/* $Id: cris-ide-driver.patch,v 1.1 2005/06/29 21:39:07 akpm Exp $ * * Etrax specific IDE functions, like init and PIO-mode setting etc. * Almost the entire ide.c is used for the rest of the Etrax ATA driver. * Copyright (c) 2000-2005 Axis Communications AB * * Authors: Bjorn Wesen (initial version) * Mikael Starvik (crisv32 port) */ /* Regarding DMA: * * There are two forms of DMA - "DMA handshaking" between the interface and the drive, * and DMA between the memory and the interface. We can ALWAYS use the latter, since it's * something built-in in the Etrax. However only some drives support the DMA-mode handshaking * on the ATA-bus. The normal PC driver and Triton interface disables memory-if DMA when the * device can't do DMA handshaking for some stupid reason. We don't need to do that. */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/timer.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/blkdev.h> #include <linux/hdreg.h> #include <linux/ide.h> #include <linux/init.h> #include <asm/io.h> #include <asm/dma.h> /* number of DMA descriptors */ #define MAX_DMA_DESCRS 64 /* number of times to retry busy-flags when reading/writing IDE-registers * this can't be too high because a hung harddisk might cause the watchdog * to trigger (sometimes INB and OUTB are called with irq's disabled) */ #define IDE_REGISTER_TIMEOUT 300 #define LOWDB(x) #define D(x) enum /* Transfer types */ { TYPE_PIO, TYPE_DMA, TYPE_UDMA }; /* CRISv32 specifics */ #ifdef CONFIG_ETRAX_ARCH_V32 #include <asm/arch/hwregs/ata_defs.h> #include <asm/arch/hwregs/dma_defs.h> #include <asm/arch/hwregs/dma.h> #include <asm/arch/pinmux.h> #define ATA_UDMA2_CYC 2 #define ATA_UDMA2_DVS 3 #define ATA_UDMA1_CYC 2 #define ATA_UDMA1_DVS 4 #define ATA_UDMA0_CYC 4 #define ATA_UDMA0_DVS 6 #define ATA_DMA2_STROBE 7 #define ATA_DMA2_HOLD 1 #define ATA_DMA1_STROBE 8 #define ATA_DMA1_HOLD 3 #define ATA_DMA0_STROBE 25 #define ATA_DMA0_HOLD 19 #define ATA_PIO4_SETUP 3 #define ATA_PIO4_STROBE 7 #define ATA_PIO4_HOLD 1 #define ATA_PIO3_SETUP 3 #define ATA_PIO3_STROBE 9 #define ATA_PIO3_HOLD 3 #define ATA_PIO2_SETUP 3 #define ATA_PIO2_STROBE 13 #define ATA_PIO2_HOLD 5 #define ATA_PIO1_SETUP 5 #define ATA_PIO1_STROBE 23 #define ATA_PIO1_HOLD 9 #define ATA_PIO0_SETUP 9 #define ATA_PIO0_STROBE 39 #define ATA_PIO0_HOLD 9 int cris_ide_ack_intr(ide_hwif_t* hwif) { reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2, int, hwif->io_ports[0]); REG_WR_INT(ata, regi_ata, rw_ack_intr, 1 << ctrl2.sel); return 1; } static inline int cris_ide_busy(void) { reg_ata_rs_stat_data stat_data; stat_data = REG_RD(ata, regi_ata, rs_stat_data); return stat_data.busy; } static inline int cris_ide_ready(void) { return !cris_ide_busy(); } static inline int cris_ide_data_available(unsigned short* data) { reg_ata_rs_stat_data stat_data; stat_data = REG_RD(ata, regi_ata, rs_stat_data); *data = stat_data.data; return stat_data.dav; } static void cris_ide_write_command(unsigned long command) { REG_WR_INT(ata, regi_ata, rw_ctrl2, command); /* write data to the drive's register */ } static void cris_ide_set_speed(int type, int setup, int strobe, int hold) { reg_ata_rw_ctrl0 ctrl0 = REG_RD(ata, regi_ata, rw_ctrl0); reg_ata_rw_ctrl1 ctrl1 = REG_RD(ata, regi_ata, rw_ctrl1); if (type == TYPE_PIO) { ctrl0.pio_setup = setup; ctrl0.pio_strb = strobe; ctrl0.pio_hold = hold; } else if (type == TYPE_DMA) { ctrl0.dma_strb = strobe; ctrl0.dma_hold = hold; } else if (type == TYPE_UDMA) { ctrl1.udma_tcyc = setup; ctrl1.udma_tdvs = strobe; } REG_WR(ata, regi_ata, rw_ctrl0, ctrl0); REG_WR(ata, regi_ata, rw_ctrl1, ctrl1); } static unsigned long cris_ide_base_address(int bus) { reg_ata_rw_ctrl2 ctrl2 = {0}; ctrl2.sel = bus; return REG_TYPE_CONV(int, reg_ata_rw_ctrl2, ctrl2); } static unsigned long cris_ide_reg_addr(unsigned long addr, int cs0, int cs1) { reg_ata_rw_ctrl2 ctrl2 = {0}; ctrl2.addr = addr; ctrl2.cs1 = cs1; ctrl2.cs0 = cs0; return REG_TYPE_CONV(int, reg_ata_rw_ctrl2, ctrl2); } static __init void cris_ide_reset(unsigned val) { reg_ata_rw_ctrl0 ctrl0 = {0}; ctrl0.rst = val ? regk_ata_active : regk_ata_inactive; REG_WR(ata, regi_ata, rw_ctrl0, ctrl0); } static __init void cris_ide_init(void) { reg_ata_rw_ctrl0 ctrl0 = {0}; reg_ata_rw_intr_mask intr_mask = {0}; ctrl0.en = regk_ata_yes; REG_WR(ata, regi_ata, rw_ctrl0, ctrl0); intr_mask.bus0 = regk_ata_yes; intr_mask.bus1 = regk_ata_yes; intr_mask.bus2 = regk_ata_yes; intr_mask.bus3 = regk_ata_yes; REG_WR(ata, regi_ata, rw_intr_mask, intr_mask); crisv32_request_dma(2, "ETRAX FS built-in ATA", DMA_VERBOSE_ON_ERROR, 0, dma_ata); crisv32_request_dma(3, "ETRAX FS built-in ATA", DMA_VERBOSE_ON_ERROR, 0, dma_ata); crisv32_pinmux_alloc_fixed(pinmux_ata); crisv32_pinmux_alloc_fixed(pinmux_ata0); crisv32_pinmux_alloc_fixed(pinmux_ata1); crisv32_pinmux_alloc_fixed(pinmux_ata2); crisv32_pinmux_alloc_fixed(pinmux_ata3); DMA_RESET(regi_dma2); DMA_ENABLE(regi_dma2); DMA_RESET(regi_dma3); DMA_ENABLE(regi_dma3); DMA_WR_CMD (regi_dma2, regk_dma_set_w_size2); DMA_WR_CMD (regi_dma3, regk_dma_set_w_size2); } static dma_descr_context mycontext __attribute__ ((__aligned__(32))); #define cris_dma_descr_type dma_descr_data #define cris_pio_read regk_ata_rd #define cris_ultra_mask 0x7 #define MAX_DESCR_SIZE 0xffffffffUL static unsigned long cris_ide_get_reg(unsigned long reg) { return (reg & 0x0e000000) >> 25; } static void cris_ide_fill_descriptor(cris_dma_descr_type *d, void* buf, unsigned int len, int last) { d->buf = (char*)virt_to_phys(buf); d->after = d->buf + len; d->eol = last; } static void cris_ide_start_dma(ide_drive_t *drive, cris_dma_descr_type *d, int dir,int type,int len) { reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2, int, IDE_DATA_REG); reg_ata_rw_trf_cnt trf_cnt = {0}; mycontext.saved_data = (dma_descr_data*)virt_to_phys(d); mycontext.saved_data_buf = d->buf; /* start the dma channel */ DMA_START_CONTEXT(dir ? regi_dma3 : regi_dma2, virt_to_phys(&mycontext)); /* initiate a multi word dma read using PIO handshaking */ trf_cnt.cnt = len >> 1; /* Due to a "feature" the transfer count has to be one extra word for UDMA. */ if (type == TYPE_UDMA) trf_cnt.cnt++; REG_WR(ata, regi_ata, rw_trf_cnt, trf_cnt); ctrl2.rw = dir ? regk_ata_rd : regk_ata_wr; ctrl2.trf_mode = regk_ata_dma; ctrl2.hsh = type == TYPE_PIO ? regk_ata_pio : type == TYPE_DMA ? regk_ata_dma : regk_ata_udma; ctrl2.multi = regk_ata_yes; ctrl2.dma_size = regk_ata_word; REG_WR(ata, regi_ata, rw_ctrl2, ctrl2); } static void cris_ide_wait_dma(int dir) { reg_dma_rw_stat status; do { status = REG_RD(dma, dir ? regi_dma3 : regi_dma2, rw_stat); } while(status.list_state != regk_dma_data_at_eol); } static int cris_dma_test_irq(ide_drive_t *drive) { int intr = REG_RD_INT(ata, regi_ata, r_intr); reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2, int, IDE_DATA_REG); return intr & (1 << ctrl2.sel) ? 1 : 0; } static void cris_ide_initialize_dma(int dir) { } #else /* CRISv10 specifics */ #include <asm/arch/svinto.h> #include <asm/arch/io_interface_mux.h> /* PIO timing (in R_ATA_CONFIG) * * _____________________________ * ADDRESS : ________/ * * _______________ * DIOR : ____________/ \__________ * * _______________ * DATA : XXXXXXXXXXXXXXXX_______________XXXXXXXX * * * DIOR is unbuffered while address and data is buffered. * This creates two problems: * 1. The DIOR pulse is to early (because it is unbuffered) * 2. The rise time of DIOR is long * * There are at least three different plausible solutions * 1. Use a pad capable of larger currents in Etrax * 2. Use an external buffer * 3. Make the strobe pulse longer * * Some of the strobe timings below are modified to compensate * for this. This implies a slight performance decrease. * * THIS SHOULD NEVER BE CHANGED! * * TODO: Is this true for the latest LX boards still ? */ #define ATA_UDMA2_CYC 0 /* No UDMA supported, just to make it compile. */ #define ATA_UDMA2_DVS 0 #define ATA_UDMA1_CYC 0 #define ATA_UDMA1_DVS 0 #define ATA_UDMA0_CYC 0 #define ATA_UDMA0_DVS 0 #define ATA_DMA2_STROBE 4 #define ATA_DMA2_HOLD 0 #define ATA_DMA1_STROBE 4 #define ATA_DMA1_HOLD 1 #define ATA_DMA0_STROBE 12 #define ATA_DMA0_HOLD 9 #define ATA_PIO4_SETUP 1 #define ATA_PIO4_STROBE 5 #define ATA_PIO4_HOLD 0 #define ATA_PIO3_SETUP 1 #define ATA_PIO3_STROBE 5 #define ATA_PIO3_HOLD 1 #define ATA_PIO2_SETUP 1 #define ATA_PIO2_STROBE 6 #define ATA_PIO2_HOLD 2 #define ATA_PIO1_SETUP 2 #define ATA_PIO1_STROBE 11 #define ATA_PIO1_HOLD 4 #define ATA_PIO0_SETUP 4 #define ATA_PIO0_STROBE 19 #define ATA_PIO0_HOLD 4 int cris_ide_ack_intr(ide_hwif_t* hwif) { return 1; } static inline int cris_ide_busy(void) { return *R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy) ; } static inline int cris_ide_ready(void) { return *R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, tr_rdy) ; } static inline int cris_ide_data_available(unsigned short* data) { unsigned long status = *R_ATA_STATUS_DATA; *data = (unsigned short)status; return status & IO_MASK(R_ATA_STATUS_DATA, dav); } static void cris_ide_write_command(unsigned long command) { *R_ATA_CTRL_DATA = command; } static void cris_ide_set_speed(int type, int setup, int strobe, int hold) { static int pio_setup = ATA_PIO4_SETUP; static int pio_strobe = ATA_PIO4_STROBE; static int pio_hold = ATA_PIO4_HOLD; static int dma_strobe = ATA_DMA2_STROBE; static int dma_hold = ATA_DMA2_HOLD; if (type == TYPE_PIO) { pio_setup = setup; pio_strobe = strobe; pio_hold = hold; } else if (type == TYPE_DMA) { dma_strobe = strobe; dma_hold = hold; } *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | IO_FIELD( R_ATA_CONFIG, dma_strobe, dma_strobe ) | IO_FIELD( R_ATA_CONFIG, dma_hold, dma_hold ) | IO_FIELD( R_ATA_CONFIG, pio_setup, pio_setup ) | IO_FIELD( R_ATA_CONFIG, pio_strobe, pio_strobe ) | IO_FIELD( R_ATA_CONFIG, pio_hold, pio_hold ) ); } static unsigned long cris_ide_base_address(int bus) { return IO_FIELD(R_ATA_CTRL_DATA, sel, bus); } static unsigned long cris_ide_reg_addr(unsigned long addr, int cs0, int cs1) { return IO_FIELD(R_ATA_CTRL_DATA, addr, addr) | IO_FIELD(R_ATA_CTRL_DATA, cs0, cs0) | IO_FIELD(R_ATA_CTRL_DATA, cs1, cs1); } static __init void cris_ide_reset(unsigned val) { #ifdef CONFIG_ETRAX_IDE_G27_RESET REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, val); #endif #ifdef CONFIG_ETRAX_IDE_PB7_RESET port_pb_dir_shadow = port_pb_dir_shadow | IO_STATE(R_PORT_PB_DIR, dir7, output); *R_PORT_PB_DIR = port_pb_dir_shadow; REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, 7, val); #endif } static __init void cris_ide_init(void) { volatile unsigned int dummy; *R_ATA_CTRL_DATA = 0; *R_ATA_TRANSFER_CNT = 0; *R_ATA_CONFIG = 0; if (cris_request_io_interface(if_ata, "ETRAX100LX IDE")) { printk(KERN_CRIT "ide: Failed to get IO interface\n"); return; } else if (cris_request_dma(ATA_TX_DMA_NBR, "ETRAX100LX IDE TX", DMA_VERBOSE_ON_ERROR, dma_ata)) { cris_free_io_interface(if_ata); printk(KERN_CRIT "ide: Failed to get Tx DMA channel\n"); return; } else if (cris_request_dma(ATA_RX_DMA_NBR, "ETRAX100LX IDE RX", DMA_VERBOSE_ON_ERROR, dma_ata)) { cris_free_dma(ATA_TX_DMA_NBR, "ETRAX100LX IDE Tx"); cris_free_io_interface(if_ata); printk(KERN_CRIT "ide: Failed to get Rx DMA channel\n"); return; } /* make a dummy read to set the ata controller in a proper state */ dummy = *R_ATA_STATUS_DATA; *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 )); *R_ATA_CTRL_DATA = ( IO_STATE( R_ATA_CTRL_DATA, rw, read) | IO_FIELD( R_ATA_CTRL_DATA, addr, 1 ) ); while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); /* wait for busy flag*/ *R_IRQ_MASK0_SET = ( IO_STATE( R_IRQ_MASK0_SET, ata_irq0, set ) | IO_STATE( R_IRQ_MASK0_SET, ata_irq1, set ) | IO_STATE( R_IRQ_MASK0_SET, ata_irq2, set ) | IO_STATE( R_IRQ_MASK0_SET, ata_irq3, set ) ); /* reset the dma channels we will use */ RESET_DMA(ATA_TX_DMA_NBR); RESET_DMA(ATA_RX_DMA_NBR); WAIT_DMA(ATA_TX_DMA_NBR); WAIT_DMA(ATA_RX_DMA_NBR); } #define cris_dma_descr_type etrax_dma_descr #define cris_pio_read IO_STATE(R_ATA_CTRL_DATA, rw, read) #define cris_ultra_mask 0x0 #define MAX_DESCR_SIZE 0x10000UL static unsigned long cris_ide_get_reg(unsigned long reg) { return (reg & 0x0e000000) >> 25; } static void cris_ide_fill_descriptor(cris_dma_descr_type *d, void* buf, unsigned int len, int last) { d->buf = virt_to_phys(buf); d->sw_len = len == MAX_DESCR_SIZE ? 0 : len; if (last) d->ctrl |= d_eol; } static void cris_ide_start_dma(ide_drive_t *drive, cris_dma_descr_type *d, int dir, int type, int len) { unsigned long cmd; if (dir) { /* need to do this before RX DMA due to a chip bug * it is enough to just flush the part of the cache that * corresponds to the buffers we start, but since HD transfers * usually are more than 8 kB, it is easier to optimize for the * normal case and just flush the entire cache. its the only * way to be sure! (OB movie quote) */ flush_etrax_cache(); *R_DMA_CH3_FIRST = virt_to_phys(d); *R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, start); } else { *R_DMA_CH2_FIRST = virt_to_phys(d); *R_DMA_CH2_CMD = IO_STATE(R_DMA_CH2_CMD, cmd, start); } /* initiate a multi word dma read using DMA handshaking */ *R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, len >> 1); cmd = dir ? IO_STATE(R_ATA_CTRL_DATA, rw, read) : IO_STATE(R_ATA_CTRL_DATA, rw, write); cmd |= type == TYPE_PIO ? IO_STATE(R_ATA_CTRL_DATA, handsh, pio) : IO_STATE(R_ATA_CTRL_DATA, handsh, dma); *R_ATA_CTRL_DATA = cmd | IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) | IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | IO_STATE(R_ATA_CTRL_DATA, multi, on) | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); } static void cris_ide_wait_dma(int dir) { if (dir) WAIT_DMA(ATA_RX_DMA_NBR); else WAIT_DMA(ATA_TX_DMA_NBR); } static int cris_dma_test_irq(ide_drive_t *drive) { int intr = *R_IRQ_MASK0_RD; int bus = IO_EXTRACT(R_ATA_CTRL_DATA, sel, IDE_DATA_REG); return intr & (1 << (bus + IO_BITNR(R_IRQ_MASK0_RD, ata_irq0))) ? 1 : 0; } static void cris_ide_initialize_dma(int dir) { if (dir) { RESET_DMA(ATA_RX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */ WAIT_DMA(ATA_RX_DMA_NBR); } else { RESET_DMA(ATA_TX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */ WAIT_DMA(ATA_TX_DMA_NBR); } } #endif void cris_ide_outw(unsigned short data, unsigned long reg) { int timeleft; LOWDB(printk("ow: data 0x%x, reg 0x%x\n", data, reg)); /* note the lack of handling any timeouts. we stop waiting, but we don't * really notify anybody. */ timeleft = IDE_REGISTER_TIMEOUT; /* wait for busy flag */ do { timeleft--; } while(timeleft && cris_ide_busy()); /* * Fall through at a timeout, so the ongoing command will be * aborted by the write below, which is expected to be a dummy * command to the command register. This happens when a faulty * drive times out on a command. See comment on timeout in * INB. */ if(!timeleft) printk("ATA timeout reg 0x%lx := 0x%x\n", reg, data); cris_ide_write_command(reg|data); /* write data to the drive's register */ timeleft = IDE_REGISTER_TIMEOUT; /* wait for transmitter ready */ do { timeleft--; } while(timeleft && !cris_ide_ready()); } void cris_ide_outb(unsigned char data, unsigned long reg) { cris_ide_outw(data, reg); } void cris_ide_outbsync(ide_drive_t *drive, u8 addr, unsigned long port) { cris_ide_outw(addr, port); } unsigned short cris_ide_inw(unsigned long reg) { int timeleft; unsigned short val; timeleft = IDE_REGISTER_TIMEOUT; /* wait for busy flag */ do { timeleft--; } while(timeleft && cris_ide_busy()); if(!timeleft) { /* * If we're asked to read the status register, like for * example when a command does not complete for an * extended time, but the ATA interface is stuck in a * busy state at the *ETRAX* ATA interface level (as has * happened repeatedly with at least one bad disk), then * the best thing to do is to pretend that we read * "busy" in the status register, so the IDE driver will * time-out, abort the ongoing command and perform a * reset sequence. Note that the subsequent OUT_BYTE * call will also timeout on busy, but as long as the * write is still performed, everything will be fine. */ if (cris_ide_get_reg(reg) == IDE_STATUS_OFFSET) return BUSY_STAT; else /* For other rare cases we assume 0 is good enough. */ return 0; } cris_ide_write_command(reg | cris_pio_read); timeleft = IDE_REGISTER_TIMEOUT; /* wait for available */ do { timeleft--; } while(timeleft && !cris_ide_data_available(&val)); if(!timeleft) return 0; LOWDB(printk("inb: 0x%x from reg 0x%x\n", val & 0xff, reg)); return val; } unsigned char cris_ide_inb(unsigned long reg) { return (unsigned char)cris_ide_inw(reg); } static int cris_dma_end (ide_drive_t *drive); static int cris_dma_setup (ide_drive_t *drive); static void cris_dma_exec_cmd (ide_drive_t *drive, u8 command); static int cris_dma_test_irq(ide_drive_t *drive); static void cris_dma_start(ide_drive_t *drive); static void cris_ide_input_data (ide_drive_t *drive, void *, unsigned int); static void cris_ide_output_data (ide_drive_t *drive, void *, unsigned int); static void cris_atapi_input_bytes(ide_drive_t *drive, void *, unsigned int); static void cris_atapi_output_bytes(ide_drive_t *drive, void *, unsigned int); static int cris_dma_on (ide_drive_t *drive); static void cris_dma_off(ide_drive_t *drive) { } static void cris_set_pio_mode(ide_drive_t *drive, const u8 pio) { int setup, strobe, hold; switch(pio) { case 0: setup = ATA_PIO0_SETUP; strobe = ATA_PIO0_STROBE; hold = ATA_PIO0_HOLD; break; case 1: setup = ATA_PIO1_SETUP; strobe = ATA_PIO1_STROBE; hold = ATA_PIO1_HOLD; break; case 2: setup = ATA_PIO2_SETUP; strobe = ATA_PIO2_STROBE; hold = ATA_PIO2_HOLD; break; case 3: setup = ATA_PIO3_SETUP; strobe = ATA_PIO3_STROBE; hold = ATA_PIO3_HOLD; break; case 4: setup = ATA_PIO4_SETUP; strobe = ATA_PIO4_STROBE; hold = ATA_PIO4_HOLD; break; default: return; } cris_ide_set_speed(TYPE_PIO, setup, strobe, hold); } static void cris_set_dma_mode(ide_drive_t *drive, const u8 speed) { int cyc = 0, dvs = 0, strobe = 0, hold = 0; switch(speed) { case XFER_UDMA_0: cyc = ATA_UDMA0_CYC; dvs = ATA_UDMA0_DVS; break; case XFER_UDMA_1: cyc = ATA_UDMA1_CYC; dvs = ATA_UDMA1_DVS; break; case XFER_UDMA_2: cyc = ATA_UDMA2_CYC; dvs = ATA_UDMA2_DVS; break; case XFER_MW_DMA_0: strobe = ATA_DMA0_STROBE; hold = ATA_DMA0_HOLD; break; case XFER_MW_DMA_1: strobe = ATA_DMA1_STROBE; hold = ATA_DMA1_HOLD; break; case XFER_MW_DMA_2: strobe = ATA_DMA2_STROBE; hold = ATA_DMA2_HOLD; break; } if (speed >= XFER_UDMA_0) cris_ide_set_speed(TYPE_UDMA, cyc, dvs, 0); else cris_ide_set_speed(TYPE_DMA, 0, strobe, hold); } void __init init_e100_ide (void) { hw_regs_t hw; int ide_offsets[IDE_NR_PORTS]; int h; int i; printk("ide: ETRAX FS built-in ATA DMA controller\n"); for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; i++) ide_offsets[i] = cris_ide_reg_addr(i, 0, 1); /* the IDE control register is at ATA address 6, with CS1 active instead of CS0 */ ide_offsets[IDE_CONTROL_OFFSET] = cris_ide_reg_addr(6, 1, 0); for (h = 0; h < 4; h++) { ide_hwif_t *hwif = NULL; ide_setup_ports(&hw, cris_ide_base_address(h), ide_offsets, 0, 0, cris_ide_ack_intr, ide_default_irq(0)); ide_register_hw(&hw, NULL, 1, &hwif); if (hwif == NULL) continue; hwif->mmio = 1; hwif->chipset = ide_etrax100; hwif->set_pio_mode = &cris_set_pio_mode; hwif->set_dma_mode = &cris_set_dma_mode; hwif->ata_input_data = &cris_ide_input_data; hwif->ata_output_data = &cris_ide_output_data; hwif->atapi_input_bytes = &cris_atapi_input_bytes; hwif->atapi_output_bytes = &cris_atapi_output_bytes; hwif->ide_dma_end = &cris_dma_end; hwif->dma_setup = &cris_dma_setup; hwif->dma_exec_cmd = &cris_dma_exec_cmd; hwif->ide_dma_test_irq = &cris_dma_test_irq; hwif->dma_start = &cris_dma_start; hwif->OUTB = &cris_ide_outb; hwif->OUTW = &cris_ide_outw; hwif->OUTBSYNC = &cris_ide_outbsync; hwif->INB = &cris_ide_inb; hwif->INW = &cris_ide_inw; hwif->dma_host_off = &cris_dma_off; hwif->dma_host_on = &cris_dma_on; hwif->dma_off_quietly = &cris_dma_off; hwif->cbl = ATA_CBL_PATA40; hwif->host_flags |= IDE_HFLAG_NO_ATAPI_DMA; hwif->pio_mask = ATA_PIO4, hwif->drives[0].autotune = 1; hwif->drives[1].autotune = 1; hwif->ultra_mask = cris_ultra_mask; hwif->mwdma_mask = 0x07; /* Multiword DMA 0-2 */ } /* Reset pulse */ cris_ide_reset(0); udelay(25); cris_ide_reset(1); cris_ide_init(); cris_ide_set_speed(TYPE_PIO, ATA_PIO4_SETUP, ATA_PIO4_STROBE, ATA_PIO4_HOLD); cris_ide_set_speed(TYPE_DMA, 0, ATA_DMA2_STROBE, ATA_DMA2_HOLD); cris_ide_set_speed(TYPE_UDMA, ATA_UDMA2_CYC, ATA_UDMA2_DVS, 0); } static int cris_dma_on (ide_drive_t *drive) { return 0; } static cris_dma_descr_type mydescr __attribute__ ((__aligned__(16))); /* * The following routines are mainly used by the ATAPI drivers. * * These routines will round up any request for an odd number of bytes, * so if an odd bytecount is specified, be sure that there's at least one * extra byte allocated for the buffer. */ static void cris_atapi_input_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount) { D(printk("atapi_input_bytes, buffer 0x%x, count %d\n", buffer, bytecount)); if(bytecount & 1) { printk("warning, odd bytecount in cdrom_in_bytes = %d.\n", bytecount); bytecount++; /* to round off */ } /* setup DMA and start transfer */ cris_ide_fill_descriptor(&mydescr, buffer, bytecount, 1); cris_ide_start_dma(drive, &mydescr, 1, TYPE_PIO, bytecount); /* wait for completion */ LED_DISK_READ(1); cris_ide_wait_dma(1); LED_DISK_READ(0); } static void cris_atapi_output_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount) { D(printk("atapi_output_bytes, buffer 0x%x, count %d\n", buffer, bytecount)); if(bytecount & 1) { printk("odd bytecount %d in atapi_out_bytes!\n", bytecount); bytecount++; } cris_ide_fill_descriptor(&mydescr, buffer, bytecount, 1); cris_ide_start_dma(drive, &mydescr, 0, TYPE_PIO, bytecount); /* wait for completion */ LED_DISK_WRITE(1); LED_DISK_READ(1); cris_ide_wait_dma(0); LED_DISK_WRITE(0); } /* * This is used for most PIO data transfers *from* the IDE interface */ static void cris_ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount) { cris_atapi_input_bytes(drive, buffer, wcount << 2); } /* * This is used for most PIO data transfers *to* the IDE interface */ static void cris_ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount) { cris_atapi_output_bytes(drive, buffer, wcount << 2); } /* we only have one DMA channel on the chip for ATA, so we can keep these statically */ static cris_dma_descr_type ata_descrs[MAX_DMA_DESCRS] __attribute__ ((__aligned__(16))); static unsigned int ata_tot_size; /* * cris_ide_build_dmatable() prepares a dma request. * Returns 0 if all went okay, returns 1 otherwise. */ static int cris_ide_build_dmatable (ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; struct scatterlist* sg; struct request *rq = drive->hwif->hwgroup->rq; unsigned long size, addr; unsigned int count = 0; int i = 0; sg = hwif->sg_table; ata_tot_size = 0; ide_map_sg(drive, rq); i = hwif->sg_nents; while(i) { /* * Determine addr and size of next buffer area. We assume that * individual virtual buffers are always composed linearly in * physical memory. For example, we assume that any 8kB buffer * is always composed of two adjacent physical 4kB pages rather * than two possibly non-adjacent physical 4kB pages. */ /* group sequential buffers into one large buffer */ addr = sg_phys(sg); size = sg_dma_len(sg); while (--i) { sg = sg_next(sg); if ((addr + size) != sg_phys(sg)) break; size += sg_dma_len(sg); } /* did we run out of descriptors? */ if(count >= MAX_DMA_DESCRS) { printk("%s: too few DMA descriptors\n", drive->name); return 1; } /* however, this case is more difficult - rw_trf_cnt cannot be more than 65536 words per transfer, so in that case we need to either 1) use a DMA interrupt to re-trigger rw_trf_cnt and continue with the descriptors, or 2) simply do the request here, and get dma_intr to only ide_end_request on those blocks that were actually set-up for transfer. */ if(ata_tot_size + size > 131072) { printk("too large total ATA DMA request, %d + %d!\n", ata_tot_size, (int)size); return 1; } /* If size > MAX_DESCR_SIZE it has to be splitted into new descriptors. Since we don't handle size > 131072 only one split is necessary */ if(size > MAX_DESCR_SIZE) { cris_ide_fill_descriptor(&ata_descrs[count], (void*)addr, MAX_DESCR_SIZE, 0); count++; ata_tot_size += MAX_DESCR_SIZE; size -= MAX_DESCR_SIZE; addr += MAX_DESCR_SIZE; } cris_ide_fill_descriptor(&ata_descrs[count], (void*)addr, size,i ? 0 : 1); count++; ata_tot_size += size; } if (count) { /* return and say all is ok */ return 0; } printk("%s: empty DMA table?\n", drive->name); return 1; /* let the PIO routines handle this weirdness */ } /* * cris_dma_intr() is the handler for disk read/write DMA interrupts */ static ide_startstop_t cris_dma_intr (ide_drive_t *drive) { LED_DISK_READ(0); LED_DISK_WRITE(0); return ide_dma_intr(drive); } /* * Functions below initiates/aborts DMA read/write operations on a drive. * * The caller is assumed to have selected the drive and programmed the drive's * sector address using CHS or LBA. All that remains is to prepare for DMA * and then issue the actual read/write DMA/PIO command to the drive. * * For ATAPI devices, we just prepare for DMA and return. The caller should * then issue the packet command to the drive and call us again with * cris_dma_start afterwards. * * Returns 0 if all went well. * Returns 1 if DMA read/write could not be started, in which case * the caller should revert to PIO for the current request. */ static int cris_dma_end(ide_drive_t *drive) { drive->waiting_for_dma = 0; return 0; } static int cris_dma_setup(ide_drive_t *drive) { struct request *rq = drive->hwif->hwgroup->rq; cris_ide_initialize_dma(!rq_data_dir(rq)); if (cris_ide_build_dmatable (drive)) { ide_map_sg(drive, rq); return 1; } drive->waiting_for_dma = 1; return 0; } static void cris_dma_exec_cmd(ide_drive_t *drive, u8 command) { /* set the irq handler which will finish the request when DMA is done */ ide_set_handler(drive, &cris_dma_intr, WAIT_CMD, NULL); /* issue cmd to drive */ cris_ide_outb(command, IDE_COMMAND_REG); } static void cris_dma_start(ide_drive_t *drive) { struct request *rq = drive->hwif->hwgroup->rq; int writing = rq_data_dir(rq); int type = TYPE_DMA; if (drive->current_speed >= XFER_UDMA_0) type = TYPE_UDMA; cris_ide_start_dma(drive, &ata_descrs[0], writing ? 0 : 1, type, ata_tot_size); if (writing) { LED_DISK_WRITE(1); } else { LED_DISK_READ(1); } }