/* * Copyright (C) 2015-2016 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include static struct clk *arm_clk; static struct clk *pll_arm; static struct clk *arm_src; static struct clk *pll_sys_main; static struct regulator *arm_reg; static struct device *cpu_dev; static struct cpufreq_frequency_table *freq_table; static unsigned int transition_latency; static struct mutex set_cpufreq_lock; static int imx7d_set_target(struct cpufreq_policy *policy, unsigned int index) { struct dev_pm_opp *opp; unsigned long freq_hz, volt, volt_old; unsigned int old_freq, new_freq; int ret; mutex_lock(&set_cpufreq_lock); new_freq = freq_table[index].frequency; freq_hz = new_freq * 1000; old_freq = clk_get_rate(arm_clk) / 1000; rcu_read_lock(); opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz); if (IS_ERR(opp)) { rcu_read_unlock(); dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz); mutex_unlock(&set_cpufreq_lock); return PTR_ERR(opp); } volt = dev_pm_opp_get_voltage(opp); rcu_read_unlock(); volt_old = regulator_get_voltage(arm_reg); dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n", old_freq / 1000, volt_old / 1000, new_freq / 1000, volt / 1000); /* Scaling up? scale voltage before frequency */ if (new_freq > old_freq) { ret = regulator_set_voltage_tol(arm_reg, volt, 0); if (ret) { dev_err(cpu_dev, "failed to scale vddarm up: %d\n", ret); mutex_unlock(&set_cpufreq_lock); return ret; } } /* before changing pll_arm rate, change the arm_src's soure * to pll_sys_main clk first. */ clk_set_parent(arm_src, pll_sys_main); clk_set_rate(pll_arm, new_freq * 1000); clk_set_parent(arm_src, pll_arm); /* change the cpu frequency */ ret = clk_set_rate(arm_clk, new_freq * 1000); if (ret) { dev_err(cpu_dev, " failed to set clock rate: %d\n", ret); regulator_set_voltage_tol(arm_reg, volt_old, 0); mutex_unlock(&set_cpufreq_lock); return ret; } /* scaling down? scaling voltage after frequency */ if (new_freq < old_freq) { ret = regulator_set_voltage_tol(arm_reg, volt, 0); if (ret) { dev_warn(cpu_dev, "failed to scale vddarm down: %d\n", ret); ret = 0; } } mutex_unlock(&set_cpufreq_lock); return 0; } static int imx7d_cpufreq_init(struct cpufreq_policy *policy) { int ret; policy->clk = arm_clk; policy->cur = clk_get_rate(arm_clk) / 1000; ret = cpufreq_generic_init(policy, freq_table, transition_latency); if (ret) { dev_err(cpu_dev, "imx7d cpufreq init failed!\n"); return ret; } return 0; } static struct cpufreq_driver imx7d_cpufreq_driver = { .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK, .verify = cpufreq_generic_frequency_table_verify, .target_index = imx7d_set_target, .get = cpufreq_generic_get, .init = imx7d_cpufreq_init, .name = "imx7d-cpufreq", .attr = cpufreq_generic_attr, }; static int imx7_cpufreq_pm_notify(struct notifier_block *nb, unsigned long event, void *dummy) { struct cpufreq_policy *data = cpufreq_cpu_get(0); static u32 cpufreq_policy_min_pre_suspend; /* * During suspend/resume, when cpufreq driver try to increase * voltage/freq, it needs to control I2C/SPI to communicate * with external PMIC to adjust voltage, but these I2C/SPI * devices may be already suspended, to avoid such scenario, * we just increase cpufreq to highest setpoint before suspend. */ if (!data) return NOTIFY_BAD; switch (event) { case PM_SUSPEND_PREPARE: cpufreq_policy_min_pre_suspend = data->user_policy.min; data->user_policy.min = data->user_policy.max; break; case PM_POST_SUSPEND: data->user_policy.min = cpufreq_policy_min_pre_suspend; break; default: break; } cpufreq_update_policy(0); cpufreq_cpu_put(data); return NOTIFY_OK; } static struct notifier_block imx7_cpufreq_pm_notifier = { .notifier_call = imx7_cpufreq_pm_notify, }; static int imx7d_cpufreq_probe(struct platform_device *pdev) { struct device_node *np; struct dev_pm_opp *opp; unsigned long min_volt, max_volt; int num, ret; cpu_dev = get_cpu_device(0); if (!cpu_dev) { pr_err("failed to get cpu0 device\n"); return -ENODEV; } np = of_node_get(cpu_dev->of_node); if (!np) { dev_err(cpu_dev, "failed to find the cpu0 node\n"); return -ENOENT; } arm_clk = devm_clk_get(cpu_dev, "arm"); arm_src = devm_clk_get(cpu_dev, "arm_root_src"); pll_arm = devm_clk_get(cpu_dev, "pll_arm"); pll_sys_main = devm_clk_get(cpu_dev, "pll_sys_main"); if (IS_ERR(arm_clk) || IS_ERR(arm_src) || IS_ERR(pll_arm) || IS_ERR(pll_sys_main)) { dev_err(cpu_dev, "failed to get clocks\n"); ret = -ENOENT; goto put_node; } arm_reg = devm_regulator_get(cpu_dev, "arm"); if (IS_ERR(arm_reg)) { dev_err(cpu_dev, "failed to get the regulator\n"); ret = -ENOENT; goto put_node; } /* We expect an OPP table supplied by platform. * Just incase the platform did not supply the OPP * table, it will try to get it. */ num = dev_pm_opp_get_opp_count(cpu_dev); if (num < 0) { ret = dev_pm_opp_of_add_table(cpu_dev); if (ret < 0) { dev_err(cpu_dev, "failed to init OPP table: %d\n", ret); goto put_node; } num = dev_pm_opp_get_opp_count(cpu_dev); if (num < 0) { ret = num; dev_err(cpu_dev, "no OPP table is found: %d\n", ret); goto put_node; } } ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table); if (ret) { dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret); goto put_node; } if (of_property_read_u32(np, "clock-latency", &transition_latency)) transition_latency = CPUFREQ_ETERNAL; /* OPP is maintained in order of increasing frequency, and * freq_table initialized from OPP is therefore sorted in the * same order */ rcu_read_lock(); opp = dev_pm_opp_find_freq_exact(cpu_dev, freq_table[0].frequency * 1000, true); min_volt = dev_pm_opp_get_voltage(opp); opp = dev_pm_opp_find_freq_exact(cpu_dev, freq_table[--num].frequency * 1000, true); max_volt = dev_pm_opp_get_voltage(opp); rcu_read_unlock(); ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt); if (ret > 0) transition_latency += ret * 1000; mutex_init(&set_cpufreq_lock); ret = cpufreq_register_driver(&imx7d_cpufreq_driver); if (ret) { dev_err(cpu_dev, "failed register driver: %d\n", ret); goto free_freq_table; } register_pm_notifier(&imx7_cpufreq_pm_notifier); of_node_put(np); return 0; free_freq_table: dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); put_node: of_node_put(np); return ret; } static int imx7d_cpufreq_remove(struct platform_device *pdev) { cpufreq_unregister_driver(&imx7d_cpufreq_driver); dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); return 0; } static struct platform_driver imx7d_cpufreq_platdrv = { .driver = { .name = "imx7d-cpufreq", .owner = THIS_MODULE, }, .probe = imx7d_cpufreq_probe, .remove = imx7d_cpufreq_remove, }; module_platform_driver(imx7d_cpufreq_platdrv); MODULE_DESCRIPTION("Freescale i.MX7D cpufreq driver"); MODULE_LICENSE("GPL");