/* * Copyright (C) 2013-2014 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include static struct regulator *arm_reg; static struct regulator *pu_reg; static struct regulator *soc_reg; static struct clk *arm_clk; static struct clk *pll1_sys_clk; static struct clk *pll1_sw_clk; static struct clk *step_clk; static struct clk *pll2_pfd2_396m_clk; static struct device *cpu_dev; static struct cpufreq_frequency_table *freq_table; static unsigned int transition_latency; static struct mutex set_cpufreq_lock; struct soc_opp { u32 arm_freq; u32 soc_volt; }; static struct soc_opp *imx6_soc_opp; static u32 soc_opp_count; static int imx6_verify_speed(struct cpufreq_policy *policy) { return cpufreq_frequency_table_verify(policy, freq_table); } static unsigned int imx6_get_speed(unsigned int cpu) { return clk_get_rate(arm_clk) / 1000; } static int imx6_set_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct cpufreq_freqs freqs; struct opp *opp; unsigned long freq_hz, volt, volt_old; unsigned int index, soc_opp_index = 0; int ret; mutex_lock(&set_cpufreq_lock); ret = cpufreq_frequency_table_target(policy, freq_table, target_freq, relation, &index); if (ret) { dev_err(cpu_dev, "failed to match target frequency %d: %d\n", target_freq, ret); mutex_unlock(&set_cpufreq_lock); return ret; } freqs.new = freq_table[index].frequency; freq_hz = freqs.new * 1000; freqs.old = clk_get_rate(arm_clk) / 1000; if (freqs.old == freqs.new) { mutex_unlock(&set_cpufreq_lock); return 0; } cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE); rcu_read_lock(); opp = opp_find_freq_ceil(cpu_dev, &freq_hz); if (IS_ERR(opp)) { rcu_read_unlock(); dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz); mutex_unlock(&set_cpufreq_lock); return PTR_ERR(opp); } volt = opp_get_voltage(opp); rcu_read_unlock(); volt_old = regulator_get_voltage(arm_reg); /* Find the matching VDDSOC/VDDPU operating voltage */ while (soc_opp_index < soc_opp_count) { if (freqs.new == imx6_soc_opp[soc_opp_index].arm_freq) break; soc_opp_index++; } if (soc_opp_index >= soc_opp_count) { dev_err(cpu_dev, "Cannot find matching imx6_soc_opp voltage\n"); mutex_unlock(&set_cpufreq_lock); return -EINVAL; } dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n", freqs.old / 1000, volt_old / 1000, freqs.new / 1000, volt / 1000); /* * CPU freq is increasing, so need to ensure * that bus frequency is increased too. */ if (freqs.old == freq_table[0].frequency) request_bus_freq(BUS_FREQ_HIGH); /* scaling up? scale voltage before frequency */ if (freqs.new > freqs.old) { if (!IS_ERR(pu_reg) && regulator_is_enabled(pu_reg)) { ret = regulator_set_voltage_tol(pu_reg, imx6_soc_opp[soc_opp_index].soc_volt, 0); if (ret) { dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret); goto err1; } } ret = regulator_set_voltage_tol(soc_reg, imx6_soc_opp[soc_opp_index].soc_volt, 0); if (ret) { dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret); goto err1; } ret = regulator_set_voltage_tol(arm_reg, volt, 0); if (ret) { dev_err(cpu_dev, "failed to scale vddarm up: %d\n", ret); goto err1; } } /* * The setpoints are selected per PLL/PDF frequencies, so we need to * reprogram PLL for frequency scaling. The procedure of reprogramming * PLL1 is as below. * * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it * - Disable pll2_pfd2_396m_clk */ clk_set_parent(step_clk, pll2_pfd2_396m_clk); clk_set_parent(pll1_sw_clk, step_clk); if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) { clk_set_rate(pll1_sys_clk, freqs.new * 1000); clk_set_parent(pll1_sw_clk, pll1_sys_clk); } /* Ensure the arm clock divider is what we expect */ ret = clk_set_rate(arm_clk, freqs.new * 1000); if (ret) { dev_err(cpu_dev, "failed to set clock rate: %d\n", ret); goto err1; } /* scaling down? scale voltage after frequency */ if (freqs.new < freqs.old) { ret = regulator_set_voltage_tol(arm_reg, volt, 0); if (ret) { dev_warn(cpu_dev, "failed to scale vddarm down: %d\n", ret); goto err1; } ret = regulator_set_voltage_tol(soc_reg, imx6_soc_opp[soc_opp_index].soc_volt, 0); if (ret) { dev_err(cpu_dev, "failed to scale vddsoc down: %d\n", ret); goto err1; } if (!IS_ERR(pu_reg) && regulator_is_enabled(pu_reg)) { ret = regulator_set_voltage_tol(pu_reg, imx6_soc_opp[soc_opp_index].soc_volt, 0); if (ret) { dev_err(cpu_dev, "failed to scale vddpu down: %d\n", ret); goto err1; } } } /* * If CPU is dropped to the lowest level, release the need * for a high bus frequency. */ if (freqs.new == freq_table[0].frequency) release_bus_freq(BUS_FREQ_HIGH); cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); mutex_unlock(&set_cpufreq_lock); return 0; err1: mutex_unlock(&set_cpufreq_lock); return -1; } static int imx6_cpufreq_init(struct cpufreq_policy *policy) { int ret; ret = cpufreq_frequency_table_cpuinfo(policy, freq_table); if (ret) { dev_err(cpu_dev, "invalid frequency table: %d\n", ret); return ret; } policy->cpuinfo.transition_latency = transition_latency; policy->cur = clk_get_rate(arm_clk) / 1000; cpumask_setall(policy->cpus); cpufreq_frequency_table_get_attr(freq_table, policy->cpu); if (policy->cur > freq_table[0].frequency) request_bus_freq(BUS_FREQ_HIGH); return 0; } static int imx6_cpufreq_exit(struct cpufreq_policy *policy) { cpufreq_frequency_table_put_attr(policy->cpu); return 0; } static struct freq_attr *imx6_cpufreq_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, NULL, }; static struct cpufreq_driver imx6_cpufreq_driver = { .verify = imx6_verify_speed, .target = imx6_set_target, .get = imx6_get_speed, .init = imx6_cpufreq_init, .exit = imx6_cpufreq_exit, .name = "imx6-cpufreq", .attr = imx6_cpufreq_attr, }; static int imx6_cpufreq_pm_notify(struct notifier_block *nb, unsigned long event, void *dummy) { struct cpufreq_policy *data = cpufreq_cpu_get(0); static u32 cpufreq_policy_min_pre_suspend; /* * During suspend/resume, When cpufreq driver try to increase * voltage/freq, it needs to control I2C/SPI to communicate * with external PMIC to adjust voltage, but these I2C/SPI * devices may be already suspended, to avoid such scenario, * we just increase cpufreq to highest setpoint before suspend. */ switch (event) { case PM_SUSPEND_PREPARE: cpufreq_policy_min_pre_suspend = data->user_policy.min; data->user_policy.min = data->user_policy.max; break; case PM_POST_SUSPEND: data->user_policy.min = cpufreq_policy_min_pre_suspend; break; default: break; } cpufreq_update_policy(0); return NOTIFY_OK; } static struct notifier_block imx6_cpufreq_pm_notifier = { .notifier_call = imx6_cpufreq_pm_notify, }; static int imx6_cpufreq_probe(struct platform_device *pdev) { struct device_node *np; struct opp *opp; unsigned long min_volt = 0, max_volt = 0; int num, ret; const struct property *prop; const __be32 *val; u32 nr, i; cpu_dev = &pdev->dev; np = of_find_node_by_path("/cpus/cpu@0"); if (!np) { dev_err(cpu_dev, "failed to find cpu0 node\n"); return -ENOENT; } cpu_dev->of_node = np; arm_clk = devm_clk_get(cpu_dev, "arm"); pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys"); pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw"); step_clk = devm_clk_get(cpu_dev, "step"); pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m"); if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) || IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) { dev_err(cpu_dev, "failed to get clocks\n"); ret = -ENOENT; goto put_node; } arm_reg = devm_regulator_get(cpu_dev, "arm"); pu_reg = devm_regulator_get(cpu_dev, "pu"); soc_reg = devm_regulator_get(cpu_dev, "soc"); if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) { dev_err(cpu_dev, "failed to get regulators\n"); ret = -ENOENT; goto put_node; } /* We expect an OPP table supplied by platform */ num = opp_get_opp_count(cpu_dev); if (num < 0) { ret = num; dev_err(cpu_dev, "no OPP table is found: %d\n", ret); goto put_node; } ret = opp_init_cpufreq_table(cpu_dev, &freq_table); if (ret) { dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret); goto put_node; } prop = of_find_property(np, "fsl,soc-operating-points", NULL); if (!prop) { dev_err(cpu_dev, "fsl,soc-operating-points node not found\n"); goto free_freq_table; } if (!prop->value) { dev_err(cpu_dev, "No entries in fsl-soc-operating-points node.\n"); goto free_freq_table; } /* * Each OPP is a set of tuples consisting of frequency and * voltage like . */ nr = prop->length / sizeof(u32); if (nr % 2) { dev_err(cpu_dev, "Invalid fsl-soc-operating-points list\n"); goto free_freq_table; } /* Get the VDDSOC/VDDPU voltages that need to track the CPU voltages. */ imx6_soc_opp = devm_kzalloc(cpu_dev, sizeof(struct soc_opp) * (nr / 2), GFP_KERNEL); if (imx6_soc_opp == NULL) { dev_err(cpu_dev, "No Memory for VDDSOC/PU table\n"); goto free_freq_table; } rcu_read_lock(); val = prop->value; for (i = 0; i < nr / 2; i++) { unsigned long freq = be32_to_cpup(val++); unsigned long volt = be32_to_cpup(val++); if (i == 0) min_volt = max_volt = volt; if (volt < min_volt) min_volt = volt; if (volt > max_volt) max_volt = volt; opp = opp_find_freq_exact(cpu_dev, freq * 1000, true); if (IS_ERR(opp)) { opp = opp_find_freq_exact(cpu_dev, freq * 1000, false); if (IS_ERR(opp)) { dev_err(cpu_dev, "freq in soc-operating-points does not \ match cpufreq table\n"); rcu_read_unlock(); goto free_freq_table; } } imx6_soc_opp[i].arm_freq = freq; imx6_soc_opp[i].soc_volt = volt; #ifdef CONFIG_MX6_VPU_352M if (imx6_soc_opp[i].arm_freq == 792000) { pr_info("increase SOC/PU voltage for VPU352MHz\n"); imx6_soc_opp[i].soc_volt = 1250000; } #endif soc_opp_count++; } rcu_read_unlock(); if (of_property_read_u32(np, "clock-latency", &transition_latency)) transition_latency = CPUFREQ_ETERNAL; /* * Calculate the ramp time for max voltage change in the * VDDSOC and VDDPU regulators. */ ret = regulator_set_voltage_time(soc_reg, min_volt, max_volt); if (ret > 0) transition_latency += ret * 1000; if (!IS_ERR(pu_reg)) { ret = regulator_set_voltage_time(pu_reg, min_volt, max_volt); if (ret > 0) transition_latency += ret * 1000; } /* * OPP is maintained in order of increasing frequency, and * freq_table initialised from OPP is therefore sorted in the * same order. */ rcu_read_lock(); opp = opp_find_freq_exact(cpu_dev, freq_table[0].frequency * 1000, true); min_volt = opp_get_voltage(opp); opp = opp_find_freq_exact(cpu_dev, freq_table[num - 1].frequency * 1000, true); max_volt = opp_get_voltage(opp); rcu_read_unlock(); ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt); if (ret > 0) transition_latency += ret * 1000; mutex_init(&set_cpufreq_lock); register_pm_notifier(&imx6_cpufreq_pm_notifier); ret = cpufreq_register_driver(&imx6_cpufreq_driver); if (ret) { dev_err(cpu_dev, "failed register driver: %d\n", ret); goto free_freq_table; } of_node_put(np); return 0; free_freq_table: opp_free_cpufreq_table(cpu_dev, &freq_table); put_node: of_node_put(np); return ret; } static int imx6_cpufreq_remove(struct platform_device *pdev) { cpufreq_unregister_driver(&imx6_cpufreq_driver); opp_free_cpufreq_table(cpu_dev, &freq_table); return 0; } static struct platform_driver imx6_cpufreq_platdrv = { .driver = { .name = "imx6-cpufreq", .owner = THIS_MODULE, }, .probe = imx6_cpufreq_probe, .remove = imx6_cpufreq_remove, }; module_platform_driver(imx6_cpufreq_platdrv); MODULE_AUTHOR("Shawn Guo "); MODULE_DESCRIPTION("Freescale i.MX6 cpufreq driver"); MODULE_LICENSE("GPL");