/* * linux/drivers/char/raw.c * * Front-end raw character devices. These can be bound to any block * devices to provide genuine Unix raw character device semantics. * * We reserve minor number 0 for a control interface. ioctl()s on this * device are used to bind the other minor numbers to block devices. */ #include <linux/init.h> #include <linux/fs.h> #include <linux/devfs_fs_kernel.h> #include <linux/major.h> #include <linux/blkdev.h> #include <linux/module.h> #include <linux/raw.h> #include <linux/capability.h> #include <linux/uio.h> #include <linux/cdev.h> #include <linux/device.h> #include <linux/mutex.h> #include <asm/uaccess.h> struct raw_device_data { struct block_device *binding; int inuse; }; static struct class *raw_class; static struct raw_device_data raw_devices[MAX_RAW_MINORS]; static DEFINE_MUTEX(raw_mutex); static struct file_operations raw_ctl_fops; /* forward declaration */ /* * Open/close code for raw IO. * * We just rewrite the i_mapping for the /dev/raw/rawN file descriptor to * point at the blockdev's address_space and set the file handle to use * O_DIRECT. * * Set the device's soft blocksize to the minimum possible. This gives the * finest possible alignment and has no adverse impact on performance. */ static int raw_open(struct inode *inode, struct file *filp) { const int minor = iminor(inode); struct block_device *bdev; int err; if (minor == 0) { /* It is the control device */ filp->f_op = &raw_ctl_fops; return 0; } mutex_lock(&raw_mutex); /* * All we need to do on open is check that the device is bound. */ bdev = raw_devices[minor].binding; err = -ENODEV; if (!bdev) goto out; igrab(bdev->bd_inode); err = blkdev_get(bdev, filp->f_mode, 0); if (err) goto out; err = bd_claim(bdev, raw_open); if (err) goto out1; err = set_blocksize(bdev, bdev_hardsect_size(bdev)); if (err) goto out2; filp->f_flags |= O_DIRECT; filp->f_mapping = bdev->bd_inode->i_mapping; if (++raw_devices[minor].inuse == 1) filp->f_dentry->d_inode->i_mapping = bdev->bd_inode->i_mapping; filp->private_data = bdev; mutex_unlock(&raw_mutex); return 0; out2: bd_release(bdev); out1: blkdev_put(bdev); out: mutex_unlock(&raw_mutex); return err; } /* * When the final fd which refers to this character-special node is closed, we * make its ->mapping point back at its own i_data. */ static int raw_release(struct inode *inode, struct file *filp) { const int minor= iminor(inode); struct block_device *bdev; mutex_lock(&raw_mutex); bdev = raw_devices[minor].binding; if (--raw_devices[minor].inuse == 0) { /* Here inode->i_mapping == bdev->bd_inode->i_mapping */ inode->i_mapping = &inode->i_data; inode->i_mapping->backing_dev_info = &default_backing_dev_info; } mutex_unlock(&raw_mutex); bd_release(bdev); blkdev_put(bdev); return 0; } /* * Forward ioctls to the underlying block device. */ static int raw_ioctl(struct inode *inode, struct file *filp, unsigned int command, unsigned long arg) { struct block_device *bdev = filp->private_data; return blkdev_ioctl(bdev->bd_inode, NULL, command, arg); } static void bind_device(struct raw_config_request *rq) { class_device_destroy(raw_class, MKDEV(RAW_MAJOR, rq->raw_minor)); class_device_create(raw_class, NULL, MKDEV(RAW_MAJOR, rq->raw_minor), NULL, "raw%d", rq->raw_minor); } /* * Deal with ioctls against the raw-device control interface, to bind * and unbind other raw devices. */ static int raw_ctl_ioctl(struct inode *inode, struct file *filp, unsigned int command, unsigned long arg) { struct raw_config_request rq; struct raw_device_data *rawdev; int err = 0; switch (command) { case RAW_SETBIND: case RAW_GETBIND: /* First, find out which raw minor we want */ if (copy_from_user(&rq, (void __user *) arg, sizeof(rq))) { err = -EFAULT; goto out; } if (rq.raw_minor < 0 || rq.raw_minor >= MAX_RAW_MINORS) { err = -EINVAL; goto out; } rawdev = &raw_devices[rq.raw_minor]; if (command == RAW_SETBIND) { dev_t dev; /* * This is like making block devices, so demand the * same capability */ if (!capable(CAP_SYS_ADMIN)) { err = -EPERM; goto out; } /* * For now, we don't need to check that the underlying * block device is present or not: we can do that when * the raw device is opened. Just check that the * major/minor numbers make sense. */ dev = MKDEV(rq.block_major, rq.block_minor); if ((rq.block_major == 0 && rq.block_minor != 0) || MAJOR(dev) != rq.block_major || MINOR(dev) != rq.block_minor) { err = -EINVAL; goto out; } mutex_lock(&raw_mutex); if (rawdev->inuse) { mutex_unlock(&raw_mutex); err = -EBUSY; goto out; } if (rawdev->binding) { bdput(rawdev->binding); module_put(THIS_MODULE); } if (rq.block_major == 0 && rq.block_minor == 0) { /* unbind */ rawdev->binding = NULL; class_device_destroy(raw_class, MKDEV(RAW_MAJOR, rq.raw_minor)); } else { rawdev->binding = bdget(dev); if (rawdev->binding == NULL) err = -ENOMEM; else { __module_get(THIS_MODULE); bind_device(&rq); } } mutex_unlock(&raw_mutex); } else { struct block_device *bdev; mutex_lock(&raw_mutex); bdev = rawdev->binding; if (bdev) { rq.block_major = MAJOR(bdev->bd_dev); rq.block_minor = MINOR(bdev->bd_dev); } else { rq.block_major = rq.block_minor = 0; } mutex_unlock(&raw_mutex); if (copy_to_user((void __user *)arg, &rq, sizeof(rq))) { err = -EFAULT; goto out; } } break; default: err = -EINVAL; break; } out: return err; } static ssize_t raw_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct iovec local_iov = { .iov_base = (char __user *)buf, .iov_len = count }; return generic_file_write_nolock(file, &local_iov, 1, ppos); } static ssize_t raw_file_aio_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos) { struct iovec local_iov = { .iov_base = (char __user *)buf, .iov_len = count }; return generic_file_aio_write_nolock(iocb, &local_iov, 1, &iocb->ki_pos); } static struct file_operations raw_fops = { .read = generic_file_read, .aio_read = generic_file_aio_read, .write = raw_file_write, .aio_write = raw_file_aio_write, .open = raw_open, .release= raw_release, .ioctl = raw_ioctl, .readv = generic_file_readv, .writev = generic_file_writev, .owner = THIS_MODULE, }; static struct file_operations raw_ctl_fops = { .ioctl = raw_ctl_ioctl, .open = raw_open, .owner = THIS_MODULE, }; static struct cdev raw_cdev = { .kobj = {.name = "raw", }, .owner = THIS_MODULE, }; static int __init raw_init(void) { dev_t dev = MKDEV(RAW_MAJOR, 0); if (register_chrdev_region(dev, MAX_RAW_MINORS, "raw")) goto error; cdev_init(&raw_cdev, &raw_fops); if (cdev_add(&raw_cdev, dev, MAX_RAW_MINORS)) { kobject_put(&raw_cdev.kobj); unregister_chrdev_region(dev, MAX_RAW_MINORS); goto error; } raw_class = class_create(THIS_MODULE, "raw"); if (IS_ERR(raw_class)) { printk(KERN_ERR "Error creating raw class.\n"); cdev_del(&raw_cdev); unregister_chrdev_region(dev, MAX_RAW_MINORS); goto error; } class_device_create(raw_class, NULL, MKDEV(RAW_MAJOR, 0), NULL, "rawctl"); return 0; error: printk(KERN_ERR "error register raw device\n"); return 1; } static void __exit raw_exit(void) { int i; for (i = 1; i < MAX_RAW_MINORS; i++) devfs_remove("raw/raw%d", i); devfs_remove("raw/rawctl"); devfs_remove("raw"); class_device_destroy(raw_class, MKDEV(RAW_MAJOR, 0)); class_destroy(raw_class); cdev_del(&raw_cdev); unregister_chrdev_region(MKDEV(RAW_MAJOR, 0), MAX_RAW_MINORS); } module_init(raw_init); module_exit(raw_exit); MODULE_LICENSE("GPL");