/* * cmd64x.c: Enable interrupts at initialization time on Ultra/PCI machines. * Due to massive hardware bugs, UltraDMA is only supported * on the 646U2 and not on the 646U. * * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1998 David S. Miller (davem@redhat.com) * * Copyright (C) 1999-2002 Andre Hedrick * Copyright (C) 2007 MontaVista Software, Inc. */ #include #include #include #include #include #include #include #define CMD_DEBUG 0 #if CMD_DEBUG #define cmdprintk(x...) printk(x) #else #define cmdprintk(x...) #endif /* * CMD64x specific registers definition. */ #define CFR 0x50 #define CFR_INTR_CH0 0x04 #define CMDTIM 0x52 #define ARTTIM0 0x53 #define DRWTIM0 0x54 #define ARTTIM1 0x55 #define DRWTIM1 0x56 #define ARTTIM23 0x57 #define ARTTIM23_DIS_RA2 0x04 #define ARTTIM23_DIS_RA3 0x08 #define ARTTIM23_INTR_CH1 0x10 #define DRWTIM2 0x58 #define BRST 0x59 #define DRWTIM3 0x5b #define BMIDECR0 0x70 #define MRDMODE 0x71 #define MRDMODE_INTR_CH0 0x04 #define MRDMODE_INTR_CH1 0x08 #define UDIDETCR0 0x73 #define DTPR0 0x74 #define BMIDECR1 0x78 #define BMIDECSR 0x79 #define UDIDETCR1 0x7B #define DTPR1 0x7C static u8 quantize_timing(int timing, int quant) { return (timing + quant - 1) / quant; } /* * This routine calculates active/recovery counts and then writes them into * the chipset registers. */ static void program_cycle_times (ide_drive_t *drive, int cycle_time, int active_time) { struct pci_dev *dev = to_pci_dev(drive->hwif->dev); int clock_time = 1000 / system_bus_clock(); u8 cycle_count, active_count, recovery_count, drwtim; static const u8 recovery_values[] = {15, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0}; static const u8 drwtim_regs[4] = {DRWTIM0, DRWTIM1, DRWTIM2, DRWTIM3}; cmdprintk("program_cycle_times parameters: total=%d, active=%d\n", cycle_time, active_time); cycle_count = quantize_timing( cycle_time, clock_time); active_count = quantize_timing(active_time, clock_time); recovery_count = cycle_count - active_count; /* * In case we've got too long recovery phase, try to lengthen * the active phase */ if (recovery_count > 16) { active_count += recovery_count - 16; recovery_count = 16; } if (active_count > 16) /* shouldn't actually happen... */ active_count = 16; cmdprintk("Final counts: total=%d, active=%d, recovery=%d\n", cycle_count, active_count, recovery_count); /* * Convert values to internal chipset representation */ recovery_count = recovery_values[recovery_count]; active_count &= 0x0f; /* Program the active/recovery counts into the DRWTIM register */ drwtim = (active_count << 4) | recovery_count; (void) pci_write_config_byte(dev, drwtim_regs[drive->dn], drwtim); cmdprintk("Write 0x%02x to reg 0x%x\n", drwtim, drwtim_regs[drive->dn]); } /* * This routine writes into the chipset registers * PIO setup/active/recovery timings. */ static void cmd64x_tune_pio(ide_drive_t *drive, const u8 pio) { ide_hwif_t *hwif = HWIF(drive); struct pci_dev *dev = to_pci_dev(hwif->dev); unsigned int cycle_time; u8 setup_count, arttim = 0; static const u8 setup_values[] = {0x40, 0x40, 0x40, 0x80, 0, 0xc0}; static const u8 arttim_regs[4] = {ARTTIM0, ARTTIM1, ARTTIM23, ARTTIM23}; cycle_time = ide_pio_cycle_time(drive, pio); program_cycle_times(drive, cycle_time, ide_pio_timings[pio].active_time); setup_count = quantize_timing(ide_pio_timings[pio].setup_time, 1000 / system_bus_clock()); /* * The primary channel has individual address setup timing registers * for each drive and the hardware selects the slowest timing itself. * The secondary channel has one common register and we have to select * the slowest address setup timing ourselves. */ if (hwif->channel) { ide_drive_t *drives = hwif->drives; drive->drive_data = setup_count; setup_count = max(drives[0].drive_data, drives[1].drive_data); } if (setup_count > 5) /* shouldn't actually happen... */ setup_count = 5; cmdprintk("Final address setup count: %d\n", setup_count); /* * Program the address setup clocks into the ARTTIM registers. * Avoid clearing the secondary channel's interrupt bit. */ (void) pci_read_config_byte (dev, arttim_regs[drive->dn], &arttim); if (hwif->channel) arttim &= ~ARTTIM23_INTR_CH1; arttim &= ~0xc0; arttim |= setup_values[setup_count]; (void) pci_write_config_byte(dev, arttim_regs[drive->dn], arttim); cmdprintk("Write 0x%02x to reg 0x%x\n", arttim, arttim_regs[drive->dn]); } /* * Attempts to set drive's PIO mode. * Special cases are 8: prefetch off, 9: prefetch on (both never worked) */ static void cmd64x_set_pio_mode(ide_drive_t *drive, const u8 pio) { /* * Filter out the prefetch control values * to prevent PIO5 from being programmed */ if (pio == 8 || pio == 9) return; cmd64x_tune_pio(drive, pio); } static void cmd64x_set_dma_mode(ide_drive_t *drive, const u8 speed) { ide_hwif_t *hwif = HWIF(drive); struct pci_dev *dev = to_pci_dev(hwif->dev); u8 unit = drive->dn & 0x01; u8 regU = 0, pciU = hwif->channel ? UDIDETCR1 : UDIDETCR0; if (speed >= XFER_SW_DMA_0) { (void) pci_read_config_byte(dev, pciU, ®U); regU &= ~(unit ? 0xCA : 0x35); } switch(speed) { case XFER_UDMA_5: regU |= unit ? 0x0A : 0x05; break; case XFER_UDMA_4: regU |= unit ? 0x4A : 0x15; break; case XFER_UDMA_3: regU |= unit ? 0x8A : 0x25; break; case XFER_UDMA_2: regU |= unit ? 0x42 : 0x11; break; case XFER_UDMA_1: regU |= unit ? 0x82 : 0x21; break; case XFER_UDMA_0: regU |= unit ? 0xC2 : 0x31; break; case XFER_MW_DMA_2: program_cycle_times(drive, 120, 70); break; case XFER_MW_DMA_1: program_cycle_times(drive, 150, 80); break; case XFER_MW_DMA_0: program_cycle_times(drive, 480, 215); break; } if (speed >= XFER_SW_DMA_0) (void) pci_write_config_byte(dev, pciU, regU); } static int cmd648_dma_end(ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); unsigned long base = hwif->dma_base - (hwif->channel * 8); int err = __ide_dma_end(drive); u8 irq_mask = hwif->channel ? MRDMODE_INTR_CH1 : MRDMODE_INTR_CH0; u8 mrdmode = inb(base + 1); /* clear the interrupt bit */ outb((mrdmode & ~(MRDMODE_INTR_CH0 | MRDMODE_INTR_CH1)) | irq_mask, base + 1); return err; } static int cmd64x_dma_end(ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); struct pci_dev *dev = to_pci_dev(hwif->dev); int irq_reg = hwif->channel ? ARTTIM23 : CFR; u8 irq_mask = hwif->channel ? ARTTIM23_INTR_CH1 : CFR_INTR_CH0; u8 irq_stat = 0; int err = __ide_dma_end(drive); (void) pci_read_config_byte(dev, irq_reg, &irq_stat); /* clear the interrupt bit */ (void) pci_write_config_byte(dev, irq_reg, irq_stat | irq_mask); return err; } static int cmd648_dma_test_irq(ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); unsigned long base = hwif->dma_base - (hwif->channel * 8); u8 irq_mask = hwif->channel ? MRDMODE_INTR_CH1 : MRDMODE_INTR_CH0; u8 dma_stat = inb(hwif->dma_status); u8 mrdmode = inb(base + 1); #ifdef DEBUG printk("%s: dma_stat: 0x%02x mrdmode: 0x%02x irq_mask: 0x%02x\n", drive->name, dma_stat, mrdmode, irq_mask); #endif if (!(mrdmode & irq_mask)) return 0; /* return 1 if INTR asserted */ if (dma_stat & 4) return 1; return 0; } static int cmd64x_dma_test_irq(ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); struct pci_dev *dev = to_pci_dev(hwif->dev); int irq_reg = hwif->channel ? ARTTIM23 : CFR; u8 irq_mask = hwif->channel ? ARTTIM23_INTR_CH1 : CFR_INTR_CH0; u8 dma_stat = inb(hwif->dma_status); u8 irq_stat = 0; (void) pci_read_config_byte(dev, irq_reg, &irq_stat); #ifdef DEBUG printk("%s: dma_stat: 0x%02x irq_stat: 0x%02x irq_mask: 0x%02x\n", drive->name, dma_stat, irq_stat, irq_mask); #endif if (!(irq_stat & irq_mask)) return 0; /* return 1 if INTR asserted */ if (dma_stat & 4) return 1; return 0; } /* * ASUS P55T2P4D with CMD646 chipset revision 0x01 requires the old * event order for DMA transfers. */ static int cmd646_1_dma_end(ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 dma_stat = 0, dma_cmd = 0; drive->waiting_for_dma = 0; /* get DMA status */ dma_stat = inb(hwif->dma_status); /* read DMA command state */ dma_cmd = inb(hwif->dma_command); /* stop DMA */ outb(dma_cmd & ~1, hwif->dma_command); /* clear the INTR & ERROR bits */ outb(dma_stat | 6, hwif->dma_status); /* and free any DMA resources */ ide_destroy_dmatable(drive); /* verify good DMA status */ return (dma_stat & 7) != 4; } static unsigned int __devinit init_chipset_cmd64x(struct pci_dev *dev, const char *name) { u8 mrdmode = 0; if (dev->device == PCI_DEVICE_ID_CMD_646) { switch (dev->revision) { case 0x07: case 0x05: printk("%s: UltraDMA capable\n", name); break; case 0x03: default: printk("%s: MultiWord DMA force limited\n", name); break; case 0x01: printk("%s: MultiWord DMA limited, " "IRQ workaround enabled\n", name); break; } } /* Set a good latency timer and cache line size value. */ (void) pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64); /* FIXME: pci_set_master() to ensure a good latency timer value */ /* * Enable interrupts, select MEMORY READ LINE for reads. * * NOTE: although not mentioned in the PCI0646U specs, * bits 0-1 are write only and won't be read back as * set or not -- PCI0646U2 specs clarify this point. */ (void) pci_read_config_byte (dev, MRDMODE, &mrdmode); mrdmode &= ~0x30; (void) pci_write_config_byte(dev, MRDMODE, (mrdmode | 0x02)); return 0; } static u8 __devinit cmd64x_cable_detect(ide_hwif_t *hwif) { struct pci_dev *dev = to_pci_dev(hwif->dev); u8 bmidecsr = 0, mask = hwif->channel ? 0x02 : 0x01; switch (dev->device) { case PCI_DEVICE_ID_CMD_648: case PCI_DEVICE_ID_CMD_649: pci_read_config_byte(dev, BMIDECSR, &bmidecsr); return (bmidecsr & mask) ? ATA_CBL_PATA80 : ATA_CBL_PATA40; default: return ATA_CBL_PATA40; } } static const struct ide_port_ops cmd64x_port_ops = { .set_pio_mode = cmd64x_set_pio_mode, .set_dma_mode = cmd64x_set_dma_mode, .cable_detect = cmd64x_cable_detect, }; static struct ide_dma_ops cmd64x_dma_ops = { .dma_end = cmd64x_dma_end, .dma_test_irq = cmd64x_dma_test_irq, }; static struct ide_dma_ops cmd646_rev1_dma_ops = { .dma_end = cmd646_1_dma_end, }; static struct ide_dma_ops cmd648_dma_ops = { .dma_end = cmd648_dma_end, .dma_test_irq = cmd648_dma_test_irq, }; static const struct ide_port_info cmd64x_chipsets[] __devinitdata = { { /* 0 */ .name = "CMD643", .init_chipset = init_chipset_cmd64x, .enablebits = {{0x00,0x00,0x00}, {0x51,0x08,0x08}}, .port_ops = &cmd64x_port_ops, .dma_ops = &cmd64x_dma_ops, .host_flags = IDE_HFLAG_CLEAR_SIMPLEX | IDE_HFLAG_ABUSE_PREFETCH, .pio_mask = ATA_PIO5, .mwdma_mask = ATA_MWDMA2, .udma_mask = 0x00, /* no udma */ },{ /* 1 */ .name = "CMD646", .init_chipset = init_chipset_cmd64x, .enablebits = {{0x51,0x04,0x04}, {0x51,0x08,0x08}}, .chipset = ide_cmd646, .port_ops = &cmd64x_port_ops, .dma_ops = &cmd648_dma_ops, .host_flags = IDE_HFLAG_ABUSE_PREFETCH, .pio_mask = ATA_PIO5, .mwdma_mask = ATA_MWDMA2, .udma_mask = ATA_UDMA2, },{ /* 2 */ .name = "CMD648", .init_chipset = init_chipset_cmd64x, .enablebits = {{0x51,0x04,0x04}, {0x51,0x08,0x08}}, .port_ops = &cmd64x_port_ops, .dma_ops = &cmd648_dma_ops, .host_flags = IDE_HFLAG_ABUSE_PREFETCH, .pio_mask = ATA_PIO5, .mwdma_mask = ATA_MWDMA2, .udma_mask = ATA_UDMA4, },{ /* 3 */ .name = "CMD649", .init_chipset = init_chipset_cmd64x, .enablebits = {{0x51,0x04,0x04}, {0x51,0x08,0x08}}, .port_ops = &cmd64x_port_ops, .dma_ops = &cmd648_dma_ops, .host_flags = IDE_HFLAG_ABUSE_PREFETCH, .pio_mask = ATA_PIO5, .mwdma_mask = ATA_MWDMA2, .udma_mask = ATA_UDMA5, } }; static int __devinit cmd64x_init_one(struct pci_dev *dev, const struct pci_device_id *id) { struct ide_port_info d; u8 idx = id->driver_data; d = cmd64x_chipsets[idx]; if (idx == 1) { /* * UltraDMA only supported on PCI646U and PCI646U2, which * correspond to revisions 0x03, 0x05 and 0x07 respectively. * Actually, although the CMD tech support people won't * tell me the details, the 0x03 revision cannot support * UDMA correctly without hardware modifications, and even * then it only works with Quantum disks due to some * hold time assumptions in the 646U part which are fixed * in the 646U2. * * So we only do UltraDMA on revision 0x05 and 0x07 chipsets. */ if (dev->revision < 5) { d.udma_mask = 0x00; /* * The original PCI0646 didn't have the primary * channel enable bit, it appeared starting with * PCI0646U (i.e. revision ID 3). */ if (dev->revision < 3) { d.enablebits[0].reg = 0; if (dev->revision == 1) d.dma_ops = &cmd646_rev1_dma_ops; else d.dma_ops = &cmd64x_dma_ops; } } } return ide_setup_pci_device(dev, &d); } static const struct pci_device_id cmd64x_pci_tbl[] = { { PCI_VDEVICE(CMD, PCI_DEVICE_ID_CMD_643), 0 }, { PCI_VDEVICE(CMD, PCI_DEVICE_ID_CMD_646), 1 }, { PCI_VDEVICE(CMD, PCI_DEVICE_ID_CMD_648), 2 }, { PCI_VDEVICE(CMD, PCI_DEVICE_ID_CMD_649), 3 }, { 0, }, }; MODULE_DEVICE_TABLE(pci, cmd64x_pci_tbl); static struct pci_driver driver = { .name = "CMD64x_IDE", .id_table = cmd64x_pci_tbl, .probe = cmd64x_init_one, }; static int __init cmd64x_ide_init(void) { return ide_pci_register_driver(&driver); } module_init(cmd64x_ide_init); MODULE_AUTHOR("Eddie Dost, David Miller, Andre Hedrick"); MODULE_DESCRIPTION("PCI driver module for CMD64x IDE"); MODULE_LICENSE("GPL");