/* * processor_idle - idle state submodule to the ACPI processor driver * * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> * - Added processor hotplug support * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> * - Added support for C3 on SMP * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #define pr_fmt(fmt) "ACPI: " fmt #include <linux/module.h> #include <linux/acpi.h> #include <linux/dmi.h> #include <linux/sched.h> /* need_resched() */ #include <linux/tick.h> #include <linux/cpuidle.h> #include <linux/cpu.h> #include <acpi/processor.h> /* * Include the apic definitions for x86 to have the APIC timer related defines * available also for UP (on SMP it gets magically included via linux/smp.h). * asm/acpi.h is not an option, as it would require more include magic. Also * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. */ #ifdef CONFIG_X86 #include <asm/apic.h> #endif #define ACPI_PROCESSOR_CLASS "processor" #define _COMPONENT ACPI_PROCESSOR_COMPONENT ACPI_MODULE_NAME("processor_idle"); static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER; module_param(max_cstate, uint, 0000); static unsigned int nocst __read_mostly; module_param(nocst, uint, 0000); static int bm_check_disable __read_mostly; module_param(bm_check_disable, uint, 0000); static unsigned int latency_factor __read_mostly = 2; module_param(latency_factor, uint, 0644); static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device); struct cpuidle_driver acpi_idle_driver = { .name = "acpi_idle", .owner = THIS_MODULE, }; #ifdef CONFIG_ACPI_PROCESSOR_CSTATE static DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate); static int disabled_by_idle_boot_param(void) { return boot_option_idle_override == IDLE_POLL || boot_option_idle_override == IDLE_HALT; } /* * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. * For now disable this. Probably a bug somewhere else. * * To skip this limit, boot/load with a large max_cstate limit. */ static int set_max_cstate(const struct dmi_system_id *id) { if (max_cstate > ACPI_PROCESSOR_MAX_POWER) return 0; pr_notice("%s detected - limiting to C%ld max_cstate." " Override with \"processor.max_cstate=%d\"\n", id->ident, (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); max_cstate = (long)id->driver_data; return 0; } static const struct dmi_system_id processor_power_dmi_table[] = { { set_max_cstate, "Clevo 5600D", { DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, (void *)2}, { set_max_cstate, "Pavilion zv5000", { DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")}, (void *)1}, { set_max_cstate, "Asus L8400B", { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")}, (void *)1}, {}, }; /* * Callers should disable interrupts before the call and enable * interrupts after return. */ static void __cpuidle acpi_safe_halt(void) { if (!tif_need_resched()) { safe_halt(); local_irq_disable(); } } #ifdef ARCH_APICTIMER_STOPS_ON_C3 /* * Some BIOS implementations switch to C3 in the published C2 state. * This seems to be a common problem on AMD boxen, but other vendors * are affected too. We pick the most conservative approach: we assume * that the local APIC stops in both C2 and C3. */ static void lapic_timer_check_state(int state, struct acpi_processor *pr, struct acpi_processor_cx *cx) { struct acpi_processor_power *pwr = &pr->power; u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT)) return; if (amd_e400_c1e_detected) type = ACPI_STATE_C1; /* * Check, if one of the previous states already marked the lapic * unstable */ if (pwr->timer_broadcast_on_state < state) return; if (cx->type >= type) pr->power.timer_broadcast_on_state = state; } static void __lapic_timer_propagate_broadcast(void *arg) { struct acpi_processor *pr = (struct acpi_processor *) arg; if (pr->power.timer_broadcast_on_state < INT_MAX) tick_broadcast_enable(); else tick_broadcast_disable(); } static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast, (void *)pr, 1); } /* Power(C) State timer broadcast control */ static void lapic_timer_state_broadcast(struct acpi_processor *pr, struct acpi_processor_cx *cx, int broadcast) { int state = cx - pr->power.states; if (state >= pr->power.timer_broadcast_on_state) { if (broadcast) tick_broadcast_enter(); else tick_broadcast_exit(); } } #else static void lapic_timer_check_state(int state, struct acpi_processor *pr, struct acpi_processor_cx *cstate) { } static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { } static void lapic_timer_state_broadcast(struct acpi_processor *pr, struct acpi_processor_cx *cx, int broadcast) { } #endif #if defined(CONFIG_X86) static void tsc_check_state(int state) { switch (boot_cpu_data.x86_vendor) { case X86_VENDOR_AMD: case X86_VENDOR_INTEL: /* * AMD Fam10h TSC will tick in all * C/P/S0/S1 states when this bit is set. */ if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) return; /*FALL THROUGH*/ default: /* TSC could halt in idle, so notify users */ if (state > ACPI_STATE_C1) mark_tsc_unstable("TSC halts in idle"); } } #else static void tsc_check_state(int state) { return; } #endif static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) { if (!pr->pblk) return -ENODEV; /* if info is obtained from pblk/fadt, type equals state */ pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; #ifndef CONFIG_HOTPLUG_CPU /* * Check for P_LVL2_UP flag before entering C2 and above on * an SMP system. */ if ((num_online_cpus() > 1) && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) return -ENODEV; #endif /* determine C2 and C3 address from pblk */ pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; /* determine latencies from FADT */ pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency; pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency; /* * FADT specified C2 latency must be less than or equal to * 100 microseconds. */ if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency)); /* invalidate C2 */ pr->power.states[ACPI_STATE_C2].address = 0; } /* * FADT supplied C3 latency must be less than or equal to * 1000 microseconds. */ if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency)); /* invalidate C3 */ pr->power.states[ACPI_STATE_C3].address = 0; } ACPI_DEBUG_PRINT((ACPI_DB_INFO, "lvl2[0x%08x] lvl3[0x%08x]\n", pr->power.states[ACPI_STATE_C2].address, pr->power.states[ACPI_STATE_C3].address)); return 0; } static int acpi_processor_get_power_info_default(struct acpi_processor *pr) { if (!pr->power.states[ACPI_STATE_C1].valid) { /* set the first C-State to C1 */ /* all processors need to support C1 */ pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; pr->power.states[ACPI_STATE_C1].valid = 1; pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT; } /* the C0 state only exists as a filler in our array */ pr->power.states[ACPI_STATE_C0].valid = 1; return 0; } static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) { acpi_status status; u64 count; int current_count; int i, ret = 0; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *cst; if (nocst) return -ENODEV; current_count = 0; status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer); if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n")); return -ENODEV; } cst = buffer.pointer; /* There must be at least 2 elements */ if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) { pr_err("not enough elements in _CST\n"); ret = -EFAULT; goto end; } count = cst->package.elements[0].integer.value; /* Validate number of power states. */ if (count < 1 || count != cst->package.count - 1) { pr_err("count given by _CST is not valid\n"); ret = -EFAULT; goto end; } /* Tell driver that at least _CST is supported. */ pr->flags.has_cst = 1; for (i = 1; i <= count; i++) { union acpi_object *element; union acpi_object *obj; struct acpi_power_register *reg; struct acpi_processor_cx cx; memset(&cx, 0, sizeof(cx)); element = &(cst->package.elements[i]); if (element->type != ACPI_TYPE_PACKAGE) continue; if (element->package.count != 4) continue; obj = &(element->package.elements[0]); if (obj->type != ACPI_TYPE_BUFFER) continue; reg = (struct acpi_power_register *)obj->buffer.pointer; if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) continue; /* There should be an easy way to extract an integer... */ obj = &(element->package.elements[1]); if (obj->type != ACPI_TYPE_INTEGER) continue; cx.type = obj->integer.value; /* * Some buggy BIOSes won't list C1 in _CST - * Let acpi_processor_get_power_info_default() handle them later */ if (i == 1 && cx.type != ACPI_STATE_C1) current_count++; cx.address = reg->address; cx.index = current_count + 1; cx.entry_method = ACPI_CSTATE_SYSTEMIO; if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) { if (acpi_processor_ffh_cstate_probe (pr->id, &cx, reg) == 0) { cx.entry_method = ACPI_CSTATE_FFH; } else if (cx.type == ACPI_STATE_C1) { /* * C1 is a special case where FIXED_HARDWARE * can be handled in non-MWAIT way as well. * In that case, save this _CST entry info. * Otherwise, ignore this info and continue. */ cx.entry_method = ACPI_CSTATE_HALT; snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); } else { continue; } if (cx.type == ACPI_STATE_C1 && (boot_option_idle_override == IDLE_NOMWAIT)) { /* * In most cases the C1 space_id obtained from * _CST object is FIXED_HARDWARE access mode. * But when the option of idle=halt is added, * the entry_method type should be changed from * CSTATE_FFH to CSTATE_HALT. * When the option of idle=nomwait is added, * the C1 entry_method type should be * CSTATE_HALT. */ cx.entry_method = ACPI_CSTATE_HALT; snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); } } else { snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x", cx.address); } if (cx.type == ACPI_STATE_C1) { cx.valid = 1; } obj = &(element->package.elements[2]); if (obj->type != ACPI_TYPE_INTEGER) continue; cx.latency = obj->integer.value; obj = &(element->package.elements[3]); if (obj->type != ACPI_TYPE_INTEGER) continue; current_count++; memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx)); /* * We support total ACPI_PROCESSOR_MAX_POWER - 1 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1) */ if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) { pr_warn("Limiting number of power states to max (%d)\n", ACPI_PROCESSOR_MAX_POWER); pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); break; } } ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", current_count)); /* Validate number of power states discovered */ if (current_count < 2) ret = -EFAULT; end: kfree(buffer.pointer); return ret; } static void acpi_processor_power_verify_c3(struct acpi_processor *pr, struct acpi_processor_cx *cx) { static int bm_check_flag = -1; static int bm_control_flag = -1; if (!cx->address) return; /* * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) * DMA transfers are used by any ISA device to avoid livelock. * Note that we could disable Type-F DMA (as recommended by * the erratum), but this is known to disrupt certain ISA * devices thus we take the conservative approach. */ else if (errata.piix4.fdma) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "C3 not supported on PIIX4 with Type-F DMA\n")); return; } /* All the logic here assumes flags.bm_check is same across all CPUs */ if (bm_check_flag == -1) { /* Determine whether bm_check is needed based on CPU */ acpi_processor_power_init_bm_check(&(pr->flags), pr->id); bm_check_flag = pr->flags.bm_check; bm_control_flag = pr->flags.bm_control; } else { pr->flags.bm_check = bm_check_flag; pr->flags.bm_control = bm_control_flag; } if (pr->flags.bm_check) { if (!pr->flags.bm_control) { if (pr->flags.has_cst != 1) { /* bus mastering control is necessary */ ACPI_DEBUG_PRINT((ACPI_DB_INFO, "C3 support requires BM control\n")); return; } else { /* Here we enter C3 without bus mastering */ ACPI_DEBUG_PRINT((ACPI_DB_INFO, "C3 support without BM control\n")); } } } else { /* * WBINVD should be set in fadt, for C3 state to be * supported on when bm_check is not required. */ if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Cache invalidation should work properly" " for C3 to be enabled on SMP systems\n")); return; } } /* * Otherwise we've met all of our C3 requirements. * Normalize the C3 latency to expidite policy. Enable * checking of bus mastering status (bm_check) so we can * use this in our C3 policy */ cx->valid = 1; /* * On older chipsets, BM_RLD needs to be set * in order for Bus Master activity to wake the * system from C3. Newer chipsets handle DMA * during C3 automatically and BM_RLD is a NOP. * In either case, the proper way to * handle BM_RLD is to set it and leave it set. */ acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1); return; } static int acpi_processor_power_verify(struct acpi_processor *pr) { unsigned int i; unsigned int working = 0; pr->power.timer_broadcast_on_state = INT_MAX; for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { struct acpi_processor_cx *cx = &pr->power.states[i]; switch (cx->type) { case ACPI_STATE_C1: cx->valid = 1; break; case ACPI_STATE_C2: if (!cx->address) break; cx->valid = 1; break; case ACPI_STATE_C3: acpi_processor_power_verify_c3(pr, cx); break; } if (!cx->valid) continue; lapic_timer_check_state(i, pr, cx); tsc_check_state(cx->type); working++; } lapic_timer_propagate_broadcast(pr); return (working); } static int acpi_processor_get_cstate_info(struct acpi_processor *pr) { unsigned int i; int result; /* NOTE: the idle thread may not be running while calling * this function */ /* Zero initialize all the C-states info. */ memset(pr->power.states, 0, sizeof(pr->power.states)); result = acpi_processor_get_power_info_cst(pr); if (result == -ENODEV) result = acpi_processor_get_power_info_fadt(pr); if (result) return result; acpi_processor_get_power_info_default(pr); pr->power.count = acpi_processor_power_verify(pr); /* * if one state of type C2 or C3 is available, mark this * CPU as being "idle manageable" */ for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { if (pr->power.states[i].valid) { pr->power.count = i; if (pr->power.states[i].type >= ACPI_STATE_C2) pr->flags.power = 1; } } return 0; } /** * acpi_idle_bm_check - checks if bus master activity was detected */ static int acpi_idle_bm_check(void) { u32 bm_status = 0; if (bm_check_disable) return 0; acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); if (bm_status) acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); /* * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect * the true state of bus mastering activity; forcing us to * manually check the BMIDEA bit of each IDE channel. */ else if (errata.piix4.bmisx) { if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) bm_status = 1; } return bm_status; } /** * acpi_idle_do_entry - enter idle state using the appropriate method * @cx: cstate data * * Caller disables interrupt before call and enables interrupt after return. */ static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx) { if (cx->entry_method == ACPI_CSTATE_FFH) { /* Call into architectural FFH based C-state */ acpi_processor_ffh_cstate_enter(cx); } else if (cx->entry_method == ACPI_CSTATE_HALT) { acpi_safe_halt(); } else { /* IO port based C-state */ inb(cx->address); /* Dummy wait op - must do something useless after P_LVL2 read because chipsets cannot guarantee that STPCLK# signal gets asserted in time to freeze execution properly. */ inl(acpi_gbl_FADT.xpm_timer_block.address); } } /** * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining) * @dev: the target CPU * @index: the index of suggested state */ static int acpi_idle_play_dead(struct cpuidle_device *dev, int index) { struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu); ACPI_FLUSH_CPU_CACHE(); while (1) { if (cx->entry_method == ACPI_CSTATE_HALT) safe_halt(); else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) { inb(cx->address); /* See comment in acpi_idle_do_entry() */ inl(acpi_gbl_FADT.xpm_timer_block.address); } else return -ENODEV; } /* Never reached */ return 0; } static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr) { return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED); } static int c3_cpu_count; static DEFINE_RAW_SPINLOCK(c3_lock); /** * acpi_idle_enter_bm - enters C3 with proper BM handling * @pr: Target processor * @cx: Target state context * @timer_bc: Whether or not to change timer mode to broadcast */ static void acpi_idle_enter_bm(struct acpi_processor *pr, struct acpi_processor_cx *cx, bool timer_bc) { acpi_unlazy_tlb(smp_processor_id()); /* * Must be done before busmaster disable as we might need to * access HPET ! */ if (timer_bc) lapic_timer_state_broadcast(pr, cx, 1); /* * disable bus master * bm_check implies we need ARB_DIS * bm_control implies whether we can do ARB_DIS * * That leaves a case where bm_check is set and bm_control is * not set. In that case we cannot do much, we enter C3 * without doing anything. */ if (pr->flags.bm_control) { raw_spin_lock(&c3_lock); c3_cpu_count++; /* Disable bus master arbitration when all CPUs are in C3 */ if (c3_cpu_count == num_online_cpus()) acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1); raw_spin_unlock(&c3_lock); } acpi_idle_do_entry(cx); /* Re-enable bus master arbitration */ if (pr->flags.bm_control) { raw_spin_lock(&c3_lock); acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0); c3_cpu_count--; raw_spin_unlock(&c3_lock); } if (timer_bc) lapic_timer_state_broadcast(pr, cx, 0); } static int acpi_idle_enter(struct cpuidle_device *dev, struct cpuidle_driver *drv, int index) { struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu); struct acpi_processor *pr; pr = __this_cpu_read(processors); if (unlikely(!pr)) return -EINVAL; if (cx->type != ACPI_STATE_C1) { if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) { index = CPUIDLE_DRIVER_STATE_START; cx = per_cpu(acpi_cstate[index], dev->cpu); } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) { if (cx->bm_sts_skip || !acpi_idle_bm_check()) { acpi_idle_enter_bm(pr, cx, true); return index; } else if (drv->safe_state_index >= 0) { index = drv->safe_state_index; cx = per_cpu(acpi_cstate[index], dev->cpu); } else { acpi_safe_halt(); return -EBUSY; } } } lapic_timer_state_broadcast(pr, cx, 1); if (cx->type == ACPI_STATE_C3) ACPI_FLUSH_CPU_CACHE(); acpi_idle_do_entry(cx); lapic_timer_state_broadcast(pr, cx, 0); return index; } static void acpi_idle_enter_freeze(struct cpuidle_device *dev, struct cpuidle_driver *drv, int index) { struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu); if (cx->type == ACPI_STATE_C3) { struct acpi_processor *pr = __this_cpu_read(processors); if (unlikely(!pr)) return; if (pr->flags.bm_check) { acpi_idle_enter_bm(pr, cx, false); return; } else { ACPI_FLUSH_CPU_CACHE(); } } acpi_idle_do_entry(cx); } static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr, struct cpuidle_device *dev) { int i, count = CPUIDLE_DRIVER_STATE_START; struct acpi_processor_cx *cx; if (max_cstate == 0) max_cstate = 1; for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { cx = &pr->power.states[i]; if (!cx->valid) continue; per_cpu(acpi_cstate[count], dev->cpu) = cx; count++; if (count == CPUIDLE_STATE_MAX) break; } if (!count) return -EINVAL; return 0; } static int acpi_processor_setup_cstates(struct acpi_processor *pr) { int i, count = CPUIDLE_DRIVER_STATE_START; struct acpi_processor_cx *cx; struct cpuidle_state *state; struct cpuidle_driver *drv = &acpi_idle_driver; if (max_cstate == 0) max_cstate = 1; for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { cx = &pr->power.states[i]; if (!cx->valid) continue; state = &drv->states[count]; snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i); strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN); state->exit_latency = cx->latency; state->target_residency = cx->latency * latency_factor; state->enter = acpi_idle_enter; state->flags = 0; if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) { state->enter_dead = acpi_idle_play_dead; drv->safe_state_index = count; } /* * Halt-induced C1 is not good for ->enter_freeze, because it * re-enables interrupts on exit. Moreover, C1 is generally not * particularly interesting from the suspend-to-idle angle, so * avoid C1 and the situations in which we may need to fall back * to it altogether. */ if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr)) state->enter_freeze = acpi_idle_enter_freeze; count++; if (count == CPUIDLE_STATE_MAX) break; } drv->state_count = count; if (!count) return -EINVAL; return 0; } static inline void acpi_processor_cstate_first_run_checks(void) { acpi_status status; static int first_run; if (first_run) return; dmi_check_system(processor_power_dmi_table); max_cstate = acpi_processor_cstate_check(max_cstate); if (max_cstate < ACPI_C_STATES_MAX) pr_notice("ACPI: processor limited to max C-state %d\n", max_cstate); first_run++; if (acpi_gbl_FADT.cst_control && !nocst) { status = acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8); if (ACPI_FAILURE(status)) ACPI_EXCEPTION((AE_INFO, status, "Notifying BIOS of _CST ability failed")); } } #else static inline int disabled_by_idle_boot_param(void) { return 0; } static inline void acpi_processor_cstate_first_run_checks(void) { } static int acpi_processor_get_cstate_info(struct acpi_processor *pr) { return -ENODEV; } static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr, struct cpuidle_device *dev) { return -EINVAL; } static int acpi_processor_setup_cstates(struct acpi_processor *pr) { return -EINVAL; } #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */ struct acpi_lpi_states_array { unsigned int size; unsigned int composite_states_size; struct acpi_lpi_state *entries; struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER]; }; static int obj_get_integer(union acpi_object *obj, u32 *value) { if (obj->type != ACPI_TYPE_INTEGER) return -EINVAL; *value = obj->integer.value; return 0; } static int acpi_processor_evaluate_lpi(acpi_handle handle, struct acpi_lpi_states_array *info) { acpi_status status; int ret = 0; int pkg_count, state_idx = 1, loop; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *lpi_data; struct acpi_lpi_state *lpi_state; status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer); if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n")); return -ENODEV; } lpi_data = buffer.pointer; /* There must be at least 4 elements = 3 elements + 1 package */ if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE || lpi_data->package.count < 4) { pr_debug("not enough elements in _LPI\n"); ret = -ENODATA; goto end; } pkg_count = lpi_data->package.elements[2].integer.value; /* Validate number of power states. */ if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) { pr_debug("count given by _LPI is not valid\n"); ret = -ENODATA; goto end; } lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL); if (!lpi_state) { ret = -ENOMEM; goto end; } info->size = pkg_count; info->entries = lpi_state; /* LPI States start at index 3 */ for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) { union acpi_object *element, *pkg_elem, *obj; element = &lpi_data->package.elements[loop]; if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7) continue; pkg_elem = element->package.elements; obj = pkg_elem + 6; if (obj->type == ACPI_TYPE_BUFFER) { struct acpi_power_register *reg; reg = (struct acpi_power_register *)obj->buffer.pointer; if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) continue; lpi_state->address = reg->address; lpi_state->entry_method = reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ? ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO; } else if (obj->type == ACPI_TYPE_INTEGER) { lpi_state->entry_method = ACPI_CSTATE_INTEGER; lpi_state->address = obj->integer.value; } else { continue; } /* elements[7,8] skipped for now i.e. Residency/Usage counter*/ obj = pkg_elem + 9; if (obj->type == ACPI_TYPE_STRING) strlcpy(lpi_state->desc, obj->string.pointer, ACPI_CX_DESC_LEN); lpi_state->index = state_idx; if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) { pr_debug("No min. residency found, assuming 10 us\n"); lpi_state->min_residency = 10; } if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) { pr_debug("No wakeup residency found, assuming 10 us\n"); lpi_state->wake_latency = 10; } if (obj_get_integer(pkg_elem + 2, &lpi_state->flags)) lpi_state->flags = 0; if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags)) lpi_state->arch_flags = 0; if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq)) lpi_state->res_cnt_freq = 1; if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state)) lpi_state->enable_parent_state = 0; } acpi_handle_debug(handle, "Found %d power states\n", state_idx); end: kfree(buffer.pointer); return ret; } /* * flat_state_cnt - the number of composite LPI states after the process of flattening */ static int flat_state_cnt; /** * combine_lpi_states - combine local and parent LPI states to form a composite LPI state * * @local: local LPI state * @parent: parent LPI state * @result: composite LPI state */ static bool combine_lpi_states(struct acpi_lpi_state *local, struct acpi_lpi_state *parent, struct acpi_lpi_state *result) { if (parent->entry_method == ACPI_CSTATE_INTEGER) { if (!parent->address) /* 0 means autopromotable */ return false; result->address = local->address + parent->address; } else { result->address = parent->address; } result->min_residency = max(local->min_residency, parent->min_residency); result->wake_latency = local->wake_latency + parent->wake_latency; result->enable_parent_state = parent->enable_parent_state; result->entry_method = local->entry_method; result->flags = parent->flags; result->arch_flags = parent->arch_flags; result->index = parent->index; strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN); strlcat(result->desc, "+", ACPI_CX_DESC_LEN); strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN); return true; } #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0) static void stash_composite_state(struct acpi_lpi_states_array *curr_level, struct acpi_lpi_state *t) { curr_level->composite_states[curr_level->composite_states_size++] = t; } static int flatten_lpi_states(struct acpi_processor *pr, struct acpi_lpi_states_array *curr_level, struct acpi_lpi_states_array *prev_level) { int i, j, state_count = curr_level->size; struct acpi_lpi_state *p, *t = curr_level->entries; curr_level->composite_states_size = 0; for (j = 0; j < state_count; j++, t++) { struct acpi_lpi_state *flpi; if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED)) continue; if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) { pr_warn("Limiting number of LPI states to max (%d)\n", ACPI_PROCESSOR_MAX_POWER); pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); break; } flpi = &pr->power.lpi_states[flat_state_cnt]; if (!prev_level) { /* leaf/processor node */ memcpy(flpi, t, sizeof(*t)); stash_composite_state(curr_level, flpi); flat_state_cnt++; continue; } for (i = 0; i < prev_level->composite_states_size; i++) { p = prev_level->composite_states[i]; if (t->index <= p->enable_parent_state && combine_lpi_states(p, t, flpi)) { stash_composite_state(curr_level, flpi); flat_state_cnt++; flpi++; } } } kfree(curr_level->entries); return 0; } static int acpi_processor_get_lpi_info(struct acpi_processor *pr) { int ret, i; acpi_status status; acpi_handle handle = pr->handle, pr_ahandle; struct acpi_device *d = NULL; struct acpi_lpi_states_array info[2], *tmp, *prev, *curr; if (!osc_pc_lpi_support_confirmed) return -EOPNOTSUPP; if (!acpi_has_method(handle, "_LPI")) return -EINVAL; flat_state_cnt = 0; prev = &info[0]; curr = &info[1]; handle = pr->handle; ret = acpi_processor_evaluate_lpi(handle, prev); if (ret) return ret; flatten_lpi_states(pr, prev, NULL); status = acpi_get_parent(handle, &pr_ahandle); while (ACPI_SUCCESS(status)) { acpi_bus_get_device(pr_ahandle, &d); handle = pr_ahandle; if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID)) break; /* can be optional ? */ if (!acpi_has_method(handle, "_LPI")) break; ret = acpi_processor_evaluate_lpi(handle, curr); if (ret) break; /* flatten all the LPI states in this level of hierarchy */ flatten_lpi_states(pr, curr, prev); tmp = prev, prev = curr, curr = tmp; status = acpi_get_parent(handle, &pr_ahandle); } pr->power.count = flat_state_cnt; /* reset the index after flattening */ for (i = 0; i < pr->power.count; i++) pr->power.lpi_states[i].index = i; /* Tell driver that _LPI is supported. */ pr->flags.has_lpi = 1; pr->flags.power = 1; return 0; } int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu) { return -ENODEV; } int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi) { return -ENODEV; } /** * acpi_idle_lpi_enter - enters an ACPI any LPI state * @dev: the target CPU * @drv: cpuidle driver containing cpuidle state info * @index: index of target state * * Return: 0 for success or negative value for error */ static int acpi_idle_lpi_enter(struct cpuidle_device *dev, struct cpuidle_driver *drv, int index) { struct acpi_processor *pr; struct acpi_lpi_state *lpi; pr = __this_cpu_read(processors); if (unlikely(!pr)) return -EINVAL; lpi = &pr->power.lpi_states[index]; if (lpi->entry_method == ACPI_CSTATE_FFH) return acpi_processor_ffh_lpi_enter(lpi); return -EINVAL; } static int acpi_processor_setup_lpi_states(struct acpi_processor *pr) { int i; struct acpi_lpi_state *lpi; struct cpuidle_state *state; struct cpuidle_driver *drv = &acpi_idle_driver; if (!pr->flags.has_lpi) return -EOPNOTSUPP; for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) { lpi = &pr->power.lpi_states[i]; state = &drv->states[i]; snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i); strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN); state->exit_latency = lpi->wake_latency; state->target_residency = lpi->min_residency; if (lpi->arch_flags) state->flags |= CPUIDLE_FLAG_TIMER_STOP; state->enter = acpi_idle_lpi_enter; drv->safe_state_index = i; } drv->state_count = i; return 0; } /** * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle * global state data i.e. idle routines * * @pr: the ACPI processor */ static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr) { int i; struct cpuidle_driver *drv = &acpi_idle_driver; if (!pr->flags.power_setup_done || !pr->flags.power) return -EINVAL; drv->safe_state_index = -1; for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) { drv->states[i].name[0] = '\0'; drv->states[i].desc[0] = '\0'; } if (pr->flags.has_lpi) return acpi_processor_setup_lpi_states(pr); return acpi_processor_setup_cstates(pr); } /** * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE * device i.e. per-cpu data * * @pr: the ACPI processor * @dev : the cpuidle device */ static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr, struct cpuidle_device *dev) { if (!pr->flags.power_setup_done || !pr->flags.power || !dev) return -EINVAL; dev->cpu = pr->id; if (pr->flags.has_lpi) return acpi_processor_ffh_lpi_probe(pr->id); return acpi_processor_setup_cpuidle_cx(pr, dev); } static int acpi_processor_get_power_info(struct acpi_processor *pr) { int ret; ret = acpi_processor_get_lpi_info(pr); if (ret) ret = acpi_processor_get_cstate_info(pr); return ret; } int acpi_processor_hotplug(struct acpi_processor *pr) { int ret = 0; struct cpuidle_device *dev; if (disabled_by_idle_boot_param()) return 0; if (!pr->flags.power_setup_done) return -ENODEV; dev = per_cpu(acpi_cpuidle_device, pr->id); cpuidle_pause_and_lock(); cpuidle_disable_device(dev); ret = acpi_processor_get_power_info(pr); if (!ret && pr->flags.power) { acpi_processor_setup_cpuidle_dev(pr, dev); ret = cpuidle_enable_device(dev); } cpuidle_resume_and_unlock(); return ret; } int acpi_processor_power_state_has_changed(struct acpi_processor *pr) { int cpu; struct acpi_processor *_pr; struct cpuidle_device *dev; if (disabled_by_idle_boot_param()) return 0; if (!pr->flags.power_setup_done) return -ENODEV; /* * FIXME: Design the ACPI notification to make it once per * system instead of once per-cpu. This condition is a hack * to make the code that updates C-States be called once. */ if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) { /* Protect against cpu-hotplug */ get_online_cpus(); cpuidle_pause_and_lock(); /* Disable all cpuidle devices */ for_each_online_cpu(cpu) { _pr = per_cpu(processors, cpu); if (!_pr || !_pr->flags.power_setup_done) continue; dev = per_cpu(acpi_cpuidle_device, cpu); cpuidle_disable_device(dev); } /* Populate Updated C-state information */ acpi_processor_get_power_info(pr); acpi_processor_setup_cpuidle_states(pr); /* Enable all cpuidle devices */ for_each_online_cpu(cpu) { _pr = per_cpu(processors, cpu); if (!_pr || !_pr->flags.power_setup_done) continue; acpi_processor_get_power_info(_pr); if (_pr->flags.power) { dev = per_cpu(acpi_cpuidle_device, cpu); acpi_processor_setup_cpuidle_dev(_pr, dev); cpuidle_enable_device(dev); } } cpuidle_resume_and_unlock(); put_online_cpus(); } return 0; } static int acpi_processor_registered; int acpi_processor_power_init(struct acpi_processor *pr) { int retval; struct cpuidle_device *dev; if (disabled_by_idle_boot_param()) return 0; acpi_processor_cstate_first_run_checks(); if (!acpi_processor_get_power_info(pr)) pr->flags.power_setup_done = 1; /* * Install the idle handler if processor power management is supported. * Note that we use previously set idle handler will be used on * platforms that only support C1. */ if (pr->flags.power) { /* Register acpi_idle_driver if not already registered */ if (!acpi_processor_registered) { acpi_processor_setup_cpuidle_states(pr); retval = cpuidle_register_driver(&acpi_idle_driver); if (retval) return retval; pr_debug("%s registered with cpuidle\n", acpi_idle_driver.name); } dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; per_cpu(acpi_cpuidle_device, pr->id) = dev; acpi_processor_setup_cpuidle_dev(pr, dev); /* Register per-cpu cpuidle_device. Cpuidle driver * must already be registered before registering device */ retval = cpuidle_register_device(dev); if (retval) { if (acpi_processor_registered == 0) cpuidle_unregister_driver(&acpi_idle_driver); return retval; } acpi_processor_registered++; } return 0; } int acpi_processor_power_exit(struct acpi_processor *pr) { struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id); if (disabled_by_idle_boot_param()) return 0; if (pr->flags.power) { cpuidle_unregister_device(dev); acpi_processor_registered--; if (acpi_processor_registered == 0) cpuidle_unregister_driver(&acpi_idle_driver); } pr->flags.power_setup_done = 0; return 0; }