; r = -EFAULT; if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) goto out; r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); if (r < 0) goto out; break; } case KVM_SET_NR_MMU_PAGES: r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); if (r) goto out; break; case KVM_GET_NR_MMU_PAGES: r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); break; case KVM_CREATE_IRQCHIP: { struct kvm_pic *vpic; mutex_lock(&kvm->lock); r = -EEXIST; if (kvm->arch.vpic) goto create_irqchip_unlock; r = -EINVAL; if (atomic_read(&kvm->online_vcpus)) goto create_irqchip_unlock; r = -ENOMEM; vpic = kvm_create_pic(kvm); if (vpic) { r = kvm_ioapic_init(kvm); if (r) { mutex_lock(&kvm->slots_lock); kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev_master); kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev_slave); kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev_eclr); mutex_unlock(&kvm->slots_lock); kfree(vpic); goto create_irqchip_unlock; } } else goto create_irqchip_unlock; smp_wmb(); kvm->arch.vpic = vpic; smp_wmb(); r = kvm_setup_default_irq_routing(kvm); if (r) { mutex_lock(&kvm->slots_lock); mutex_lock(&kvm->irq_lock); kvm_ioapic_destroy(kvm); kvm_destroy_pic(kvm); mutex_unlock(&kvm->irq_lock); mutex_unlock(&kvm->slots_lock); } create_irqchip_unlock: mutex_unlock(&kvm->lock); break; } case KVM_CREATE_PIT: u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; goto create_pit; case KVM_CREATE_PIT2: r = -EFAULT; if (copy_from_user(&u.pit_config, argp, sizeof(struct kvm_pit_config))) goto out; create_pit: mutex_lock(&kvm->slots_lock); r = -EEXIST; if (kvm->arch.vpit) goto create_pit_unlock; r = -ENOMEM; kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); if (kvm->arch.vpit) r = 0; create_pit_unlock: mutex_unlock(&kvm->slots_lock); break; case KVM_IRQ_LINE_STATUS: case KVM_IRQ_LINE: { struct kvm_irq_level irq_event; r = -EFAULT; if (copy_from_user(&irq_event, argp, sizeof irq_event)) goto out; r = -ENXIO; if (irqchip_in_kernel(kvm)) { __s32 status; status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irq_event.irq, irq_event.level); if (ioctl == KVM_IRQ_LINE_STATUS) { r = -EFAULT; irq_event.status = status; if (copy_to_user(argp, &irq_event, sizeof irq_event)) goto out; } r = 0; } break; } case KVM_GET_IRQCHIP: { /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ struct kvm_irqchip *chip; chip = memdup_user(argp, sizeof(*chip)); if (IS_ERR(chip)) { r = PTR_ERR(chip); goto out; } r = -ENXIO; if (!irqchip_in_kernel(kvm)) goto get_irqchip_out; r = kvm_vm_ioctl_get_irqchip(kvm, chip); if (r) goto get_irqchip_out; r = -EFAULT; if (copy_to_user(argp, chip, sizeof *chip)) goto get_irqchip_out; r = 0; get_irqchip_out: kfree(chip); if (r) goto out; break; } case KVM_SET_IRQCHIP: { /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ struct kvm_irqchip *chip; chip = memdup_user(argp, sizeof(*chip)); if (IS_ERR(chip)) { r = PTR_ERR(chip); goto out; } r = -ENXIO; if (!irqchip_in_kernel(kvm)) goto set_irqchip_out; r = kvm_vm_ioctl_set_irqchip(kvm, chip); if (r) goto set_irqchip_out; r = 0; set_irqchip_out: kfree(chip); if (r) goto out; break; } case KVM_GET_PIT: { r = -EFAULT; if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) goto out; r = -ENXIO; if (!kvm->arch.vpit) goto out; r = kvm_vm_ioctl_get_pit(kvm, &u.ps); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) goto out; r = 0; break; } case KVM_SET_PIT: { r = -EFAULT; if (copy_from_user(&u.ps, argp, sizeof u.ps)) goto out; r = -ENXIO; if (!kvm->arch.vpit) goto out; r = kvm_vm_ioctl_set_pit(kvm, &u.ps); if (r) goto out; r = 0; break; } case KVM_GET_PIT2: { r = -ENXIO; if (!kvm->arch.vpit) goto out; r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) goto out; r = 0; break; } case KVM_SET_PIT2: { r = -EFAULT; if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) goto out; r = -ENXIO; if (!kvm->arch.vpit) goto out; r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); if (r) goto out; r = 0; break; } case KVM_REINJECT_CONTROL: { struct kvm_reinject_control control; r = -EFAULT; if (copy_from_user(&control, argp, sizeof(control))) goto out; r = kvm_vm_ioctl_reinject(kvm, &control); if (r) goto out; r = 0; break; } case KVM_XEN_HVM_CONFIG: { r = -EFAULT; if (copy_from_user(&kvm->arch.xen_hvm_config, argp, sizeof(struct kvm_xen_hvm_config))) goto out; r = -EINVAL; if (kvm->arch.xen_hvm_config.flags) goto out; r = 0; break; } case KVM_SET_CLOCK: { struct kvm_clock_data user_ns; u64 now_ns; s64 delta; r = -EFAULT; if (copy_from_user(&user_ns, argp, sizeof(user_ns))) goto out; r = -EINVAL; if (user_ns.flags) goto out; r = 0; local_irq_disable(); now_ns = get_kernel_ns(); delta = user_ns.clock - now_ns; local_irq_enable(); kvm->arch.kvmclock_offset = delta; break; } case KVM_GET_CLOCK: { struct kvm_clock_data user_ns; u64 now_ns; local_irq_disable(); now_ns = get_kernel_ns(); user_ns.clock = kvm->arch.kvmclock_offset + now_ns; local_irq_enable(); user_ns.flags = 0; memset(&user_ns.pad, 0, sizeof(user_ns.pad)); r = -EFAULT; if (copy_to_user(argp, &user_ns, sizeof(user_ns))) goto out; r = 0; break; } default: ; } out: return r; } static void kvm_init_msr_list(void) { u32 dummy[2]; unsigned i, j; /* skip the first msrs in the list. KVM-specific */ for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) continue; if (j < i) msrs_to_save[j] = msrs_to_save[i]; j++; } num_msrs_to_save = j; } static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, const void *v) { int handled = 0; int n; do { n = min(len, 8); if (!(vcpu->arch.apic && !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) break; handled += n; addr += n; len -= n; v += n; } while (len); return handled; } static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) { int handled = 0; int n; do { n = min(len, 8); if (!(vcpu->arch.apic && !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) break; trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); handled += n; addr += n; len -= n; v += n; } while (len); return handled; } static void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { kvm_x86_ops->set_segment(vcpu, var, seg); } void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { kvm_x86_ops->get_segment(vcpu, var, seg); } gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) { gpa_t t_gpa; struct x86_exception exception; BUG_ON(!mmu_is_nested(vcpu)); /* NPT walks are always user-walks */ access |= PFERR_USER_MASK; t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); return t_gpa; } gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception) { u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); } gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception) { u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; access |= PFERR_FETCH_MASK; return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); } gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception) { u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; access |= PFERR_WRITE_MASK; return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); } /* uses this to access any guest's mapped memory without checking CPL */ gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception) { return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); } static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu, u32 access, struct x86_exception *exception) { void *data = val; int r = X86EMUL_CONTINUE; while (bytes) { gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, exception); unsigned offset = addr & (PAGE_SIZE-1); unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); int ret; if (gpa == UNMAPPED_GVA) return X86EMUL_PROPAGATE_FAULT; ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); if (ret < 0) { r = X86EMUL_IO_NEEDED; goto out; } bytes -= toread; data += toread; addr += toread; } out: return r; } /* used for instruction fetching */ static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access | PFERR_FETCH_MASK, exception); } int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); } EXPORT_SYMBOL_GPL(kvm_read_guest_virt); static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); } int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); void *data = val; int r = X86EMUL_CONTINUE; while (bytes) { gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, PFERR_WRITE_MASK, exception); unsigned offset = addr & (PAGE_SIZE-1); unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); int ret; if (gpa == UNMAPPED_GVA) return X86EMUL_PROPAGATE_FAULT; ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); if (ret < 0) { r = X86EMUL_IO_NEEDED; goto out; } bytes -= towrite; data += towrite; addr += towrite; } out: return r; } EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, gpa_t *gpa, struct x86_exception *exception, bool write) { u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; if (vcpu_match_mmio_gva(vcpu, gva) && check_write_user_access(vcpu, write, access, vcpu->arch.access)) { *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | (gva & (PAGE_SIZE - 1)); trace_vcpu_match_mmio(gva, *gpa, write, false); return 1; } if (write) access |= PFERR_WRITE_MASK; *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); if (*gpa == UNMAPPED_GVA) return -1; /* For APIC access vmexit */ if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) return 1; if (vcpu_match_mmio_gpa(vcpu, *gpa)) { trace_vcpu_match_mmio(gva, *gpa, write, true); return 1; } return 0; } int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, const void *val, int bytes) { int ret; ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); if (ret < 0) return 0; kvm_mmu_pte_write(vcpu, gpa, val, bytes); return 1; } struct read_write_emulator_ops { int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, int bytes); int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes); int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val); int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes); bool write; }; static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) { if (vcpu->mmio_read_completed) { memcpy(val, vcpu->mmio_data, bytes); trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, vcpu->mmio_phys_addr, *(u64 *)val); vcpu->mmio_read_completed = 0; return 1; } return 0; } static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes) { return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); } static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes) { return emulator_write_phys(vcpu, gpa, val, bytes); } static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) { trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); return vcpu_mmio_write(vcpu, gpa, bytes, val); } static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes) { trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); return X86EMUL_IO_NEEDED; } static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes) { memcpy(vcpu->mmio_data, val, bytes); memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8); return X86EMUL_CONTINUE; } static struct read_write_emulator_ops read_emultor = { .read_write_prepare = read_prepare, .read_write_emulate = read_emulate, .read_write_mmio = vcpu_mmio_read, .read_write_exit_mmio = read_exit_mmio, }; static struct read_write_emulator_ops write_emultor = { .read_write_emulate = write_emulate, .read_write_mmio = write_mmio, .read_write_exit_mmio = write_exit_mmio, .write = true, }; static int emulator_read_write_onepage(unsigned long addr, void *val, unsigned int bytes, struct x86_exception *exception, struct kvm_vcpu *vcpu, struct read_write_emulator_ops *ops) { gpa_t gpa; int handled, ret; bool write = ops->write; if (ops->read_write_prepare && ops->read_write_prepare(vcpu, val, bytes)) return X86EMUL_CONTINUE; ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); if (ret < 0) return X86EMUL_PROPAGATE_FAULT; /* For APIC access vmexit */ if (ret) goto mmio; if (ops->read_write_emulate(vcpu, gpa, val, bytes)) return X86EMUL_CONTINUE; mmio: /* * Is this MMIO handled locally? */ handled = ops->read_write_mmio(vcpu, gpa, bytes, val); if (handled == bytes) return X86EMUL_CONTINUE; gpa += handled; bytes -= handled; val += handled; vcpu->mmio_needed = 1; vcpu->run->exit_reason = KVM_EXIT_MMIO; vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa; vcpu->mmio_size = bytes; vcpu->run->mmio.len = min(vcpu->mmio_size, 8); vcpu->run->mmio.is_write = vcpu->mmio_is_write = write; vcpu->mmio_index = 0; return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); } int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, void *val, unsigned int bytes, struct x86_exception *exception, struct read_write_emulator_ops *ops) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); /* Crossing a page boundary? */ if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { int rc, now; now = -addr & ~PAGE_MASK; rc = emulator_read_write_onepage(addr, val, now, exception, vcpu, ops); if (rc != X86EMUL_CONTINUE) return rc; addr += now; val += now; bytes -= now; } return emulator_read_write_onepage(addr, val, bytes, exception, vcpu, ops); } static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, unsigned long addr, void *val, unsigned int bytes, struct x86_exception *exception) { return emulator_read_write(ctxt, addr, val, bytes, exception, &read_emultor); } int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, unsigned long addr, const void *val, unsigned int bytes, struct x86_exception *exception) { return emulator_read_write(ctxt, addr, (void *)val, bytes, exception, &write_emultor); } #define CMPXCHG_TYPE(t, ptr, old, new) \ (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) #ifdef CONFIG_X86_64 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) #else # define CMPXCHG64(ptr, old, new) \ (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) #endif static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, unsigned long addr, const void *old, const void *new, unsigned int bytes, struct x86_exception *exception) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); gpa_t gpa; struct page *page; char *kaddr; bool exchanged; /* guests cmpxchg8b have to be emulated atomically */ if (bytes > 8 || (bytes & (bytes - 1))) goto emul_write; gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); if (gpa == UNMAPPED_GVA || (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) goto emul_write; if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) goto emul_write; page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); if (is_error_page(page)) { kvm_release_page_clean(page); goto emul_write; } kaddr = kmap_atomic(page); kaddr += offset_in_page(gpa); switch (bytes) { case 1: exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); break; case 2: exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); break; case 4: exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); break; case 8: exchanged = CMPXCHG64(kaddr, old, new); break; default: BUG(); } kunmap_atomic(kaddr); kvm_release_page_dirty(page); if (!exchanged) return X86EMUL_CMPXCHG_FAILED; kvm_mmu_pte_write(vcpu, gpa, new, bytes); return X86EMUL_CONTINUE; emul_write: printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); return emulator_write_emulated(ctxt, addr, new, bytes, exception); } static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) { /* TODO: String I/O for in kernel device */ int r; if (vcpu->arch.pio.in) r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, vcpu->arch.pio.size, pd); else r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, vcpu->arch.pio.size, pd); return r; } static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, unsigned short port, void *val, unsigned int count, bool in) { trace_kvm_pio(!in, port, size, count); vcpu->arch.pio.port = port; vcpu->arch.pio.in = in; vcpu->arch.pio.count = count; vcpu->arch.pio.size = size; if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { vcpu->arch.pio.count = 0; return 1; } vcpu->run->exit_reason = KVM_EXIT_IO; vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; vcpu->run->io.size = size; vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; vcpu->run->io.count = count; vcpu->run->io.port = port; return 0; } static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, int size, unsigned short port, void *val, unsigned int count) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); int ret; if (vcpu->arch.pio.count) goto data_avail; ret = emulator_pio_in_out(vcpu, size, port, val, count, true); if (ret) { data_avail: memcpy(val, vcpu->arch.pio_data, size * count); vcpu->arch.pio.count = 0; return 1; } return 0; } static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, int size, unsigned short port, const void *val, unsigned int count) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); memcpy(vcpu->arch.pio_data, val, size * count); return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); } static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) { return kvm_x86_ops->get_segment_base(vcpu, seg); } static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) { kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); } int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) { if (!need_emulate_wbinvd(vcpu)) return X86EMUL_CONTINUE; if (kvm_x86_ops->has_wbinvd_exit()) { int cpu = get_cpu(); cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, wbinvd_ipi, NULL, 1); put_cpu(); cpumask_clear(vcpu->arch.wbinvd_dirty_mask); } else wbinvd(); return X86EMUL_CONTINUE; } EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) { kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); } int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) { return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); } int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) { return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); } static u64 mk_cr_64(u64 curr_cr, u32 new_val) { return (curr_cr & ~((1ULL << 32) - 1)) | new_val; } static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); unsigned long value; switch (cr) { case 0: value = kvm_read_cr0(vcpu); break; case 2: value = vcpu->arch.cr2; break; case 3: value = kvm_read_cr3(vcpu); break; case 4: value = kvm_read_cr4(vcpu); break; case 8: value = kvm_get_cr8(vcpu); break; default: vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); return 0; } return value; } static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); int res = 0; switch (cr) { case 0: res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); break; case 2: vcpu->arch.cr2 = val; break; case 3: res = kvm_set_cr3(vcpu, val); break; case 4: res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); break; case 8: res = kvm_set_cr8(vcpu, val); break; default: vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); res = -1; } return res; } static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) { kvm_set_rflags(emul_to_vcpu(ctxt), val); } static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) { return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); } static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) { kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); } static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) { kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); } static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) { kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); } static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) { kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); } static unsigned long emulator_get_cached_segment_base( struct x86_emulate_ctxt *ctxt, int seg) { return get_segment_base(emul_to_vcpu(ctxt), seg); } static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, struct desc_struct *desc, u32 *base3, int seg) { struct kvm_segment var; kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); *selector = var.selector; if (var.unusable) return false; if (var.g) var.limit >>= 12; set_desc_limit(desc, var.limit); set_desc_base(desc, (unsigned long)var.base); #ifdef CONFIG_X86_64 if (base3) *base3 = var.base >> 32; #endif desc->type = var.type; desc->s = var.s; desc->dpl = var.dpl; desc->p = var.present; desc->avl = var.avl; desc->l = var.l; desc->d = var.db; desc->g = var.g; return true; } static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, struct desc_struct *desc, u32 base3, int seg) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); struct kvm_segment var; var.selector = selector; var.base = get_desc_base(desc); #ifdef CONFIG_X86_64 var.base |= ((u64)base3) << 32; #endif var.limit = get_desc_limit(desc); if (desc->g) var.limit = (var.limit << 12) | 0xfff; var.type = desc->type; var.present = desc->p; var.dpl = desc->dpl; var.db = desc->d; var.s = desc->s; var.l = desc->l; var.g = desc->g; var.avl = desc->avl; var.present = desc->p; var.unusable = !var.present; var.padding = 0; kvm_set_segment(vcpu, &var, seg); return; } static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, u32 msr_index, u64 *pdata) { return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); } static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, u32 msr_index, u64 data) { return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); } static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, u32 pmc, u64 *pdata) { return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); } static void emulator_halt(struct x86_emulate_ctxt *ctxt) { emul_to_vcpu(ctxt)->arch.halt_request = 1; } static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) { preempt_disable(); kvm_load_guest_fpu(emul_to_vcpu(ctxt)); /* * CR0.TS may reference the host fpu state, not the guest fpu state, * so it may be clear at this point. */ clts(); } static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) { preempt_enable(); } static int emulator_intercept(struct x86_emulate_ctxt *ctxt, struct x86_instruction_info *info, enum x86_intercept_stage stage) { return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); } static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) { struct kvm_cpuid_entry2 *cpuid = NULL; if (eax && ecx) cpuid = kvm_find_cpuid_entry(emul_to_vcpu(ctxt), *eax, *ecx); if (cpuid) { *eax = cpuid->eax; *ecx = cpuid->ecx; if (ebx) *ebx = cpuid->ebx; if (edx) *edx = cpuid->edx; return true; } return false; } static struct x86_emulate_ops emulate_ops = { .read_std = kvm_read_guest_virt_system, .write_std = kvm_write_guest_virt_system, .fetch = kvm_fetch_guest_virt, .read_emulated = emulator_read_emulated, .write_emulated = emulator_write_emulated, .cmpxchg_emulated = emulator_cmpxchg_emulated, .invlpg = emulator_invlpg, .pio_in_emulated = emulator_pio_in_emulated, .pio_out_emulated = emulator_pio_out_emulated, .get_segment = emulator_get_segment, .set_segment = emulator_set_segment, .get_cached_segment_base = emulator_get_cached_segment_base, .get_gdt = emulator_get_gdt, .get_idt = emulator_get_idt, .set_gdt = emulator_set_gdt, .set_idt = emulator_set_idt, .get_cr = emulator_get_cr, .set_cr = emulator_set_cr, .set_rflags = emulator_set_rflags, .cpl = emulator_get_cpl, .get_dr = emulator_get_dr, .set_dr = emulator_set_dr, .set_msr = emulator_set_msr, .get_msr = emulator_get_msr, .read_pmc = emulator_read_pmc, .halt = emulator_halt, .wbinvd = emulator_wbinvd, .fix_hypercall = emulator_fix_hypercall, .get_fpu = emulator_get_fpu, .put_fpu = emulator_put_fpu, .intercept = emulator_intercept, .get_cpuid = emulator_get_cpuid, }; static void cache_all_regs(struct kvm_vcpu *vcpu) { kvm_register_read(vcpu, VCPU_REGS_RAX); kvm_register_read(vcpu, VCPU_REGS_RSP); kvm_register_read(vcpu, VCPU_REGS_RIP); vcpu->arch.regs_dirty = ~0; } static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) { u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); /* * an sti; sti; sequence only disable interrupts for the first * instruction. So, if the last instruction, be it emulated or * not, left the system with the INT_STI flag enabled, it * means that the last instruction is an sti. We should not * leave the flag on in this case. The same goes for mov ss */ if (!(int_shadow & mask)) kvm_x86_ops->set_interrupt_shadow(vcpu, mask); } static void inject_emulated_exception(struct kvm_vcpu *vcpu) { struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; if (ctxt->exception.vector == PF_VECTOR) kvm_propagate_fault(vcpu, &ctxt->exception); else if (ctxt->exception.error_code_valid) kvm_queue_exception_e(vcpu, ctxt->exception.vector, ctxt->exception.error_code); else kvm_queue_exception(vcpu, ctxt->exception.vector); } static void init_decode_cache(struct x86_emulate_ctxt *ctxt, const unsigned long *regs) { memset(&ctxt->twobyte, 0, (void *)&ctxt->regs - (void *)&ctxt->twobyte); memcpy(ctxt->regs, regs, sizeof(ctxt->regs)); ctxt->fetch.start = 0; ctxt->fetch.end = 0; ctxt->io_read.pos = 0; ctxt->io_read.end = 0; ctxt->mem_read.pos = 0; ctxt->mem_read.end = 0; } static void init_emulate_ctxt(struct kvm_vcpu *vcpu) { struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; int cs_db, cs_l; /* * TODO: fix emulate.c to use guest_read/write_register * instead of direct ->regs accesses, can save hundred cycles * on Intel for instructions that don't read/change RSP, for * for example. */ cache_all_regs(vcpu); kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); ctxt->eflags = kvm_get_rflags(vcpu); ctxt->eip = kvm_rip_read(vcpu); ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : cs_l ? X86EMUL_MODE_PROT64 : cs_db ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; ctxt->guest_mode = is_guest_mode(vcpu); init_decode_cache(ctxt, vcpu->arch.regs); vcpu->arch.emulate_regs_need_sync_from_vcpu = false; } int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) { struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; int ret; init_emulate_ctxt(vcpu); ctxt->op_bytes = 2; ctxt->ad_bytes = 2; ctxt->_eip = ctxt->eip + inc_eip; ret = emulate_int_real(ctxt, irq); if (ret != X86EMUL_CONTINUE) return EMULATE_FAIL; ctxt->eip = ctxt->_eip; memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); kvm_rip_write(vcpu, ctxt->eip); kvm_set_rflags(vcpu, ctxt->eflags); if (irq == NMI_VECTOR) vcpu->arch.nmi_pending = 0; else vcpu->arch.interrupt.pending = false; return EMULATE_DONE; } EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); static int handle_emulation_failure(struct kvm_vcpu *vcpu) { int r = EMULATE_DONE; ++vcpu->stat.insn_emulation_fail; trace_kvm_emulate_insn_failed(vcpu); if (!is_guest_mode(vcpu)) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; vcpu->run->internal.ndata = 0; r = EMULATE_FAIL; } kvm_queue_exception(vcpu, UD_VECTOR); return r; } static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva) { gpa_t gpa; if (tdp_enabled) return false; /* * if emulation was due to access to shadowed page table * and it failed try to unshadow page and re-entetr the * guest to let CPU execute the instruction. */ if (kvm_mmu_unprotect_page_virt(vcpu, gva)) return true; gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL); if (gpa == UNMAPPED_GVA) return true; /* let cpu generate fault */ if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT))) return true; return false; } static bool retry_instruction(struct x86_emulate_ctxt *ctxt, unsigned long cr2, int emulation_type) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); unsigned long last_retry_eip, last_retry_addr, gpa = cr2; last_retry_eip = vcpu->arch.last_retry_eip; last_retry_addr = vcpu->arch.last_retry_addr; /* * If the emulation is caused by #PF and it is non-page_table * writing instruction, it means the VM-EXIT is caused by shadow * page protected, we can zap the shadow page and retry this * instruction directly. * * Note: if the guest uses a non-page-table modifying instruction * on the PDE that points to the instruction, then we will unmap * the instruction and go to an infinite loop. So, we cache the * last retried eip and the last fault address, if we meet the eip * and the address again, we can break out of the potential infinite * loop. */ vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; if (!(emulation_type & EMULTYPE_RETRY)) return false; if (x86_page_table_writing_insn(ctxt)) return false; if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) return false; vcpu->arch.last_retry_eip = ctxt->eip; vcpu->arch.last_retry_addr = cr2; if (!vcpu->arch.mmu.direct_map) gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); return true; } int x86_emulate_instruction(struct kvm_vcpu *vcpu, unsigned long cr2, int emulation_type, void *insn, int insn_len) { int r; struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; bool writeback = true; kvm_clear_exception_queue(vcpu); if (!(emulation_type & EMULTYPE_NO_DECODE)) { init_emulate_ctxt(vcpu); ctxt->interruptibility = 0; ctxt->have_exception = false; ctxt->perm_ok = false; ctxt->only_vendor_specific_insn = emulation_type & EMULTYPE_TRAP_UD; r = x86_decode_insn(ctxt, insn, insn_len); trace_kvm_emulate_insn_start(vcpu); ++vcpu->stat.insn_emulation; if (r != EMULATION_OK) { if (emulation_type & EMULTYPE_TRAP_UD) return EMULATE_FAIL; if (reexecute_instruction(vcpu, cr2)) return EMULATE_DONE; if (emulation_type & EMULTYPE_SKIP) return EMULATE_FAIL; return handle_emulation_failure(vcpu); } } if (emulation_type & EMULTYPE_SKIP) { kvm_rip_write(vcpu, ctxt->_eip); return EMULATE_DONE; } if (retry_instruction(ctxt, cr2, emulation_type)) return EMULATE_DONE; /* this is needed for vmware backdoor interface to work since it changes registers values during IO operation */ if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { vcpu->arch.emulate_regs_need_sync_from_vcpu = false; memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs); } restart: r = x86_emulate_insn(ctxt); if (r == EMULATION_INTERCEPTED) return EMULATE_DONE; if (r == EMULATION_FAILED) { if (reexecute_instruction(vcpu, cr2)) return EMULATE_DONE; return handle_emulation_failure(vcpu); } if (ctxt->have_exception) { inject_emulated_exception(vcpu); r = EMULATE_DONE; } else if (vcpu->arch.pio.count) { if (!vcpu->arch.pio.in) vcpu->arch.pio.count = 0; else writeback = false; r = EMULATE_DO_MMIO; } else if (vcpu->mmio_needed) { if (!vcpu->mmio_is_write) writeback = false; r = EMULATE_DO_MMIO; } else if (r == EMULATION_RESTART) goto restart; else r = EMULATE_DONE; if (writeback) { toggle_interruptibility(vcpu, ctxt->interruptibility); kvm_set_rflags(vcpu, ctxt->eflags); kvm_make_request(KVM_REQ_EVENT, vcpu); memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); vcpu->arch.emulate_regs_need_sync_to_vcpu = false; kvm_rip_write(vcpu, ctxt->eip); } else vcpu->arch.emulate_regs_need_sync_to_vcpu = true; return r; } EXPORT_SYMBOL_GPL(x86_emulate_instruction); int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) { unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, size, port, &val, 1); /* do not return to emulator after return from userspace */ vcpu->arch.pio.count = 0; return ret; } EXPORT_SYMBOL_GPL(kvm_fast_pio_out); static void tsc_bad(void *info) { __this_cpu_write(cpu_tsc_khz, 0); } static void tsc_khz_changed(void *data) { struct cpufreq_freqs *freq = data; unsigned long khz = 0; if (data) khz = freq->new; else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) khz = cpufreq_quick_get(raw_smp_processor_id()); if (!khz) khz = tsc_khz; __this_cpu_write(cpu_tsc_khz, khz); } static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freq = data; struct kvm *kvm; struct kvm_vcpu *vcpu; int i, send_ipi = 0; /* * We allow guests to temporarily run on slowing clocks, * provided we notify them after, or to run on accelerating * clocks, provided we notify them before. Thus time never * goes backwards. * * However, we have a problem. We can't atomically update * the frequency of a given CPU from this function; it is * merely a notifier, which can be called from any CPU. * Changing the TSC frequency at arbitrary points in time * requires a recomputation of local variables related to * the TSC for each VCPU. We must flag these local variables * to be updated and be sure the update takes place with the * new frequency before any guests proceed. * * Unfortunately, the combination of hotplug CPU and frequency * change creates an intractable locking scenario; the order * of when these callouts happen is undefined with respect to * CPU hotplug, and they can race with each other. As such, * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is * undefined; you can actually have a CPU frequency change take * place in between the computation of X and the setting of the * variable. To protect against this problem, all updates of * the per_cpu tsc_khz variable are done in an interrupt * protected IPI, and all callers wishing to update the value * must wait for a synchronous IPI to complete (which is trivial * if the caller is on the CPU already). This establishes the * necessary total order on variable updates. * * Note that because a guest time update may take place * anytime after the setting of the VCPU's request bit, the * correct TSC value must be set before the request. However, * to ensure the update actually makes it to any guest which * starts running in hardware virtualization between the set * and the acquisition of the spinlock, we must also ping the * CPU after setting the request bit. * */ if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) return 0; if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) return 0; smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); raw_spin_lock(&kvm_lock); list_for_each_entry(kvm, &vm_list, vm_list) { kvm_for_each_vcpu(i, vcpu, kvm) { if (vcpu->cpu != freq->cpu) continue; kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); if (vcpu->cpu != smp_processor_id()) send_ipi = 1; } } raw_spin_unlock(&kvm_lock); if (freq->old < freq->new && send_ipi) { /* * We upscale the frequency. Must make the guest * doesn't see old kvmclock values while running with * the new frequency, otherwise we risk the guest sees * time go backwards. * * In case we update the frequency for another cpu * (which might be in guest context) send an interrupt * to kick the cpu out of guest context. Next time * guest context is entered kvmclock will be updated, * so the guest will not see stale values. */ smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); } return 0; } static struct notifier_block kvmclock_cpufreq_notifier_block = { .notifier_call = kvmclock_cpufreq_notifier }; static int kvmclock_cpu_notifier(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; switch (action) { case CPU_ONLINE: case CPU_DOWN_FAILED: smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); break; case CPU_DOWN_PREPARE: smp_call_function_single(cpu, tsc_bad, NULL, 1); break; } return NOTIFY_OK; } static struct notifier_block kvmclock_cpu_notifier_block = { .notifier_call = kvmclock_cpu_notifier, .priority = -INT_MAX }; static void kvm_timer_init(void) { int cpu; max_tsc_khz = tsc_khz; register_hotcpu_notifier(&kvmclock_cpu_notifier_block); if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { #ifdef CONFIG_CPU_FREQ struct cpufreq_policy policy; memset(&policy, 0, sizeof(policy)); cpu = get_cpu(); cpufreq_get_policy(&policy, cpu); if (policy.cpuinfo.max_freq) max_tsc_khz = policy.cpuinfo.max_freq; put_cpu(); #endif cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); } pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); for_each_online_cpu(cpu) smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); } static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); int kvm_is_in_guest(void) { return __this_cpu_read(current_vcpu) != NULL; } static int kvm_is_user_mode(void) { int user_mode = 3; if (__this_cpu_read(current_vcpu)) user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); return user_mode != 0; } static unsigned long kvm_get_guest_ip(void) { unsigned long ip = 0; if (__this_cpu_read(current_vcpu)) ip = kvm_rip_read(__this_cpu_read(current_vcpu)); return ip; } static struct perf_guest_info_callbacks kvm_guest_cbs = { .is_in_guest = kvm_is_in_guest, .is_user_mode = kvm_is_user_mode, .get_guest_ip = kvm_get_guest_ip, }; void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) { __this_cpu_write(current_vcpu, vcpu); } EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) { __this_cpu_write(current_vcpu, NULL); } EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); static void kvm_set_mmio_spte_mask(void) { u64 mask; int maxphyaddr = boot_cpu_data.x86_phys_bits; /* * Set the reserved bits and the present bit of an paging-structure * entry to generate page fault with PFER.RSV = 1. */ mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr; mask |= 1ull; #ifdef CONFIG_X86_64 /* * If reserved bit is not supported, clear the present bit to disable * mmio page fault. */ if (maxphyaddr == 52) mask &= ~1ull; #endif kvm_mmu_set_mmio_spte_mask(mask); } int kvm_arch_init(void *opaque) { int r; struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; if (kvm_x86_ops) { printk(KERN_ERR "kvm: already loaded the other module\n"); r = -EEXIST; goto out; } if (!ops->cpu_has_kvm_support()) { printk(KERN_ERR "kvm: no hardware support\n"); r = -EOPNOTSUPP; goto out; } if (ops->disabled_by_bios()) { printk(KERN_ERR "kvm: disabled by bios\n"); r = -EOPNOTSUPP; goto out; } r = kvm_mmu_module_init(); if (r) goto out; kvm_set_mmio_spte_mask(); kvm_init_msr_list(); kvm_x86_ops = ops; kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, PT_DIRTY_MASK, PT64_NX_MASK, 0); kvm_timer_init(); perf_register_guest_info_callbacks(&kvm_guest_cbs); if (cpu_has_xsave) host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); return 0; out: return r; } void kvm_arch_exit(void) { perf_unregister_guest_info_callbacks(&kvm_guest_cbs); if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); kvm_x86_ops = NULL; kvm_mmu_module_exit(); } int kvm_emulate_halt(struct kvm_vcpu *vcpu) { ++vcpu->stat.halt_exits; if (irqchip_in_kernel(vcpu->kvm)) { vcpu->arch.mp_state = KVM_MP_STATE_HALTED; return 1; } else { vcpu->run->exit_reason = KVM_EXIT_HLT; return 0; } } EXPORT_SYMBOL_GPL(kvm_emulate_halt); int kvm_hv_hypercall(struct kvm_vcpu *vcpu) { u64 param, ingpa, outgpa, ret; uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; bool fast, longmode; int cs_db, cs_l; /* * hypercall generates UD from non zero cpl and real mode * per HYPER-V spec */ if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { kvm_queue_exception(vcpu, UD_VECTOR); return 0; } kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); longmode = is_long_mode(vcpu) && cs_l == 1; if (!longmode) { param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); } #ifdef CONFIG_X86_64 else { param = kvm_register_read(vcpu, VCPU_REGS_RCX); ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); } #endif code = param & 0xffff; fast = (param >> 16) & 0x1; rep_cnt = (param >> 32) & 0xfff; rep_idx = (param >> 48) & 0xfff; trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); switch (code) { case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: kvm_vcpu_on_spin(vcpu); break; default: res = HV_STATUS_INVALID_HYPERCALL_CODE; break; } ret = res | (((u64)rep_done & 0xfff) << 32); if (longmode) { kvm_register_write(vcpu, VCPU_REGS_RAX, ret); } else { kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); } return 1; } int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) { unsigned long nr, a0, a1, a2, a3, ret; int r = 1; if (kvm_hv_hypercall_enabled(vcpu->kvm)) return kvm_hv_hypercall(vcpu); nr = kvm_register_read(vcpu, VCPU_REGS_RAX); a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); trace_kvm_hypercall(nr, a0, a1, a2, a3); if (!is_long_mode(vcpu)) { nr &= 0xFFFFFFFF; a0 &= 0xFFFFFFFF; a1 &= 0xFFFFFFFF; a2 &= 0xFFFFFFFF; a3 &= 0xFFFFFFFF; } if (kvm_x86_ops->get_cpl(vcpu) != 0) { ret = -KVM_EPERM; goto out; } switch (nr) { case KVM_HC_VAPIC_POLL_IRQ: ret = 0; break; default: ret = -KVM_ENOSYS; break; } out: kvm_register_write(vcpu, VCPU_REGS_RAX, ret); ++vcpu->stat.hypercalls; return r; } EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) { struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); char instruction[3]; unsigned long rip = kvm_rip_read(vcpu); /* * Blow out the MMU to ensure that no other VCPU has an active mapping * to ensure that the updated hypercall appears atomically across all * VCPUs. */ kvm_mmu_zap_all(vcpu->kvm); kvm_x86_ops->patch_hypercall(vcpu, instruction); return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); } /* * Check if userspace requested an interrupt window, and that the * interrupt window is open. * * No need to exit to userspace if we already have an interrupt queued. */ static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) { return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && vcpu->run->request_interrupt_window && kvm_arch_interrupt_allowed(vcpu)); } static void post_kvm_run_save(struct kvm_vcpu *vcpu) { struct kvm_run *kvm_run = vcpu->run; kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; kvm_run->cr8 = kvm_get_cr8(vcpu); kvm_run->apic_base = kvm_get_apic_base(vcpu); if (irqchip_in_kernel(vcpu->kvm)) kvm_run->ready_for_interrupt_injection = 1; else kvm_run->ready_for_interrupt_injection = kvm_arch_interrupt_allowed(vcpu) && !kvm_cpu_has_interrupt(vcpu) && !kvm_event_needs_reinjection(vcpu); } static void vapic_enter(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic = vcpu->arch.apic; struct page *page; if (!apic || !apic->vapic_addr) return; page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); vcpu->arch.apic->vapic_page = page; } static void vapic_exit(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic = vcpu->arch.apic; int idx; if (!apic || !apic->vapic_addr) return; idx = srcu_read_lock(&vcpu->kvm->srcu); kvm_release_page_dirty(apic->vapic_page); mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); srcu_read_unlock(&vcpu->kvm->srcu, idx); } static void update_cr8_intercept(struct kvm_vcpu *vcpu) { int max_irr, tpr; if (!kvm_x86_ops->update_cr8_intercept) return; if (!vcpu->arch.apic) return; if (!vcpu->arch.apic->vapic_addr) max_irr = kvm_lapic_find_highest_irr(vcpu); else max_irr = -1; if (max_irr != -1) max_irr >>= 4; tpr = kvm_lapic_get_cr8(vcpu); kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); } static void inject_pending_event(struct kvm_vcpu *vcpu) { /* try to reinject previous events if any */ if (vcpu->arch.exception.pending) { trace_kvm_inj_exception(vcpu->arch.exception.nr, vcpu->arch.exception.has_error_code, vcpu->arch.exception.error_code); kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, vcpu->arch.exception.has_error_code, vcpu->arch.exception.error_code, vcpu->arch.exception.reinject); return; } if (vcpu->arch.nmi_injected) { kvm_x86_ops->set_nmi(vcpu); return; } if (vcpu->arch.interrupt.pending) { kvm_x86_ops->set_irq(vcpu); return; } /* try to inject new event if pending */ if (vcpu->arch.nmi_pending) { if (kvm_x86_ops->nmi_allowed(vcpu)) { --vcpu->arch.nmi_pending; vcpu->arch.nmi_injected = true; kvm_x86_ops->set_nmi(vcpu); } } else if (kvm_cpu_has_interrupt(vcpu)) { if (kvm_x86_ops->interrupt_allowed(vcpu)) { kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); kvm_x86_ops->set_irq(vcpu); } } } static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) { if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && !vcpu->guest_xcr0_loaded) { /* kvm_set_xcr() also depends on this */ xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); vcpu->guest_xcr0_loaded = 1; } } static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) { if (vcpu->guest_xcr0_loaded) { if (vcpu->arch.xcr0 != host_xcr0) xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); vcpu->guest_xcr0_loaded = 0; } } static void process_nmi(struct kvm_vcpu *vcpu) { unsigned limit = 2; /* * x86 is limited to one NMI running, and one NMI pending after it. * If an NMI is already in progress, limit further NMIs to just one. * Otherwise, allow two (and we'll inject the first one immediately). */ if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) limit = 1; vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); kvm_make_request(KVM_REQ_EVENT, vcpu); } static int vcpu_enter_guest(struct kvm_vcpu *vcpu) { int r; bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && vcpu->run->request_interrupt_window; bool req_immediate_exit = 0; if (vcpu->requests) { if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) kvm_mmu_unload(vcpu); if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) __kvm_migrate_timers(vcpu); if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { r = kvm_guest_time_update(vcpu); if (unlikely(r)) goto out; } if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) kvm_mmu_sync_roots(vcpu); if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) kvm_x86_ops->tlb_flush(vcpu); if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; r = 0; goto out; } if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; r = 0; goto out; } if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { vcpu->fpu_active = 0; kvm_x86_ops->fpu_deactivate(vcpu); } if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { /* Page is swapped out. Do synthetic halt */ vcpu->arch.apf.halted = true; r = 1; goto out; } if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) record_steal_time(vcpu); if (kvm_check_request(KVM_REQ_NMI, vcpu)) process_nmi(vcpu); req_immediate_exit = kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu); if (kvm_check_request(KVM_REQ_PMU, vcpu)) kvm_handle_pmu_event(vcpu); if (kvm_check_request(KVM_REQ_PMI, vcpu)) kvm_deliver_pmi(vcpu); } r = kvm_mmu_reload(vcpu); if (unlikely(r)) goto out; if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { inject_pending_event(vcpu); /* enable NMI/IRQ window open exits if needed */ if (vcpu->arch.nmi_pending) kvm_x86_ops->enable_nmi_window(vcpu); else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) kvm_x86_ops->enable_irq_window(vcpu); if (kvm_lapic_enabled(vcpu)) { update_cr8_intercept(vcpu); kvm_lapic_sync_to_vapic(vcpu); } } preempt_disable(); kvm_x86_ops->prepare_guest_switch(vcpu); if (vcpu->fpu_active) kvm_load_guest_fpu(vcpu); kvm_load_guest_xcr0(vcpu); vcpu->mode = IN_GUEST_MODE; /* We should set ->mode before check ->requests, * see the comment in make_all_cpus_request. */ smp_mb(); local_irq_disable(); if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests || need_resched() || signal_pending(current)) { vcpu->mode = OUTSIDE_GUEST_MODE; smp_wmb(); local_irq_enable(); preempt_enable(); kvm_x86_ops->cancel_injection(vcpu); r = 1; goto out; } srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); if (req_immediate_exit) smp_send_reschedule(vcpu->cpu); kvm_guest_enter(); if (unlikely(vcpu->arch.switch_db_regs)) { set_debugreg(0, 7); set_debugreg(vcpu->arch.eff_db[0], 0); set_debugreg(vcpu->arch.eff_db[1], 1); set_debugreg(vcpu->arch.eff_db[2], 2); set_debugreg(vcpu->arch.eff_db[3], 3); } trace_kvm_entry(vcpu->vcpu_id); kvm_x86_ops->run(vcpu); /* * If the guest has used debug registers, at least dr7 * will be disabled while returning to the host. * If we don't have active breakpoints in the host, we don't * care about the messed up debug address registers. But if * we have some of them active, restore the old state. */ if (hw_breakpoint_active()) hw_breakpoint_restore(); vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu); vcpu->mode = OUTSIDE_GUEST_MODE; smp_wmb(); local_irq_enable(); ++vcpu->stat.exits; /* * We must have an instruction between local_irq_enable() and * kvm_guest_exit(), so the timer interrupt isn't delayed by * the interrupt shadow. The stat.exits increment will do nicely. * But we need to prevent reordering, hence this barrier(): */ barrier(); kvm_guest_exit(); preempt_enable(); vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); /* * Profile KVM exit RIPs: */ if (unlikely(prof_on == KVM_PROFILING)) { unsigned long rip = kvm_rip_read(vcpu); profile_hit(KVM_PROFILING, (void *)rip); } if (unlikely(vcpu->arch.tsc_always_catchup)) kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); kvm_lapic_sync_from_vapic(vcpu); r = kvm_x86_ops->handle_exit(vcpu); out: return r; } static int __vcpu_run(struct kvm_vcpu *vcpu) { int r; struct kvm *kvm = vcpu->kvm; if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { pr_debug("vcpu %d received sipi with vector # %x\n", vcpu->vcpu_id, vcpu->arch.sipi_vector); kvm_lapic_reset(vcpu); r = kvm_arch_vcpu_reset(vcpu); if (r) return r; vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; } vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); vapic_enter(vcpu); r = 1; while (r > 0) { if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && !vcpu->arch.apf.halted) r = vcpu_enter_guest(vcpu); else { srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); kvm_vcpu_block(vcpu); vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { switch(vcpu->arch.mp_state) { case KVM_MP_STATE_HALTED: vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; case KVM_MP_STATE_RUNNABLE: vcpu->arch.apf.halted = false; break; case KVM_MP_STATE_SIPI_RECEIVED: default: r = -EINTR; break; } } } if (r <= 0) break; clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); if (kvm_cpu_has_pending_timer(vcpu)) kvm_inject_pending_timer_irqs(vcpu); if (dm_request_for_irq_injection(vcpu)) { r = -EINTR; vcpu->run->exit_reason = KVM_EXIT_INTR; ++vcpu->stat.request_irq_exits; } kvm_check_async_pf_completion(vcpu); if (signal_pending(current)) { r = -EINTR; vcpu->run->exit_reason = KVM_EXIT_INTR; ++vcpu->stat.signal_exits; } if (need_resched()) { srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); kvm_resched(vcpu); vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); } } srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); vapic_exit(vcpu); return r; } static int complete_mmio(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; int r; if (!(vcpu->arch.pio.count || vcpu->mmio_needed)) return 1; if (vcpu->mmio_needed) { vcpu->mmio_needed = 0; if (!vcpu->mmio_is_write) memcpy(vcpu->mmio_data + vcpu->mmio_index, run->mmio.data, 8); vcpu->mmio_index += 8; if (vcpu->mmio_index < vcpu->mmio_size) { run->exit_reason = KVM_EXIT_MMIO; run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index; memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8); run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8); run->mmio.is_write = vcpu->mmio_is_write; vcpu->mmio_needed = 1; return 0; } if (vcpu->mmio_is_write) return 1; vcpu->mmio_read_completed = 1; } vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); if (r != EMULATE_DONE) return 0; return 1; } int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { int r; sigset_t sigsaved; if (!tsk_used_math(current) && init_fpu(current)) return -ENOMEM; if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { kvm_vcpu_block(vcpu); clear_bit(KVM_REQ_UNHALT, &vcpu->requests); r = -EAGAIN; goto out; } /* re-sync apic's tpr */ if (!irqchip_in_kernel(vcpu->kvm)) { if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { r = -EINVAL; goto out; } } r = complete_mmio(vcpu); if (r <= 0) goto out; r = __vcpu_run(vcpu); out: post_kvm_run_save(vcpu); if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &sigsaved, NULL); return r; } int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { /* * We are here if userspace calls get_regs() in the middle of * instruction emulation. Registers state needs to be copied * back from emulation context to vcpu. Usrapace shouldn't do * that usually, but some bad designed PV devices (vmware * backdoor interface) need this to work */ struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); vcpu->arch.emulate_regs_need_sync_to_vcpu = false; } regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); #ifdef CONFIG_X86_64 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); #endif regs->rip = kvm_rip_read(vcpu); regs->rflags = kvm_get_rflags(vcpu); return 0; } int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { vcpu->arch.emulate_regs_need_sync_from_vcpu = true; vcpu->arch.emulate_regs_need_sync_to_vcpu = false; kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); #ifdef CONFIG_X86_64 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); #endif kvm_rip_write(vcpu, regs->rip); kvm_set_rflags(vcpu, regs->rflags); vcpu->arch.exception.pending = false; kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) { struct kvm_segment cs; kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); *db = cs.db; *l = cs.l; } EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { struct desc_ptr dt; kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); kvm_x86_ops->get_idt(vcpu, &dt); sregs->idt.limit = dt.size; sregs->idt.base = dt.address; kvm_x86_ops->get_gdt(vcpu, &dt); sregs->gdt.limit = dt.size; sregs->gdt.base = dt.address; sregs->cr0 = kvm_read_cr0(vcpu); sregs->cr2 = vcpu->arch.cr2; sregs->cr3 = kvm_read_cr3(vcpu); sregs->cr4 = kvm_read_cr4(vcpu); sregs->cr8 = kvm_get_cr8(vcpu); sregs->efer = vcpu->arch.efer; sregs->apic_base = kvm_get_apic_base(vcpu); memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) set_bit(vcpu->arch.interrupt.nr, (unsigned long *)sregs->interrupt_bitmap); return 0; } int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { mp_state->mp_state = vcpu->arch.mp_state; return 0; } int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { vcpu->arch.mp_state = mp_state->mp_state; kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, int reason, bool has_error_code, u32 error_code) { struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; int ret; init_emulate_ctxt(vcpu); ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, has_error_code, error_code); if (ret) return EMULATE_FAIL; memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); kvm_rip_write(vcpu, ctxt->eip); kvm_set_rflags(vcpu, ctxt->eflags); kvm_make_request(KVM_REQ_EVENT, vcpu); return EMULATE_DONE; } EXPORT_SYMBOL_GPL(kvm_task_switch); int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { int mmu_reset_needed = 0; int pending_vec, max_bits, idx; struct desc_ptr dt; if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) return -EINVAL; dt.size = sregs->idt.limit; dt.address = sregs->idt.base; kvm_x86_ops->set_idt(vcpu, &dt); dt.size = sregs->gdt.limit; dt.address = sregs->gdt.base; kvm_x86_ops->set_gdt(vcpu, &dt); vcpu->arch.cr2 = sregs->cr2; mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; vcpu->arch.cr3 = sregs->cr3; __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); kvm_set_cr8(vcpu, sregs->cr8); mmu_reset_needed |= vcpu->arch.efer != sregs->efer; kvm_x86_ops->set_efer(vcpu, sregs->efer); kvm_set_apic_base(vcpu, sregs->apic_base); mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; kvm_x86_ops->set_cr0(vcpu, sregs->cr0); vcpu->arch.cr0 = sregs->cr0; mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; kvm_x86_ops->set_cr4(vcpu, sregs->cr4); if (sregs->cr4 & X86_CR4_OSXSAVE) kvm_update_cpuid(vcpu); idx = srcu_read_lock(&vcpu->kvm->srcu); if (!is_long_mode(vcpu) && is_pae(vcpu)) { load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); mmu_reset_needed = 1; } srcu_read_unlock(&vcpu->kvm->srcu, idx); if (mmu_reset_needed) kvm_mmu_reset_context(vcpu); max_bits = (sizeof sregs->interrupt_bitmap) << 3; pending_vec = find_first_bit( (const unsigned long *)sregs->interrupt_bitmap, max_bits); if (pending_vec < max_bits) { kvm_queue_interrupt(vcpu, pending_vec, false); pr_debug("Set back pending irq %d\n", pending_vec); } kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); update_cr8_intercept(vcpu); /* Older userspace won't unhalt the vcpu on reset. */ if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && !is_protmode(vcpu)) vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { unsigned long rflags; int i, r; if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { r = -EBUSY; if (vcpu->arch.exception.pending) goto out; if (dbg->control & KVM_GUESTDBG_INJECT_DB) kvm_queue_exception(vcpu, DB_VECTOR); else kvm_queue_exception(vcpu, BP_VECTOR); } /* * Read rflags as long as potentially injected trace flags are still * filtered out. */ rflags = kvm_get_rflags(vcpu); vcpu->guest_debug = dbg->control; if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) vcpu->guest_debug = 0; if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { for (i = 0; i < KVM_NR_DB_REGS; ++i) vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; vcpu->arch.switch_db_regs = (dbg->arch.debugreg[7] & DR7_BP_EN_MASK); } else { for (i = 0; i < KVM_NR_DB_REGS; i++) vcpu->arch.eff_db[i] = vcpu->arch.db[i]; vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK); } if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + get_segment_base(vcpu, VCPU_SREG_CS); /* * Trigger an rflags update that will inject or remove the trace * flags. */ kvm_set_rflags(vcpu, rflags); kvm_x86_ops->set_guest_debug(vcpu, dbg); r = 0; out: return r; } /* * Translate a guest virtual address to a guest physical address. */ int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { unsigned long vaddr = tr->linear_address; gpa_t gpa; int idx; idx = srcu_read_lock(&vcpu->kvm->srcu); gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); srcu_read_unlock(&vcpu->kvm->srcu, idx); tr->physical_address = gpa; tr->valid = gpa != UNMAPPED_GVA; tr->writeable = 1; tr->usermode = 0; return 0; } int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { struct i387_fxsave_struct *fxsave = &vcpu->arch.guest_fpu.state->fxsave; memcpy(fpu->fpr, fxsave->st_space, 128); fpu->fcw = fxsave->cwd; fpu->fsw = fxsave->swd; fpu->ftwx = fxsave->twd; fpu->last_opcode = fxsave->fop; fpu->last_ip = fxsave->rip; fpu->last_dp = fxsave->rdp; memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); return 0; } int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { struct i387_fxsave_struct *fxsave = &vcpu->arch.guest_fpu.state->fxsave; memcpy(fxsave->st_space, fpu->fpr, 128); fxsave->cwd = fpu->fcw; fxsave->swd = fpu->fsw; fxsave->twd = fpu->ftwx; fxsave->fop = fpu->last_opcode; fxsave->rip = fpu->last_ip; fxsave->rdp = fpu->last_dp; memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); return 0; } int fx_init(struct kvm_vcpu *vcpu) { int err; err = fpu_alloc(&vcpu->arch.guest_fpu); if (err) return err; fpu_finit(&vcpu->arch.guest_fpu); /* * Ensure guest xcr0 is valid for loading */ vcpu->arch.xcr0 = XSTATE_FP; vcpu->arch.cr0 |= X86_CR0_ET; return 0; } EXPORT_SYMBOL_GPL(fx_init); static void fx_free(struct kvm_vcpu *vcpu) { fpu_free(&vcpu->arch.guest_fpu); } void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) { if (vcpu->guest_fpu_loaded) return; /* * Restore all possible states in the guest, * and assume host would use all available bits. * Guest xcr0 would be loaded later. */ kvm_put_guest_xcr0(vcpu); vcpu->guest_fpu_loaded = 1; unlazy_fpu(current); fpu_restore_checking(&vcpu->arch.guest_fpu); trace_kvm_fpu(1); } void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) { kvm_put_guest_xcr0(vcpu); if (!vcpu->guest_fpu_loaded) return; vcpu->guest_fpu_loaded = 0; fpu_save_init(&vcpu->arch.guest_fpu); ++vcpu->stat.fpu_reload; kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); trace_kvm_fpu(0); } void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) { kvmclock_reset(vcpu); free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); fx_free(vcpu); kvm_x86_ops->vcpu_free(vcpu); } struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) { if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) printk_once(KERN_WARNING "kvm: SMP vm created on host with unstable TSC; " "guest TSC will not be reliable\n"); return kvm_x86_ops->vcpu_create(kvm, id); } int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) { int r; vcpu->arch.mtrr_state.have_fixed = 1; vcpu_load(vcpu); r = kvm_arch_vcpu_reset(vcpu); if (r == 0) r = kvm_mmu_setup(vcpu); vcpu_put(vcpu); return r; } void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) { vcpu->arch.apf.msr_val = 0; vcpu_load(vcpu); kvm_mmu_unload(vcpu); vcpu_put(vcpu); fx_free(vcpu); kvm_x86_ops->vcpu_free(vcpu); } int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) { atomic_set(&vcpu->arch.nmi_queued, 0); vcpu->arch.nmi_pending = 0; vcpu->arch.nmi_injected = false; vcpu->arch.switch_db_regs = 0; memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); vcpu->arch.dr6 = DR6_FIXED_1; vcpu->arch.dr7 = DR7_FIXED_1; kvm_make_request(KVM_REQ_EVENT, vcpu); vcpu->arch.apf.msr_val = 0; vcpu->arch.st.msr_val = 0; kvmclock_reset(vcpu); kvm_clear_async_pf_completion_queue(vcpu); kvm_async_pf_hash_reset(vcpu); vcpu->arch.apf.halted = false; kvm_pmu_reset(vcpu); return kvm_x86_ops->vcpu_reset(vcpu); } int kvm_arch_hardware_enable(void *garbage) { struct kvm *kvm; struct kvm_vcpu *vcpu; int i; int ret; u64 local_tsc; u64 max_tsc = 0; bool stable, backwards_tsc = false; kvm_shared_msr_cpu_online(); ret = kvm_x86_ops->hardware_enable(garbage); if (ret != 0) return ret; local_tsc = native_read_tsc(); stable = !check_tsc_unstable(); list_for_each_entry(kvm, &vm_list, vm_list) { kvm_for_each_vcpu(i, vcpu, kvm) { if (!stable && vcpu->cpu == smp_processor_id()) set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); if (stable && vcpu->arch.last_host_tsc > local_tsc) { backwards_tsc = true; if (vcpu->arch.last_host_tsc > max_tsc) max_tsc = vcpu->arch.last_host_tsc; } } } /* * Sometimes, even reliable TSCs go backwards. This happens on * platforms that reset TSC during suspend or hibernate actions, but * maintain synchronization. We must compensate. Fortunately, we can * detect that condition here, which happens early in CPU bringup, * before any KVM threads can be running. Unfortunately, we can't * bring the TSCs fully up to date with real time, as we aren't yet far * enough into CPU bringup that we know how much real time has actually * elapsed; our helper function, get_kernel_ns() will be using boot * variables that haven't been updated yet. * * So we simply find the maximum observed TSC above, then record the * adjustment to TSC in each VCPU. When the VCPU later gets loaded, * the adjustment will be applied. Note that we accumulate * adjustments, in case multiple suspend cycles happen before some VCPU * gets a chance to run again. In the event that no KVM threads get a * chance to run, we will miss the entire elapsed period, as we'll have * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may * loose cycle time. This isn't too big a deal, since the loss will be * uniform across all VCPUs (not to mention the scenario is extremely * unlikely). It is possible that a second hibernate recovery happens * much faster than a first, causing the observed TSC here to be * smaller; this would require additional padding adjustment, which is * why we set last_host_tsc to the local tsc observed here. * * N.B. - this code below runs only on platforms with reliable TSC, * as that is the only way backwards_tsc is set above. Also note * that this runs for ALL vcpus, which is not a bug; all VCPUs should * have the same delta_cyc adjustment applied if backwards_tsc * is detected. Note further, this adjustment is only done once, * as we reset last_host_tsc on all VCPUs to stop this from being * called multiple times (one for each physical CPU bringup). * * Platforms with unnreliable TSCs don't have to deal with this, they * will be compensated by the logic in vcpu_load, which sets the TSC to * catchup mode. This will catchup all VCPUs to real time, but cannot * guarantee that they stay in perfect synchronization. */ if (backwards_tsc) { u64 delta_cyc = max_tsc - local_tsc; list_for_each_entry(kvm, &vm_list, vm_list) { kvm_for_each_vcpu(i, vcpu, kvm) { vcpu->arch.tsc_offset_adjustment += delta_cyc; vcpu->arch.last_host_tsc = local_tsc; } /* * We have to disable TSC offset matching.. if you were * booting a VM while issuing an S4 host suspend.... * you may have some problem. Solving this issue is * left as an exercise to the reader. */ kvm->arch.last_tsc_nsec = 0; kvm->arch.last_tsc_write = 0; } } return 0; } void kvm_arch_hardware_disable(void *garbage) { kvm_x86_ops->hardware_disable(garbage); drop_user_return_notifiers(garbage); } int kvm_arch_hardware_setup(void) { return kvm_x86_ops->hardware_setup(); } void kvm_arch_hardware_unsetup(void) { kvm_x86_ops->hardware_unsetup(); } void kvm_arch_check_processor_compat(void *rtn) { kvm_x86_ops->check_processor_compatibility(rtn); } bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) { return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); } int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) { struct page *page; struct kvm *kvm; int r; BUG_ON(vcpu->kvm == NULL); kvm = vcpu->kvm; vcpu->arch.emulate_ctxt.ops = &emulate_ops; if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; else vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; page = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!page) { r = -ENOMEM; goto fail; } vcpu->arch.pio_data = page_address(page); kvm_set_tsc_khz(vcpu, max_tsc_khz); r = kvm_mmu_create(vcpu); if (r < 0) goto fail_free_pio_data; if (irqchip_in_kernel(kvm)) { r = kvm_create_lapic(vcpu); if (r < 0) goto fail_mmu_destroy; } vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, GFP_KERNEL); if (!vcpu->arch.mce_banks) { r = -ENOMEM; goto fail_free_lapic; } vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) goto fail_free_mce_banks; kvm_async_pf_hash_reset(vcpu); kvm_pmu_init(vcpu); return 0; fail_free_mce_banks: kfree(vcpu->arch.mce_banks); fail_free_lapic: kvm_free_lapic(vcpu); fail_mmu_destroy: kvm_mmu_destroy(vcpu); fail_free_pio_data: free_page((unsigned long)vcpu->arch.pio_data); fail: return r; } void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) { int idx; kvm_pmu_destroy(vcpu); kfree(vcpu->arch.mce_banks); kvm_free_lapic(vcpu); idx = srcu_read_lock(&vcpu->kvm->srcu); kvm_mmu_destroy(vcpu); srcu_read_unlock(&vcpu->kvm->srcu, idx); free_page((unsigned long)vcpu->arch.pio_data); } int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) { if (type) return -EINVAL; INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); raw_spin_lock_init(&kvm->arch.tsc_write_lock); return 0; } static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) { vcpu_load(vcpu); kvm_mmu_unload(vcpu); vcpu_put(vcpu); } static void kvm_free_vcpus(struct kvm *kvm) { unsigned int i; struct kvm_vcpu *vcpu; /* * Unpin any mmu pages first. */ kvm_for_each_vcpu(i, vcpu, kvm) { kvm_clear_async_pf_completion_queue(vcpu); kvm_unload_vcpu_mmu(vcpu); } kvm_for_each_vcpu(i, vcpu, kvm) kvm_arch_vcpu_free(vcpu); mutex_lock(&kvm->lock); for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) kvm->vcpus[i] = NULL; atomic_set(&kvm->online_vcpus, 0); mutex_unlock(&kvm->lock); } void kvm_arch_sync_events(struct kvm *kvm) { kvm_free_all_assigned_devices(kvm); kvm_free_pit(kvm); } void kvm_arch_destroy_vm(struct kvm *kvm) { kvm_iommu_unmap_guest(kvm); kfree(kvm->arch.vpic); kfree(kvm->arch.vioapic); kvm_free_vcpus(kvm); if (kvm->arch.apic_access_page) put_page(kvm->arch.apic_access_page); if (kvm->arch.ept_identity_pagetable) put_page(kvm->arch.ept_identity_pagetable); } void kvm_arch_free_memslot(struct kvm_memory_slot *free, struct kvm_memory_slot *dont) { int i; for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { if (!dont || free->arch.lpage_info[i] != dont->arch.lpage_info[i]) { vfree(free->arch.lpage_info[i]); free->arch.lpage_info[i] = NULL; } } } int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) { int i; for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { unsigned long ugfn; int lpages; int level = i + 2; lpages = gfn_to_index(slot->base_gfn + npages - 1, slot->base_gfn, level) + 1; slot->arch.lpage_info[i] = vzalloc(lpages * sizeof(*slot->arch.lpage_info[i])); if (!slot->arch.lpage_info[i]) goto out_free; if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) slot->arch.lpage_info[i][0].write_count = 1; if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) slot->arch.lpage_info[i][lpages - 1].write_count = 1; ugfn = slot->userspace_addr >> PAGE_SHIFT; /* * If the gfn and userspace address are not aligned wrt each * other, or if explicitly asked to, disable large page * support for this slot */ if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || !kvm_largepages_enabled()) { unsigned long j; for (j = 0; j < lpages; ++j) slot->arch.lpage_info[i][j].write_count = 1; } } return 0; out_free: for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { vfree(slot->arch.lpage_info[i]); slot->arch.lpage_info[i] = NULL; } return -ENOMEM; } int kvm_arch_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, struct kvm_memory_slot old, struct kvm_userspace_memory_region *mem, int user_alloc) { int npages = memslot->npages; int map_flags = MAP_PRIVATE | MAP_ANONYMOUS; /* Prevent internal slot pages from being moved by fork()/COW. */ if (memslot->id >= KVM_MEMORY_SLOTS) map_flags = MAP_SHARED | MAP_ANONYMOUS; /*To keep backward compatibility with older userspace, *x86 needs to hanlde !user_alloc case. */ if (!user_alloc) { if (npages && !old.rmap) { unsigned long userspace_addr; userspace_addr = vm_mmap(NULL, 0, npages * PAGE_SIZE, PROT_READ | PROT_WRITE, map_flags, 0); if (IS_ERR((void *)userspace_addr)) return PTR_ERR((void *)userspace_addr); memslot->userspace_addr = userspace_addr; } } return 0; } void kvm_arch_commit_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, struct kvm_memory_slot old, int user_alloc) { int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT; if (!user_alloc && !old.user_alloc && old.rmap && !npages) { int ret; ret = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); if (ret < 0) printk(KERN_WARNING "kvm_vm_ioctl_set_memory_region: " "failed to munmap memory\n"); } if (!kvm->arch.n_requested_mmu_pages) nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); spin_lock(&kvm->mmu_lock); if (nr_mmu_pages) kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); kvm_mmu_slot_remove_write_access(kvm, mem->slot); spin_unlock(&kvm->mmu_lock); } void kvm_arch_flush_shadow(struct kvm *kvm) { kvm_mmu_zap_all(kvm); kvm_reload_remote_mmus(kvm); } int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) { return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && !vcpu->arch.apf.halted) || !list_empty_careful(&vcpu->async_pf.done) || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED || atomic_read(&vcpu->arch.nmi_queued) || (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu)); } void kvm_vcpu_kick(struct kvm_vcpu *vcpu) { int me; int cpu = vcpu->cpu; if (waitqueue_active(&vcpu->wq)) { wake_up_interruptible(&vcpu->wq); ++vcpu->stat.halt_wakeup; } me = get_cpu(); if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE) smp_send_reschedule(cpu); put_cpu(); } int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) { return kvm_x86_ops->interrupt_allowed(vcpu); } bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) { unsigned long current_rip = kvm_rip_read(vcpu) + get_segment_base(vcpu, VCPU_SREG_CS); return current_rip == linear_rip; } EXPORT_SYMBOL_GPL(kvm_is_linear_rip); unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) { unsigned long rflags; rflags = kvm_x86_ops->get_rflags(vcpu); if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) rflags &= ~X86_EFLAGS_TF; return rflags; } EXPORT_SYMBOL_GPL(kvm_get_rflags); void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) rflags |= X86_EFLAGS_TF; kvm_x86_ops->set_rflags(vcpu, rflags); kvm_make_request(KVM_REQ_EVENT, vcpu); } EXPORT_SYMBOL_GPL(kvm_set_rflags); void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) { int r; if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || is_error_page(work->page)) return; r = kvm_mmu_reload(vcpu); if (unlikely(r)) return; if (!vcpu->arch.mmu.direct_map && work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) return; vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); } static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) { return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); } static inline u32 kvm_async_pf_next_probe(u32 key) { return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); } static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) { u32 key = kvm_async_pf_hash_fn(gfn); while (vcpu->arch.apf.gfns[key] != ~0) key = kvm_async_pf_next_probe(key); vcpu->arch.apf.gfns[key] = gfn; } static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) { int i; u32 key = kvm_async_pf_hash_fn(gfn); for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && (vcpu->arch.apf.gfns[key] != gfn && vcpu->arch.apf.gfns[key] != ~0); i++) key = kvm_async_pf_next_probe(key); return key; } bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) { return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; } static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) { u32 i, j, k; i = j = kvm_async_pf_gfn_slot(vcpu, gfn); while (true) { vcpu->arch.apf.gfns[i] = ~0; do { j = kvm_async_pf_next_probe(j); if (vcpu->arch.apf.gfns[j] == ~0) return; k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); /* * k lies cyclically in ]i,j] * | i.k.j | * |....j i.k.| or |.k..j i...| */ } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; i = j; } } static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) { return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, sizeof(val)); } void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) { struct x86_exception fault; trace_kvm_async_pf_not_present(work->arch.token, work->gva); kvm_add_async_pf_gfn(vcpu, work->arch.gfn); if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || (vcpu->arch.apf.send_user_only && kvm_x86_ops->get_cpl(vcpu) == 0)) kvm_make_request(KVM_REQ_APF_HALT, vcpu); else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { fault.vector = PF_VECTOR; fault.error_code_valid = true; fault.error_code = 0; fault.nested_page_fault = false; fault.address = work->arch.token; kvm_inject_page_fault(vcpu, &fault); } } void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) { struct x86_exception fault; trace_kvm_async_pf_ready(work->arch.token, work->gva); if (is_error_page(work->page)) work->arch.token = ~0; /* broadcast wakeup */ else kvm_del_async_pf_gfn(vcpu, work->arch.gfn); if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { fault.vector = PF_VECTOR; fault.error_code_valid = true; fault.error_code = 0; fault.nested_page_fault = false; fault.address = work->arch.token; kvm_inject_page_fault(vcpu, &fault); } vcpu->arch.apf.halted = false; vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; } bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) { if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) return true; else return !kvm_event_needs_reinjection(vcpu) && kvm_x86_ops->interrupt_allowed(vcpu); } EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);