/* * Handle caching attributes in page tables (PAT) * * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> * Suresh B Siddha <suresh.b.siddha@intel.com> * * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen. */ #include <linux/mm.h> #include <linux/kernel.h> #include <linux/gfp.h> #include <linux/fs.h> #include <linux/bootmem.h> #include <asm/msr.h> #include <asm/tlbflush.h> #include <asm/processor.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/pat.h> #include <asm/e820.h> #include <asm/cacheflush.h> #include <asm/fcntl.h> #include <asm/mtrr.h> #include <asm/io.h> #ifdef CONFIG_X86_PAT int __read_mostly pat_wc_enabled = 1; void __init pat_disable(char *reason) { pat_wc_enabled = 0; printk(KERN_INFO "%s\n", reason); } static int nopat(char *str) { pat_disable("PAT support disabled."); return 0; } early_param("nopat", nopat); #endif static u64 __read_mostly boot_pat_state; enum { PAT_UC = 0, /* uncached */ PAT_WC = 1, /* Write combining */ PAT_WT = 4, /* Write Through */ PAT_WP = 5, /* Write Protected */ PAT_WB = 6, /* Write Back (default) */ PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */ }; #define PAT(x,y) ((u64)PAT_ ## y << ((x)*8)) void pat_init(void) { u64 pat; if (!pat_wc_enabled) return; /* Paranoia check. */ if (!cpu_has_pat) { printk(KERN_ERR "PAT enabled, but CPU feature cleared\n"); /* * Panic if this happens on the secondary CPU, and we * switched to PAT on the boot CPU. We have no way to * undo PAT. */ BUG_ON(boot_pat_state); } /* Set PWT to Write-Combining. All other bits stay the same */ /* * PTE encoding used in Linux: * PAT * |PCD * ||PWT * ||| * 000 WB _PAGE_CACHE_WB * 001 WC _PAGE_CACHE_WC * 010 UC- _PAGE_CACHE_UC_MINUS * 011 UC _PAGE_CACHE_UC * PAT bit unused */ pat = PAT(0,WB) | PAT(1,WC) | PAT(2,UC_MINUS) | PAT(3,UC) | PAT(4,WB) | PAT(5,WC) | PAT(6,UC_MINUS) | PAT(7,UC); /* Boot CPU check */ if (!boot_pat_state) rdmsrl(MSR_IA32_CR_PAT, boot_pat_state); wrmsrl(MSR_IA32_CR_PAT, pat); printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n", smp_processor_id(), boot_pat_state, pat); } #undef PAT static char *cattr_name(unsigned long flags) { switch (flags & _PAGE_CACHE_MASK) { case _PAGE_CACHE_UC: return "uncached"; case _PAGE_CACHE_UC_MINUS: return "uncached-minus"; case _PAGE_CACHE_WB: return "write-back"; case _PAGE_CACHE_WC: return "write-combining"; default: return "broken"; } } /* * The global memtype list keeps track of memory type for specific * physical memory areas. Conflicting memory types in different * mappings can cause CPU cache corruption. To avoid this we keep track. * * The list is sorted based on starting address and can contain multiple * entries for each address (this allows reference counting for overlapping * areas). All the aliases have the same cache attributes of course. * Zero attributes are represented as holes. * * Currently the data structure is a list because the number of mappings * are expected to be relatively small. If this should be a problem * it could be changed to a rbtree or similar. * * memtype_lock protects the whole list. */ struct memtype { u64 start; u64 end; unsigned long type; struct list_head nd; }; static LIST_HEAD(memtype_list); static DEFINE_SPINLOCK(memtype_lock); /* protects memtype list */ /* * Does intersection of PAT memory type and MTRR memory type and returns * the resulting memory type as PAT understands it. * (Type in pat and mtrr will not have same value) * The intersection is based on "Effective Memory Type" tables in IA-32 * SDM vol 3a */ static int pat_x_mtrr_type(u64 start, u64 end, unsigned long prot, unsigned long *ret_prot) { unsigned long pat_type; u8 mtrr_type; mtrr_type = mtrr_type_lookup(start, end); if (mtrr_type == 0xFF) { /* MTRR not enabled */ *ret_prot = prot; return 0; } if (mtrr_type == 0xFE) { /* MTRR match error */ *ret_prot = _PAGE_CACHE_UC; return -1; } if (mtrr_type != MTRR_TYPE_UNCACHABLE && mtrr_type != MTRR_TYPE_WRBACK && mtrr_type != MTRR_TYPE_WRCOMB) { /* MTRR type unhandled */ *ret_prot = _PAGE_CACHE_UC; return -1; } pat_type = prot & _PAGE_CACHE_MASK; prot &= (~_PAGE_CACHE_MASK); /* Currently doing intersection by hand. Optimize it later. */ if (pat_type == _PAGE_CACHE_WC) { *ret_prot = prot | _PAGE_CACHE_WC; } else if (pat_type == _PAGE_CACHE_UC_MINUS) { *ret_prot = prot | _PAGE_CACHE_UC_MINUS; } else if (pat_type == _PAGE_CACHE_UC || mtrr_type == MTRR_TYPE_UNCACHABLE) { *ret_prot = prot | _PAGE_CACHE_UC; } else if (mtrr_type == MTRR_TYPE_WRCOMB) { *ret_prot = prot | _PAGE_CACHE_WC; } else { *ret_prot = prot | _PAGE_CACHE_WB; } return 0; } /* * req_type typically has one of the: * - _PAGE_CACHE_WB * - _PAGE_CACHE_WC * - _PAGE_CACHE_UC_MINUS * - _PAGE_CACHE_UC * * req_type will have a special case value '-1', when requester want to inherit * the memory type from mtrr (if WB), existing PAT, defaulting to UC_MINUS. * * If ret_type is NULL, function will return an error if it cannot reserve the * region with req_type. If ret_type is non-null, function will return * available type in ret_type in case of no error. In case of any error * it will return a negative return value. */ int reserve_memtype(u64 start, u64 end, unsigned long req_type, unsigned long *ret_type) { struct memtype *new_entry = NULL; struct memtype *parse; unsigned long actual_type; int err = 0; /* Only track when pat_wc_enabled */ if (!pat_wc_enabled) { /* This is identical to page table setting without PAT */ if (ret_type) { if (req_type == -1) { *ret_type = _PAGE_CACHE_WB; } else { *ret_type = req_type; } } return 0; } /* Low ISA region is always mapped WB in page table. No need to track */ if (start >= ISA_START_ADDRESS && (end - 1) <= ISA_END_ADDRESS) { if (ret_type) *ret_type = _PAGE_CACHE_WB; return 0; } if (req_type == -1) { /* * Special case where caller wants to inherit from mtrr or * existing pat mapping, defaulting to UC_MINUS in case of * no match. */ u8 mtrr_type = mtrr_type_lookup(start, end); if (mtrr_type == 0xFE) { /* MTRR match error */ err = -1; } if (mtrr_type == MTRR_TYPE_WRBACK) { req_type = _PAGE_CACHE_WB; actual_type = _PAGE_CACHE_WB; } else { req_type = _PAGE_CACHE_UC_MINUS; actual_type = _PAGE_CACHE_UC_MINUS; } } else { req_type &= _PAGE_CACHE_MASK; err = pat_x_mtrr_type(start, end, req_type, &actual_type); } if (err) { if (ret_type) *ret_type = actual_type; return -EINVAL; } new_entry = kmalloc(sizeof(struct memtype), GFP_KERNEL); if (!new_entry) return -ENOMEM; new_entry->start = start; new_entry->end = end; new_entry->type = actual_type; if (ret_type) *ret_type = actual_type; spin_lock(&memtype_lock); /* Search for existing mapping that overlaps the current range */ list_for_each_entry(parse, &memtype_list, nd) { struct memtype *saved_ptr; if (parse->start >= end) { pr_debug("New Entry\n"); list_add(&new_entry->nd, parse->nd.prev); new_entry = NULL; break; } if (start <= parse->start && end >= parse->start) { if (actual_type != parse->type && ret_type) { actual_type = parse->type; *ret_type = actual_type; new_entry->type = actual_type; } if (actual_type != parse->type) { printk( KERN_INFO "%s:%d conflicting memory types %Lx-%Lx %s<->%s\n", current->comm, current->pid, start, end, cattr_name(actual_type), cattr_name(parse->type)); err = -EBUSY; break; } saved_ptr = parse; /* * Check to see whether the request overlaps more * than one entry in the list */ list_for_each_entry_continue(parse, &memtype_list, nd) { if (end <= parse->start) { break; } if (actual_type != parse->type) { printk( KERN_INFO "%s:%d conflicting memory types %Lx-%Lx %s<->%s\n", current->comm, current->pid, start, end, cattr_name(actual_type), cattr_name(parse->type)); err = -EBUSY; break; } } if (err) { break; } pr_debug("Overlap at 0x%Lx-0x%Lx\n", saved_ptr->start, saved_ptr->end); /* No conflict. Go ahead and add this new entry */ list_add(&new_entry->nd, saved_ptr->nd.prev); new_entry = NULL; break; } if (start < parse->end) { if (actual_type != parse->type && ret_type) { actual_type = parse->type; *ret_type = actual_type; new_entry->type = actual_type; } if (actual_type != parse->type) { printk( KERN_INFO "%s:%d conflicting memory types %Lx-%Lx %s<->%s\n", current->comm, current->pid, start, end, cattr_name(actual_type), cattr_name(parse->type)); err = -EBUSY; break; } saved_ptr = parse; /* * Check to see whether the request overlaps more * than one entry in the list */ list_for_each_entry_continue(parse, &memtype_list, nd) { if (end <= parse->start) { break; } if (actual_type != parse->type) { printk( KERN_INFO "%s:%d conflicting memory types %Lx-%Lx %s<->%s\n", current->comm, current->pid, start, end, cattr_name(actual_type), cattr_name(parse->type)); err = -EBUSY; break; } } if (err) { break; } pr_debug(KERN_INFO "Overlap at 0x%Lx-0x%Lx\n", saved_ptr->start, saved_ptr->end); /* No conflict. Go ahead and add this new entry */ list_add(&new_entry->nd, &saved_ptr->nd); new_entry = NULL; break; } } if (err) { printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, track %s, req %s\n", start, end, cattr_name(new_entry->type), cattr_name(req_type)); kfree(new_entry); spin_unlock(&memtype_lock); return err; } if (new_entry) { /* No conflict. Not yet added to the list. Add to the tail */ list_add_tail(&new_entry->nd, &memtype_list); pr_debug("New Entry\n"); } if (ret_type) { pr_debug( "reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n", start, end, cattr_name(actual_type), cattr_name(req_type), cattr_name(*ret_type)); } else { pr_debug( "reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s\n", start, end, cattr_name(actual_type), cattr_name(req_type)); } spin_unlock(&memtype_lock); return err; } int free_memtype(u64 start, u64 end) { struct memtype *ml; int err = -EINVAL; /* Only track when pat_wc_enabled */ if (!pat_wc_enabled) { return 0; } /* Low ISA region is always mapped WB. No need to track */ if (start >= ISA_START_ADDRESS && end <= ISA_END_ADDRESS) { return 0; } spin_lock(&memtype_lock); list_for_each_entry(ml, &memtype_list, nd) { if (ml->start == start && ml->end == end) { list_del(&ml->nd); kfree(ml); err = 0; break; } } spin_unlock(&memtype_lock); if (err) { printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n", current->comm, current->pid, start, end); } pr_debug("free_memtype request 0x%Lx-0x%Lx\n", start, end); return err; } /* * /dev/mem mmap interface. The memtype used for mapping varies: * - Use UC for mappings with O_SYNC flag * - Without O_SYNC flag, if there is any conflict in reserve_memtype, * inherit the memtype from existing mapping. * - Else use UC_MINUS memtype (for backward compatibility with existing * X drivers. */ pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot) { return vma_prot; } #ifdef CONFIG_NONPROMISC_DEVMEM /* This check is done in drivers/char/mem.c in case of NONPROMISC_DEVMEM*/ static inline int range_is_allowed(unsigned long pfn, unsigned long size) { return 1; } #else static inline int range_is_allowed(unsigned long pfn, unsigned long size) { u64 from = ((u64)pfn) << PAGE_SHIFT; u64 to = from + size; u64 cursor = from; while (cursor < to) { if (!devmem_is_allowed(pfn)) { printk(KERN_INFO "Program %s tried to access /dev/mem between %Lx->%Lx.\n", current->comm, from, to); return 0; } cursor += PAGE_SIZE; pfn++; } return 1; } #endif /* CONFIG_NONPROMISC_DEVMEM */ int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, unsigned long size, pgprot_t *vma_prot) { u64 offset = ((u64) pfn) << PAGE_SHIFT; unsigned long flags = _PAGE_CACHE_UC_MINUS; int retval; if (!range_is_allowed(pfn, size)) return 0; if (file->f_flags & O_SYNC) { flags = _PAGE_CACHE_UC; } #ifdef CONFIG_X86_32 /* * On the PPro and successors, the MTRRs are used to set * memory types for physical addresses outside main memory, * so blindly setting UC or PWT on those pages is wrong. * For Pentiums and earlier, the surround logic should disable * caching for the high addresses through the KEN pin, but * we maintain the tradition of paranoia in this code. */ if (!pat_wc_enabled && ! ( test_bit(X86_FEATURE_MTRR, boot_cpu_data.x86_capability) || test_bit(X86_FEATURE_K6_MTRR, boot_cpu_data.x86_capability) || test_bit(X86_FEATURE_CYRIX_ARR, boot_cpu_data.x86_capability) || test_bit(X86_FEATURE_CENTAUR_MCR, boot_cpu_data.x86_capability)) && (pfn << PAGE_SHIFT) >= __pa(high_memory)) { flags = _PAGE_CACHE_UC; } #endif /* * With O_SYNC, we can only take UC mapping. Fail if we cannot. * Without O_SYNC, we want to get * - WB for WB-able memory and no other conflicting mappings * - UC_MINUS for non-WB-able memory with no other conflicting mappings * - Inherit from confliting mappings otherwise */ if (flags != _PAGE_CACHE_UC_MINUS) { retval = reserve_memtype(offset, offset + size, flags, NULL); } else { retval = reserve_memtype(offset, offset + size, -1, &flags); } if (retval < 0) return 0; if (pfn <= max_pfn_mapped && ioremap_change_attr((unsigned long)__va(offset), size, flags) < 0) { free_memtype(offset, offset + size); printk(KERN_INFO "%s:%d /dev/mem ioremap_change_attr failed %s for %Lx-%Lx\n", current->comm, current->pid, cattr_name(flags), offset, offset + size); return 0; } *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) | flags); return 1; } void map_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot) { u64 addr = (u64)pfn << PAGE_SHIFT; unsigned long flags; unsigned long want_flags = (pgprot_val(vma_prot) & _PAGE_CACHE_MASK); reserve_memtype(addr, addr + size, want_flags, &flags); if (flags != want_flags) { printk(KERN_INFO "%s:%d /dev/mem expected mapping type %s for %Lx-%Lx, got %s\n", current->comm, current->pid, cattr_name(want_flags), addr, addr + size, cattr_name(flags)); } } void unmap_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot) { u64 addr = (u64)pfn << PAGE_SHIFT; free_memtype(addr, addr + size); }