/* * BMC150 3-axis accelerometer driver * Copyright (c) 2014, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define BMC150_ACCEL_DRV_NAME "bmc150_accel" #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event" #define BMC150_ACCEL_GPIO_NAME "bmc150_accel_int" #define BMC150_ACCEL_REG_CHIP_ID 0x00 #define BMC150_ACCEL_CHIP_ID_VAL 0xFA #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B #define BMC150_ACCEL_ANY_MOTION_MASK 0x07 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3) #define BMC150_ACCEL_REG_PMU_LPW 0x11 #define BMC150_ACCEL_PMU_MODE_MASK 0xE0 #define BMC150_ACCEL_PMU_MODE_SHIFT 5 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1 #define BMC150_ACCEL_REG_PMU_RANGE 0x0F #define BMC150_ACCEL_DEF_RANGE_2G 0x03 #define BMC150_ACCEL_DEF_RANGE_4G 0x05 #define BMC150_ACCEL_DEF_RANGE_8G 0x08 #define BMC150_ACCEL_DEF_RANGE_16G 0x0C /* Default BW: 125Hz */ #define BMC150_ACCEL_REG_PMU_BW 0x10 #define BMC150_ACCEL_DEF_BW 125 #define BMC150_ACCEL_REG_INT_MAP_0 0x19 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2) #define BMC150_ACCEL_REG_INT_MAP_1 0x1A #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0) #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21 #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00 #define BMC150_ACCEL_REG_INT_EN_0 0x16 #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0) #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1) #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2) #define BMC150_ACCEL_REG_INT_EN_1 0x17 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4) #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0) #define BMC150_ACCEL_REG_INT_5 0x27 #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03 #define BMC150_ACCEL_REG_INT_6 0x28 #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF /* Slope duration in terms of number of samples */ #define BMC150_ACCEL_DEF_SLOPE_DURATION 2 /* in terms of multiples of g's/LSB, based on range */ #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 5 #define BMC150_ACCEL_REG_XOUT_L 0x02 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100 /* Sleep Duration values */ #define BMC150_ACCEL_SLEEP_500_MICRO 0x05 #define BMC150_ACCEL_SLEEP_1_MS 0x06 #define BMC150_ACCEL_SLEEP_2_MS 0x07 #define BMC150_ACCEL_SLEEP_4_MS 0x08 #define BMC150_ACCEL_SLEEP_6_MS 0x09 #define BMC150_ACCEL_SLEEP_10_MS 0x0A #define BMC150_ACCEL_SLEEP_25_MS 0x0B #define BMC150_ACCEL_SLEEP_50_MS 0x0C #define BMC150_ACCEL_SLEEP_100_MS 0x0D #define BMC150_ACCEL_SLEEP_500_MS 0x0E #define BMC150_ACCEL_SLEEP_1_SEC 0x0F #define BMC150_ACCEL_REG_TEMP 0x08 #define BMC150_ACCEL_TEMP_CENTER_VAL 24 #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2)) #define BMC150_AUTO_SUSPEND_DELAY_MS 2000 enum bmc150_accel_axis { AXIS_X, AXIS_Y, AXIS_Z, }; enum bmc150_power_modes { BMC150_ACCEL_SLEEP_MODE_NORMAL, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, BMC150_ACCEL_SLEEP_MODE_LPM, BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04, }; struct bmc150_accel_data { struct i2c_client *client; struct iio_trigger *dready_trig; struct iio_trigger *motion_trig; struct mutex mutex; s16 buffer[8]; u8 bw_bits; u32 slope_dur; u32 slope_thres; u32 range; int ev_enable_state; bool dready_trigger_on; bool motion_trigger_on; int64_t timestamp; }; static const struct { int val; int val2; u8 bw_bits; } bmc150_accel_samp_freq_table[] = { {7, 810000, 0x08}, {15, 630000, 0x09}, {31, 250000, 0x0A}, {62, 500000, 0x0B}, {125, 0, 0x0C}, {250, 0, 0x0D}, {500, 0, 0x0E}, {1000, 0, 0x0F} }; static const struct { int bw_bits; int msec; } bmc150_accel_sample_upd_time[] = { {0x08, 64}, {0x09, 32}, {0x0A, 16}, {0x0B, 8}, {0x0C, 4}, {0x0D, 2}, {0x0E, 1}, {0x0F, 1} }; static const struct { int scale; int range; } bmc150_accel_scale_table[] = { {9610, BMC150_ACCEL_DEF_RANGE_2G}, {19122, BMC150_ACCEL_DEF_RANGE_4G}, {38344, BMC150_ACCEL_DEF_RANGE_8G}, {77057, BMC150_ACCEL_DEF_RANGE_16G} }; static const struct { int sleep_dur; int reg_value; } bmc150_accel_sleep_value_table[] = { {0, 0}, {500, BMC150_ACCEL_SLEEP_500_MICRO}, {1000, BMC150_ACCEL_SLEEP_1_MS}, {2000, BMC150_ACCEL_SLEEP_2_MS}, {4000, BMC150_ACCEL_SLEEP_4_MS}, {6000, BMC150_ACCEL_SLEEP_6_MS}, {10000, BMC150_ACCEL_SLEEP_10_MS}, {25000, BMC150_ACCEL_SLEEP_25_MS}, {50000, BMC150_ACCEL_SLEEP_50_MS}, {100000, BMC150_ACCEL_SLEEP_100_MS}, {500000, BMC150_ACCEL_SLEEP_500_MS}, {1000000, BMC150_ACCEL_SLEEP_1_SEC} }; static int bmc150_accel_set_mode(struct bmc150_accel_data *data, enum bmc150_power_modes mode, int dur_us) { int i; int ret; u8 lpw_bits; int dur_val = -1; if (dur_us > 0) { for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table); ++i) { if (bmc150_accel_sleep_value_table[i].sleep_dur == dur_us) dur_val = bmc150_accel_sleep_value_table[i].reg_value; } } else dur_val = 0; if (dur_val < 0) return -EINVAL; lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT; lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT); dev_dbg(&data->client->dev, "Set Mode bits %x\n", lpw_bits); ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_PMU_LPW, lpw_bits); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_pmu_lpw\n"); return ret; } return 0; } static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val, int val2) { int i; int ret; for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) { if (bmc150_accel_samp_freq_table[i].val == val && bmc150_accel_samp_freq_table[i].val2 == val2) { ret = i2c_smbus_write_byte_data( data->client, BMC150_ACCEL_REG_PMU_BW, bmc150_accel_samp_freq_table[i].bw_bits); if (ret < 0) return ret; data->bw_bits = bmc150_accel_samp_freq_table[i].bw_bits; return 0; } } return -EINVAL; } static int bmc150_accel_chip_init(struct bmc150_accel_data *data) { int ret; ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_CHIP_ID); if (ret < 0) { dev_err(&data->client->dev, "Error: Reading chip id\n"); return ret; } dev_dbg(&data->client->dev, "Chip Id %x\n", ret); if (ret != BMC150_ACCEL_CHIP_ID_VAL) { dev_err(&data->client->dev, "Invalid chip %x\n", ret); return -ENODEV; } ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); if (ret < 0) return ret; /* Set Bandwidth */ ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0); if (ret < 0) return ret; /* Set Default Range */ ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_PMU_RANGE, BMC150_ACCEL_DEF_RANGE_4G); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_pmu_range\n"); return ret; } data->range = BMC150_ACCEL_DEF_RANGE_4G; /* Set default slope duration */ ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_INT_5); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_int_5\n"); return ret; } data->slope_dur |= BMC150_ACCEL_DEF_SLOPE_DURATION; ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_5, data->slope_dur); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_5\n"); return ret; } dev_dbg(&data->client->dev, "slope_dur %x\n", data->slope_dur); /* Set default slope thresholds */ ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_6, BMC150_ACCEL_DEF_SLOPE_THRESHOLD); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_6\n"); return ret; } data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD; dev_dbg(&data->client->dev, "slope_thres %x\n", data->slope_thres); /* Set default as latched interrupts */ ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_INT | BMC150_ACCEL_INT_MODE_LATCH_RESET); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n"); return ret; } return 0; } static int bmc150_accel_setup_any_motion_interrupt( struct bmc150_accel_data *data, bool status) { int ret; /* Enable/Disable INT1 mapping */ ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_INT_MAP_0); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_int_map_0\n"); return ret; } if (status) ret |= BMC150_ACCEL_INT_MAP_0_BIT_SLOPE; else ret &= ~BMC150_ACCEL_INT_MAP_0_BIT_SLOPE; ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_MAP_0, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_map_0\n"); return ret; } if (status) { /* Set slope duration (no of samples) */ ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_5, data->slope_dur); if (ret < 0) { dev_err(&data->client->dev, "Error write reg_int_5\n"); return ret; } /* Set slope thresholds */ ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_6, data->slope_thres); if (ret < 0) { dev_err(&data->client->dev, "Error write reg_int_6\n"); return ret; } /* * New data interrupt is always non-latched, * which will have higher priority, so no need * to set latched mode, we will be flooded anyway with INTR */ if (!data->dready_trigger_on) { ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_INT | BMC150_ACCEL_INT_MODE_LATCH_RESET); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n"); return ret; } } ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_EN_0, BMC150_ACCEL_INT_EN_BIT_SLP_X | BMC150_ACCEL_INT_EN_BIT_SLP_Y | BMC150_ACCEL_INT_EN_BIT_SLP_Z); } else ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_EN_0, 0); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_en_0\n"); return ret; } return 0; } static int bmc150_accel_setup_new_data_interrupt(struct bmc150_accel_data *data, bool status) { int ret; /* Enable/Disable INT1 mapping */ ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_INT_MAP_1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_int_map_1\n"); return ret; } if (status) ret |= BMC150_ACCEL_INT_MAP_1_BIT_DATA; else ret &= ~BMC150_ACCEL_INT_MAP_1_BIT_DATA; ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_MAP_1, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_map_1\n"); return ret; } if (status) { /* * Set non latched mode interrupt and clear any latched * interrupt */ ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_NON_LATCH_INT | BMC150_ACCEL_INT_MODE_LATCH_RESET); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n"); return ret; } ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_EN_1, BMC150_ACCEL_INT_EN_BIT_DATA_EN); } else { /* Restore default interrupt mode */ ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_INT | BMC150_ACCEL_INT_MODE_LATCH_RESET); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n"); return ret; } ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_EN_1, 0); } if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_en_1\n"); return ret; } return 0; } static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val, int *val2) { int i; for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) { if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) { *val = bmc150_accel_samp_freq_table[i].val; *val2 = bmc150_accel_samp_freq_table[i].val2; return IIO_VAL_INT_PLUS_MICRO; } } return -EINVAL; } static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data) { int i; for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) { if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits) return bmc150_accel_sample_upd_time[i].msec; } return BMC150_ACCEL_MAX_STARTUP_TIME_MS; } static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on) { int ret; if (on) ret = pm_runtime_get_sync(&data->client->dev); else { pm_runtime_mark_last_busy(&data->client->dev); ret = pm_runtime_put_autosuspend(&data->client->dev); } if (ret < 0) { dev_err(&data->client->dev, "Failed: bmc150_accel_set_power_state for %d\n", on); return ret; } return 0; } static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val) { int ret, i; for (i = 0; i < ARRAY_SIZE(bmc150_accel_scale_table); ++i) { if (bmc150_accel_scale_table[i].scale == val) { ret = i2c_smbus_write_byte_data( data->client, BMC150_ACCEL_REG_PMU_RANGE, bmc150_accel_scale_table[i].range); if (ret < 0) { dev_err(&data->client->dev, "Error writing pmu_range\n"); return ret; } data->range = bmc150_accel_scale_table[i].range; return 0; } } return -EINVAL; } static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val) { int ret; mutex_lock(&data->mutex); ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_TEMP); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_temp\n"); mutex_unlock(&data->mutex); return ret; } *val = sign_extend32(ret, 7); mutex_unlock(&data->mutex); return IIO_VAL_INT; } static int bmc150_accel_get_axis(struct bmc150_accel_data *data, int axis, int *val) { int ret; mutex_lock(&data->mutex); ret = bmc150_accel_set_power_state(data, true); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } ret = i2c_smbus_read_word_data(data->client, BMC150_ACCEL_AXIS_TO_REG(axis)); if (ret < 0) { dev_err(&data->client->dev, "Error reading axis %d\n", axis); bmc150_accel_set_power_state(data, false); mutex_unlock(&data->mutex); return ret; } *val = sign_extend32(ret >> 4, 11); ret = bmc150_accel_set_power_state(data, false); mutex_unlock(&data->mutex); if (ret < 0) return ret; return IIO_VAL_INT; } static int bmc150_accel_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_TEMP: return bmc150_accel_get_temp(data, val); case IIO_ACCEL: if (iio_buffer_enabled(indio_dev)) return -EBUSY; else return bmc150_accel_get_axis(data, chan->scan_index, val); default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: if (chan->type == IIO_TEMP) { *val = BMC150_ACCEL_TEMP_CENTER_VAL; return IIO_VAL_INT; } else return -EINVAL; case IIO_CHAN_INFO_SCALE: *val = 0; switch (chan->type) { case IIO_TEMP: *val2 = 500000; return IIO_VAL_INT_PLUS_MICRO; case IIO_ACCEL: { int i; for (i = 0; i < ARRAY_SIZE(bmc150_accel_scale_table); ++i) { if (bmc150_accel_scale_table[i].range == data->range) { *val2 = bmc150_accel_scale_table[i].scale; return IIO_VAL_INT_PLUS_MICRO; } } return -EINVAL; } default: return -EINVAL; } case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&data->mutex); ret = bmc150_accel_get_bw(data, val, val2); mutex_unlock(&data->mutex); return ret; default: return -EINVAL; } } static int bmc150_accel_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&data->mutex); ret = bmc150_accel_set_bw(data, val, val2); mutex_unlock(&data->mutex); break; case IIO_CHAN_INFO_SCALE: if (val) return -EINVAL; mutex_lock(&data->mutex); ret = bmc150_accel_set_scale(data, val2); mutex_unlock(&data->mutex); return ret; default: ret = -EINVAL; } return ret; } static int bmc150_accel_read_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct bmc150_accel_data *data = iio_priv(indio_dev); *val2 = 0; switch (info) { case IIO_EV_INFO_VALUE: *val = data->slope_thres; break; case IIO_EV_INFO_PERIOD: *val = data->slope_dur & BMC150_ACCEL_SLOPE_DUR_MASK; break; default: return -EINVAL; } return IIO_VAL_INT; } static int bmc150_accel_write_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct bmc150_accel_data *data = iio_priv(indio_dev); if (data->ev_enable_state) return -EBUSY; switch (info) { case IIO_EV_INFO_VALUE: data->slope_thres = val; break; case IIO_EV_INFO_PERIOD: data->slope_dur &= ~BMC150_ACCEL_SLOPE_DUR_MASK; data->slope_dur |= val & BMC150_ACCEL_SLOPE_DUR_MASK; break; default: return -EINVAL; } return 0; } static int bmc150_accel_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct bmc150_accel_data *data = iio_priv(indio_dev); return data->ev_enable_state; } static int bmc150_accel_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; if (state && data->ev_enable_state) return 0; mutex_lock(&data->mutex); if (!state && data->motion_trigger_on) { data->ev_enable_state = 0; mutex_unlock(&data->mutex); return 0; } /* * We will expect the enable and disable to do operation in * in reverse order. This will happen here anyway as our * resume operation uses sync mode runtime pm calls, the * suspend operation will be delayed by autosuspend delay * So the disable operation will still happen in reverse of * enable operation. When runtime pm is disabled the mode * is always on so sequence doesn't matter */ ret = bmc150_accel_set_power_state(data, state); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } ret = bmc150_accel_setup_any_motion_interrupt(data, state); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } data->ev_enable_state = state; mutex_unlock(&data->mutex); return 0; } static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev, struct iio_trigger *trig) { struct bmc150_accel_data *data = iio_priv(indio_dev); if (data->dready_trig != trig && data->motion_trig != trig) return -EINVAL; return 0; } static IIO_CONST_ATTR_SAMP_FREQ_AVAIL( "7.810000 15.630000 31.250000 62.500000 125 250 500 1000"); static struct attribute *bmc150_accel_attributes[] = { &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group bmc150_accel_attrs_group = { .attrs = bmc150_accel_attributes, }; static const struct iio_event_spec bmc150_accel_event = { .type = IIO_EV_TYPE_ROC, .dir = IIO_EV_DIR_RISING | IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_PERIOD) }; #define BMC150_ACCEL_CHANNEL(_axis) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = AXIS_##_axis, \ .scan_type = { \ .sign = 's', \ .realbits = 12, \ .storagebits = 16, \ .shift = 4, \ }, \ .event_spec = &bmc150_accel_event, \ .num_event_specs = 1 \ } static const struct iio_chan_spec bmc150_accel_channels[] = { { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET), .scan_index = -1, }, BMC150_ACCEL_CHANNEL(X), BMC150_ACCEL_CHANNEL(Y), BMC150_ACCEL_CHANNEL(Z), IIO_CHAN_SOFT_TIMESTAMP(3), }; static const struct iio_info bmc150_accel_info = { .attrs = &bmc150_accel_attrs_group, .read_raw = bmc150_accel_read_raw, .write_raw = bmc150_accel_write_raw, .read_event_value = bmc150_accel_read_event, .write_event_value = bmc150_accel_write_event, .write_event_config = bmc150_accel_write_event_config, .read_event_config = bmc150_accel_read_event_config, .validate_trigger = bmc150_accel_validate_trigger, .driver_module = THIS_MODULE, }; static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct bmc150_accel_data *data = iio_priv(indio_dev); int bit, ret, i = 0; mutex_lock(&data->mutex); for_each_set_bit(bit, indio_dev->buffer->scan_mask, indio_dev->masklength) { ret = i2c_smbus_read_word_data(data->client, BMC150_ACCEL_AXIS_TO_REG(bit)); if (ret < 0) { mutex_unlock(&data->mutex); goto err_read; } data->buffer[i++] = ret; } mutex_unlock(&data->mutex); iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, data->timestamp); err_read: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int bmc150_accel_trig_try_reen(struct iio_trigger *trig) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; /* new data interrupts don't need ack */ if (data->dready_trigger_on) return 0; mutex_lock(&data->mutex); /* clear any latched interrupt */ ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_INT | BMC150_ACCEL_INT_MODE_LATCH_RESET); mutex_unlock(&data->mutex); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n"); return ret; } return 0; } static int bmc150_accel_data_rdy_trigger_set_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); if (!state && data->ev_enable_state && data->motion_trigger_on) { data->motion_trigger_on = false; mutex_unlock(&data->mutex); return 0; } /* * Refer to comment in bmc150_accel_write_event_config for * enable/disable operation order */ ret = bmc150_accel_set_power_state(data, state); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } if (data->motion_trig == trig) ret = bmc150_accel_setup_any_motion_interrupt(data, state); else ret = bmc150_accel_setup_new_data_interrupt(data, state); if (ret < 0) { mutex_unlock(&data->mutex); return ret; } if (data->motion_trig == trig) data->motion_trigger_on = state; else data->dready_trigger_on = state; mutex_unlock(&data->mutex); return ret; } static const struct iio_trigger_ops bmc150_accel_trigger_ops = { .set_trigger_state = bmc150_accel_data_rdy_trigger_set_state, .try_reenable = bmc150_accel_trig_try_reen, .owner = THIS_MODULE, }; static irqreturn_t bmc150_accel_event_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; int dir; ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_INT_STATUS_2); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_int_status_2\n"); goto ack_intr_status; } if (ret & BMC150_ACCEL_ANY_MOTION_BIT_SIGN) dir = IIO_EV_DIR_FALLING; else dir = IIO_EV_DIR_RISING; if (ret & BMC150_ACCEL_ANY_MOTION_MASK) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_OR_Y_OR_Z, IIO_EV_TYPE_ROC, IIO_EV_DIR_EITHER), data->timestamp); ack_intr_status: if (!data->dready_trigger_on) ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_RST_LATCH, BMC150_ACCEL_INT_MODE_LATCH_INT | BMC150_ACCEL_INT_MODE_LATCH_RESET); return IRQ_HANDLED; } static irqreturn_t bmc150_accel_data_rdy_trig_poll(int irq, void *private) { struct iio_dev *indio_dev = private; struct bmc150_accel_data *data = iio_priv(indio_dev); data->timestamp = iio_get_time_ns(); if (data->dready_trigger_on) iio_trigger_poll(data->dready_trig); else if (data->motion_trigger_on) iio_trigger_poll(data->motion_trig); if (data->ev_enable_state) return IRQ_WAKE_THREAD; else return IRQ_HANDLED; } static int bmc150_accel_acpi_gpio_probe(struct i2c_client *client, struct bmc150_accel_data *data) { const struct acpi_device_id *id; struct device *dev; struct gpio_desc *gpio; int ret; if (!client) return -EINVAL; dev = &client->dev; if (!ACPI_HANDLE(dev)) return -ENODEV; id = acpi_match_device(dev->driver->acpi_match_table, dev); if (!id) return -ENODEV; /* data ready gpio interrupt pin */ gpio = devm_gpiod_get_index(dev, BMC150_ACCEL_GPIO_NAME, 0); if (IS_ERR(gpio)) { dev_err(dev, "Failed: acpi gpio get index\n"); return PTR_ERR(gpio); } ret = gpiod_direction_input(gpio); if (ret) return ret; ret = gpiod_to_irq(gpio); dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret); return ret; } static int bmc150_accel_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct bmc150_accel_data *data; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; ret = bmc150_accel_chip_init(data); if (ret < 0) return ret; mutex_init(&data->mutex); indio_dev->dev.parent = &client->dev; indio_dev->channels = bmc150_accel_channels; indio_dev->num_channels = ARRAY_SIZE(bmc150_accel_channels); indio_dev->name = BMC150_ACCEL_DRV_NAME; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &bmc150_accel_info; if (client->irq < 0) client->irq = bmc150_accel_acpi_gpio_probe(client, data); if (client->irq >= 0) { ret = devm_request_threaded_irq( &client->dev, client->irq, bmc150_accel_data_rdy_trig_poll, bmc150_accel_event_handler, IRQF_TRIGGER_RISING, BMC150_ACCEL_IRQ_NAME, indio_dev); if (ret) return ret; data->dready_trig = devm_iio_trigger_alloc(&client->dev, "%s-dev%d", indio_dev->name, indio_dev->id); if (!data->dready_trig) return -ENOMEM; data->motion_trig = devm_iio_trigger_alloc(&client->dev, "%s-any-motion-dev%d", indio_dev->name, indio_dev->id); if (!data->motion_trig) return -ENOMEM; data->dready_trig->dev.parent = &client->dev; data->dready_trig->ops = &bmc150_accel_trigger_ops; iio_trigger_set_drvdata(data->dready_trig, indio_dev); ret = iio_trigger_register(data->dready_trig); if (ret) return ret; data->motion_trig->dev.parent = &client->dev; data->motion_trig->ops = &bmc150_accel_trigger_ops; iio_trigger_set_drvdata(data->motion_trig, indio_dev); ret = iio_trigger_register(data->motion_trig); if (ret) { data->motion_trig = NULL; goto err_trigger_unregister; } ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time, bmc150_accel_trigger_handler, NULL); if (ret < 0) { dev_err(&client->dev, "Failed: iio triggered buffer setup\n"); goto err_trigger_unregister; } } ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(&client->dev, "Unable to register iio device\n"); goto err_buffer_cleanup; } ret = pm_runtime_set_active(&client->dev); if (ret) goto err_iio_unregister; pm_runtime_enable(&client->dev); pm_runtime_set_autosuspend_delay(&client->dev, BMC150_AUTO_SUSPEND_DELAY_MS); pm_runtime_use_autosuspend(&client->dev); return 0; err_iio_unregister: iio_device_unregister(indio_dev); err_buffer_cleanup: if (data->dready_trig) iio_triggered_buffer_cleanup(indio_dev); err_trigger_unregister: if (data->dready_trig) iio_trigger_unregister(data->dready_trig); if (data->motion_trig) iio_trigger_unregister(data->motion_trig); return ret; } static int bmc150_accel_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct bmc150_accel_data *data = iio_priv(indio_dev); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); pm_runtime_put_noidle(&client->dev); iio_device_unregister(indio_dev); if (data->dready_trig) { iio_triggered_buffer_cleanup(indio_dev); iio_trigger_unregister(data->dready_trig); iio_trigger_unregister(data->motion_trig); } mutex_lock(&data->mutex); bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0); mutex_unlock(&data->mutex); return 0; } #ifdef CONFIG_PM_SLEEP static int bmc150_accel_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct bmc150_accel_data *data = iio_priv(indio_dev); mutex_lock(&data->mutex); bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0); mutex_unlock(&data->mutex); return 0; } static int bmc150_accel_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct bmc150_accel_data *data = iio_priv(indio_dev); mutex_lock(&data->mutex); if (data->dready_trigger_on || data->motion_trigger_on || data->ev_enable_state) bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); mutex_unlock(&data->mutex); return 0; } #endif #ifdef CONFIG_PM_RUNTIME static int bmc150_accel_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct bmc150_accel_data *data = iio_priv(indio_dev); dev_dbg(&data->client->dev, __func__); return bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0); } static int bmc150_accel_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct bmc150_accel_data *data = iio_priv(indio_dev); int ret; int sleep_val; dev_dbg(&data->client->dev, __func__); ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); if (ret < 0) return ret; sleep_val = bmc150_accel_get_startup_times(data); if (sleep_val < 20) usleep_range(sleep_val * 1000, 20000); else msleep_interruptible(sleep_val); return 0; } #endif static const struct dev_pm_ops bmc150_accel_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume) SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend, bmc150_accel_runtime_resume, NULL) }; static const struct acpi_device_id bmc150_accel_acpi_match[] = { {"BSBA0150", 0}, {"BMC150A", 0}, { }, }; MODULE_DEVICE_TABLE(acpi, bmc150_accel_acpi_match); static const struct i2c_device_id bmc150_accel_id[] = { {"bmc150_accel", 0}, {} }; MODULE_DEVICE_TABLE(i2c, bmc150_accel_id); static struct i2c_driver bmc150_accel_driver = { .driver = { .name = BMC150_ACCEL_DRV_NAME, .acpi_match_table = ACPI_PTR(bmc150_accel_acpi_match), .pm = &bmc150_accel_pm_ops, }, .probe = bmc150_accel_probe, .remove = bmc150_accel_remove, .id_table = bmc150_accel_id, }; module_i2c_driver(bmc150_accel_driver); MODULE_AUTHOR("Srinivas Pandruvada "); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("BMC150 accelerometer driver");