/* * IOMMU API for ARM architected SMMU implementations. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) 2013 ARM Limited * * Author: Will Deacon * * This driver currently supports: * - SMMUv1 and v2 implementations * - Stream-matching and stream-indexing * - v7/v8 long-descriptor format * - Non-secure access to the SMMU * - 4k and 64k pages, with contiguous pte hints. * - Up to 39-bit addressing * - Context fault reporting */ #define pr_fmt(fmt) "arm-smmu: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Maximum number of stream IDs assigned to a single device */ #define MAX_MASTER_STREAMIDS 8 /* Maximum number of context banks per SMMU */ #define ARM_SMMU_MAX_CBS 128 /* Maximum number of mapping groups per SMMU */ #define ARM_SMMU_MAX_SMRS 128 /* SMMU global address space */ #define ARM_SMMU_GR0(smmu) ((smmu)->base) #define ARM_SMMU_GR1(smmu) ((smmu)->base + (smmu)->pagesize) /* Page table bits */ #define ARM_SMMU_PTE_PAGE (((pteval_t)3) << 0) #define ARM_SMMU_PTE_CONT (((pteval_t)1) << 52) #define ARM_SMMU_PTE_AF (((pteval_t)1) << 10) #define ARM_SMMU_PTE_SH_NS (((pteval_t)0) << 8) #define ARM_SMMU_PTE_SH_OS (((pteval_t)2) << 8) #define ARM_SMMU_PTE_SH_IS (((pteval_t)3) << 8) #if PAGE_SIZE == SZ_4K #define ARM_SMMU_PTE_CONT_ENTRIES 16 #elif PAGE_SIZE == SZ_64K #define ARM_SMMU_PTE_CONT_ENTRIES 32 #else #define ARM_SMMU_PTE_CONT_ENTRIES 1 #endif #define ARM_SMMU_PTE_CONT_SIZE (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES) #define ARM_SMMU_PTE_CONT_MASK (~(ARM_SMMU_PTE_CONT_SIZE - 1)) #define ARM_SMMU_PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(pte_t)) /* Stage-1 PTE */ #define ARM_SMMU_PTE_AP_UNPRIV (((pteval_t)1) << 6) #define ARM_SMMU_PTE_AP_RDONLY (((pteval_t)2) << 6) #define ARM_SMMU_PTE_ATTRINDX_SHIFT 2 #define ARM_SMMU_PTE_nG (((pteval_t)1) << 11) /* Stage-2 PTE */ #define ARM_SMMU_PTE_HAP_FAULT (((pteval_t)0) << 6) #define ARM_SMMU_PTE_HAP_READ (((pteval_t)1) << 6) #define ARM_SMMU_PTE_HAP_WRITE (((pteval_t)2) << 6) #define ARM_SMMU_PTE_MEMATTR_OIWB (((pteval_t)0xf) << 2) #define ARM_SMMU_PTE_MEMATTR_NC (((pteval_t)0x5) << 2) #define ARM_SMMU_PTE_MEMATTR_DEV (((pteval_t)0x1) << 2) /* Configuration registers */ #define ARM_SMMU_GR0_sCR0 0x0 #define sCR0_CLIENTPD (1 << 0) #define sCR0_GFRE (1 << 1) #define sCR0_GFIE (1 << 2) #define sCR0_GCFGFRE (1 << 4) #define sCR0_GCFGFIE (1 << 5) #define sCR0_USFCFG (1 << 10) #define sCR0_VMIDPNE (1 << 11) #define sCR0_PTM (1 << 12) #define sCR0_FB (1 << 13) #define sCR0_BSU_SHIFT 14 #define sCR0_BSU_MASK 0x3 /* Identification registers */ #define ARM_SMMU_GR0_ID0 0x20 #define ARM_SMMU_GR0_ID1 0x24 #define ARM_SMMU_GR0_ID2 0x28 #define ARM_SMMU_GR0_ID3 0x2c #define ARM_SMMU_GR0_ID4 0x30 #define ARM_SMMU_GR0_ID5 0x34 #define ARM_SMMU_GR0_ID6 0x38 #define ARM_SMMU_GR0_ID7 0x3c #define ARM_SMMU_GR0_sGFSR 0x48 #define ARM_SMMU_GR0_sGFSYNR0 0x50 #define ARM_SMMU_GR0_sGFSYNR1 0x54 #define ARM_SMMU_GR0_sGFSYNR2 0x58 #define ARM_SMMU_GR0_PIDR0 0xfe0 #define ARM_SMMU_GR0_PIDR1 0xfe4 #define ARM_SMMU_GR0_PIDR2 0xfe8 #define ID0_S1TS (1 << 30) #define ID0_S2TS (1 << 29) #define ID0_NTS (1 << 28) #define ID0_SMS (1 << 27) #define ID0_PTFS_SHIFT 24 #define ID0_PTFS_MASK 0x2 #define ID0_PTFS_V8_ONLY 0x2 #define ID0_CTTW (1 << 14) #define ID0_NUMIRPT_SHIFT 16 #define ID0_NUMIRPT_MASK 0xff #define ID0_NUMSMRG_SHIFT 0 #define ID0_NUMSMRG_MASK 0xff #define ID1_PAGESIZE (1 << 31) #define ID1_NUMPAGENDXB_SHIFT 28 #define ID1_NUMPAGENDXB_MASK 7 #define ID1_NUMS2CB_SHIFT 16 #define ID1_NUMS2CB_MASK 0xff #define ID1_NUMCB_SHIFT 0 #define ID1_NUMCB_MASK 0xff #define ID2_OAS_SHIFT 4 #define ID2_OAS_MASK 0xf #define ID2_IAS_SHIFT 0 #define ID2_IAS_MASK 0xf #define ID2_UBS_SHIFT 8 #define ID2_UBS_MASK 0xf #define ID2_PTFS_4K (1 << 12) #define ID2_PTFS_16K (1 << 13) #define ID2_PTFS_64K (1 << 14) #define PIDR2_ARCH_SHIFT 4 #define PIDR2_ARCH_MASK 0xf /* Global TLB invalidation */ #define ARM_SMMU_GR0_STLBIALL 0x60 #define ARM_SMMU_GR0_TLBIVMID 0x64 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68 #define ARM_SMMU_GR0_TLBIALLH 0x6c #define ARM_SMMU_GR0_sTLBGSYNC 0x70 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74 #define sTLBGSTATUS_GSACTIVE (1 << 0) #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */ /* Stream mapping registers */ #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2)) #define SMR_VALID (1 << 31) #define SMR_MASK_SHIFT 16 #define SMR_MASK_MASK 0x7fff #define SMR_ID_SHIFT 0 #define SMR_ID_MASK 0x7fff #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2)) #define S2CR_CBNDX_SHIFT 0 #define S2CR_CBNDX_MASK 0xff #define S2CR_TYPE_SHIFT 16 #define S2CR_TYPE_MASK 0x3 #define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT) #define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT) #define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT) /* Context bank attribute registers */ #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2)) #define CBAR_VMID_SHIFT 0 #define CBAR_VMID_MASK 0xff #define CBAR_S1_MEMATTR_SHIFT 12 #define CBAR_S1_MEMATTR_MASK 0xf #define CBAR_S1_MEMATTR_WB 0xf #define CBAR_TYPE_SHIFT 16 #define CBAR_TYPE_MASK 0x3 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT) #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT) #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT) #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT) #define CBAR_IRPTNDX_SHIFT 24 #define CBAR_IRPTNDX_MASK 0xff #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2)) #define CBA2R_RW64_32BIT (0 << 0) #define CBA2R_RW64_64BIT (1 << 0) /* Translation context bank */ #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1)) #define ARM_SMMU_CB(smmu, n) ((n) * (smmu)->pagesize) #define ARM_SMMU_CB_SCTLR 0x0 #define ARM_SMMU_CB_RESUME 0x8 #define ARM_SMMU_CB_TTBCR2 0x10 #define ARM_SMMU_CB_TTBR0_LO 0x20 #define ARM_SMMU_CB_TTBR0_HI 0x24 #define ARM_SMMU_CB_TTBCR 0x30 #define ARM_SMMU_CB_S1_MAIR0 0x38 #define ARM_SMMU_CB_FSR 0x58 #define ARM_SMMU_CB_FAR_LO 0x60 #define ARM_SMMU_CB_FAR_HI 0x64 #define ARM_SMMU_CB_FSYNR0 0x68 #define ARM_SMMU_CB_S1_TLBIASID 0x610 #define SCTLR_S1_ASIDPNE (1 << 12) #define SCTLR_CFCFG (1 << 7) #define SCTLR_CFIE (1 << 6) #define SCTLR_CFRE (1 << 5) #define SCTLR_E (1 << 4) #define SCTLR_AFE (1 << 2) #define SCTLR_TRE (1 << 1) #define SCTLR_M (1 << 0) #define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE) #define RESUME_RETRY (0 << 0) #define RESUME_TERMINATE (1 << 0) #define TTBCR_EAE (1 << 31) #define TTBCR_PASIZE_SHIFT 16 #define TTBCR_PASIZE_MASK 0x7 #define TTBCR_TG0_4K (0 << 14) #define TTBCR_TG0_64K (1 << 14) #define TTBCR_SH0_SHIFT 12 #define TTBCR_SH0_MASK 0x3 #define TTBCR_SH_NS 0 #define TTBCR_SH_OS 2 #define TTBCR_SH_IS 3 #define TTBCR_ORGN0_SHIFT 10 #define TTBCR_IRGN0_SHIFT 8 #define TTBCR_RGN_MASK 0x3 #define TTBCR_RGN_NC 0 #define TTBCR_RGN_WBWA 1 #define TTBCR_RGN_WT 2 #define TTBCR_RGN_WB 3 #define TTBCR_SL0_SHIFT 6 #define TTBCR_SL0_MASK 0x3 #define TTBCR_SL0_LVL_2 0 #define TTBCR_SL0_LVL_1 1 #define TTBCR_T1SZ_SHIFT 16 #define TTBCR_T0SZ_SHIFT 0 #define TTBCR_SZ_MASK 0xf #define TTBCR2_SEP_SHIFT 15 #define TTBCR2_SEP_MASK 0x7 #define TTBCR2_PASIZE_SHIFT 0 #define TTBCR2_PASIZE_MASK 0x7 /* Common definitions for PASize and SEP fields */ #define TTBCR2_ADDR_32 0 #define TTBCR2_ADDR_36 1 #define TTBCR2_ADDR_40 2 #define TTBCR2_ADDR_42 3 #define TTBCR2_ADDR_44 4 #define TTBCR2_ADDR_48 5 #define TTBRn_HI_ASID_SHIFT 16 #define MAIR_ATTR_SHIFT(n) ((n) << 3) #define MAIR_ATTR_MASK 0xff #define MAIR_ATTR_DEVICE 0x04 #define MAIR_ATTR_NC 0x44 #define MAIR_ATTR_WBRWA 0xff #define MAIR_ATTR_IDX_NC 0 #define MAIR_ATTR_IDX_CACHE 1 #define MAIR_ATTR_IDX_DEV 2 #define FSR_MULTI (1 << 31) #define FSR_SS (1 << 30) #define FSR_UUT (1 << 8) #define FSR_ASF (1 << 7) #define FSR_TLBLKF (1 << 6) #define FSR_TLBMCF (1 << 5) #define FSR_EF (1 << 4) #define FSR_PF (1 << 3) #define FSR_AFF (1 << 2) #define FSR_TF (1 << 1) #define FSR_IGN (FSR_AFF | FSR_ASF | FSR_TLBMCF | \ FSR_TLBLKF) #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \ FSR_EF | FSR_PF | FSR_TF | FSR_IGN) #define FSYNR0_WNR (1 << 4) struct arm_smmu_smr { u8 idx; u16 mask; u16 id; }; struct arm_smmu_master { struct device_node *of_node; /* * The following is specific to the master's position in the * SMMU chain. */ struct rb_node node; int num_streamids; u16 streamids[MAX_MASTER_STREAMIDS]; /* * We only need to allocate these on the root SMMU, as we * configure unmatched streams to bypass translation. */ struct arm_smmu_smr *smrs; }; struct arm_smmu_device { struct device *dev; struct device_node *parent_of_node; void __iomem *base; unsigned long size; unsigned long pagesize; #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0) #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1) #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2) #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3) #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4) u32 features; int version; u32 num_context_banks; u32 num_s2_context_banks; DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS); atomic_t irptndx; u32 num_mapping_groups; DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS); unsigned long input_size; unsigned long s1_output_size; unsigned long s2_output_size; u32 num_global_irqs; u32 num_context_irqs; unsigned int *irqs; struct list_head list; struct rb_root masters; }; struct arm_smmu_cfg { struct arm_smmu_device *smmu; u8 cbndx; u8 irptndx; u32 cbar; pgd_t *pgd; }; #define INVALID_IRPTNDX 0xff #define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx) #define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1) struct arm_smmu_domain { /* * A domain can span across multiple, chained SMMUs and requires * all devices within the domain to follow the same translation * path. */ struct arm_smmu_device *leaf_smmu; struct arm_smmu_cfg root_cfg; phys_addr_t output_mask; struct mutex lock; }; static DEFINE_SPINLOCK(arm_smmu_devices_lock); static LIST_HEAD(arm_smmu_devices); static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu, struct device_node *dev_node) { struct rb_node *node = smmu->masters.rb_node; while (node) { struct arm_smmu_master *master; master = container_of(node, struct arm_smmu_master, node); if (dev_node < master->of_node) node = node->rb_left; else if (dev_node > master->of_node) node = node->rb_right; else return master; } return NULL; } static int insert_smmu_master(struct arm_smmu_device *smmu, struct arm_smmu_master *master) { struct rb_node **new, *parent; new = &smmu->masters.rb_node; parent = NULL; while (*new) { struct arm_smmu_master *this; this = container_of(*new, struct arm_smmu_master, node); parent = *new; if (master->of_node < this->of_node) new = &((*new)->rb_left); else if (master->of_node > this->of_node) new = &((*new)->rb_right); else return -EEXIST; } rb_link_node(&master->node, parent, new); rb_insert_color(&master->node, &smmu->masters); return 0; } static int register_smmu_master(struct arm_smmu_device *smmu, struct device *dev, struct of_phandle_args *masterspec) { int i; struct arm_smmu_master *master; master = find_smmu_master(smmu, masterspec->np); if (master) { dev_err(dev, "rejecting multiple registrations for master device %s\n", masterspec->np->name); return -EBUSY; } if (masterspec->args_count > MAX_MASTER_STREAMIDS) { dev_err(dev, "reached maximum number (%d) of stream IDs for master device %s\n", MAX_MASTER_STREAMIDS, masterspec->np->name); return -ENOSPC; } master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL); if (!master) return -ENOMEM; master->of_node = masterspec->np; master->num_streamids = masterspec->args_count; for (i = 0; i < master->num_streamids; ++i) master->streamids[i] = masterspec->args[i]; return insert_smmu_master(smmu, master); } static struct arm_smmu_device *find_parent_smmu(struct arm_smmu_device *smmu) { struct arm_smmu_device *parent; if (!smmu->parent_of_node) return NULL; spin_lock(&arm_smmu_devices_lock); list_for_each_entry(parent, &arm_smmu_devices, list) if (parent->dev->of_node == smmu->parent_of_node) goto out_unlock; parent = NULL; dev_warn(smmu->dev, "Failed to find SMMU parent despite parent in DT\n"); out_unlock: spin_unlock(&arm_smmu_devices_lock); return parent; } static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end) { int idx; do { idx = find_next_zero_bit(map, end, start); if (idx == end) return -ENOSPC; } while (test_and_set_bit(idx, map)); return idx; } static void __arm_smmu_free_bitmap(unsigned long *map, int idx) { clear_bit(idx, map); } /* Wait for any pending TLB invalidations to complete */ static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu) { int count = 0; void __iomem *gr0_base = ARM_SMMU_GR0(smmu); writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC); while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS) & sTLBGSTATUS_GSACTIVE) { cpu_relax(); if (++count == TLB_LOOP_TIMEOUT) { dev_err_ratelimited(smmu->dev, "TLB sync timed out -- SMMU may be deadlocked\n"); return; } udelay(1); } } static void arm_smmu_tlb_inv_context(struct arm_smmu_cfg *cfg) { struct arm_smmu_device *smmu = cfg->smmu; void __iomem *base = ARM_SMMU_GR0(smmu); bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS; if (stage1) { base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx); writel_relaxed(ARM_SMMU_CB_ASID(cfg), base + ARM_SMMU_CB_S1_TLBIASID); } else { base = ARM_SMMU_GR0(smmu); writel_relaxed(ARM_SMMU_CB_VMID(cfg), base + ARM_SMMU_GR0_TLBIVMID); } arm_smmu_tlb_sync(smmu); } static irqreturn_t arm_smmu_context_fault(int irq, void *dev) { int flags, ret; u32 fsr, far, fsynr, resume; unsigned long iova; struct iommu_domain *domain = dev; struct arm_smmu_domain *smmu_domain = domain->priv; struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg; struct arm_smmu_device *smmu = root_cfg->smmu; void __iomem *cb_base; cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx); fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR); if (!(fsr & FSR_FAULT)) return IRQ_NONE; if (fsr & FSR_IGN) dev_err_ratelimited(smmu->dev, "Unexpected context fault (fsr 0x%u)\n", fsr); fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0); flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ; far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO); iova = far; #ifdef CONFIG_64BIT far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI); iova |= ((unsigned long)far << 32); #endif if (!report_iommu_fault(domain, smmu->dev, iova, flags)) { ret = IRQ_HANDLED; resume = RESUME_RETRY; } else { ret = IRQ_NONE; resume = RESUME_TERMINATE; } /* Clear the faulting FSR */ writel(fsr, cb_base + ARM_SMMU_CB_FSR); /* Retry or terminate any stalled transactions */ if (fsr & FSR_SS) writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME); return ret; } static irqreturn_t arm_smmu_global_fault(int irq, void *dev) { u32 gfsr, gfsynr0, gfsynr1, gfsynr2; struct arm_smmu_device *smmu = dev; void __iomem *gr0_base = ARM_SMMU_GR0(smmu); gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR); if (!gfsr) return IRQ_NONE; gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0); gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1); gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2); dev_err_ratelimited(smmu->dev, "Unexpected global fault, this could be serious\n"); dev_err_ratelimited(smmu->dev, "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n", gfsr, gfsynr0, gfsynr1, gfsynr2); writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR); return IRQ_HANDLED; } static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain) { u32 reg; bool stage1; struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg; struct arm_smmu_device *smmu = root_cfg->smmu; void __iomem *cb_base, *gr0_base, *gr1_base; gr0_base = ARM_SMMU_GR0(smmu); gr1_base = ARM_SMMU_GR1(smmu); stage1 = root_cfg->cbar != CBAR_TYPE_S2_TRANS; cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx); /* CBAR */ reg = root_cfg->cbar; if (smmu->version == 1) reg |= root_cfg->irptndx << CBAR_IRPTNDX_SHIFT; /* Use the weakest memory type, so it is overridden by the pte */ if (stage1) reg |= (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT); else reg |= ARM_SMMU_CB_VMID(root_cfg) << CBAR_VMID_SHIFT; writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(root_cfg->cbndx)); if (smmu->version > 1) { /* CBA2R */ #ifdef CONFIG_64BIT reg = CBA2R_RW64_64BIT; #else reg = CBA2R_RW64_32BIT; #endif writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(root_cfg->cbndx)); /* TTBCR2 */ switch (smmu->input_size) { case 32: reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT); break; case 36: reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT); break; case 39: reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT); break; case 42: reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT); break; case 44: reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT); break; case 48: reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT); break; } switch (smmu->s1_output_size) { case 32: reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT); break; case 36: reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT); break; case 39: reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT); break; case 42: reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT); break; case 44: reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT); break; case 48: reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT); break; } if (stage1) writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2); } /* TTBR0 */ reg = __pa(root_cfg->pgd); writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO); reg = (phys_addr_t)__pa(root_cfg->pgd) >> 32; if (stage1) reg |= ARM_SMMU_CB_ASID(root_cfg) << TTBRn_HI_ASID_SHIFT; writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI); /* * TTBCR * We use long descriptor, with inner-shareable WBWA tables in TTBR0. */ if (smmu->version > 1) { if (PAGE_SIZE == SZ_4K) reg = TTBCR_TG0_4K; else reg = TTBCR_TG0_64K; if (!stage1) { switch (smmu->s2_output_size) { case 32: reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT); break; case 36: reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT); break; case 40: reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT); break; case 42: reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT); break; case 44: reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT); break; case 48: reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT); break; } } else { reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT; } } else { reg = 0; } reg |= TTBCR_EAE | (TTBCR_SH_IS << TTBCR_SH0_SHIFT) | (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) | (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT) | (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT); writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR); /* MAIR0 (stage-1 only) */ if (stage1) { reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) | (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) | (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV)); writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0); } /* SCTLR */ reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP; if (stage1) reg |= SCTLR_S1_ASIDPNE; #ifdef __BIG_ENDIAN reg |= SCTLR_E; #endif writel(reg, cb_base + ARM_SMMU_CB_SCTLR); } static int arm_smmu_init_domain_context(struct iommu_domain *domain, struct device *dev) { int irq, ret, start; struct arm_smmu_domain *smmu_domain = domain->priv; struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg; struct arm_smmu_device *smmu, *parent; /* * Walk the SMMU chain to find the root device for this chain. * We assume that no masters have translations which terminate * early, and therefore check that the root SMMU does indeed have * a StreamID for the master in question. */ parent = dev->archdata.iommu; smmu_domain->output_mask = -1; do { smmu = parent; smmu_domain->output_mask &= (1ULL << smmu->s2_output_size) - 1; } while ((parent = find_parent_smmu(smmu))); if (!find_smmu_master(smmu, dev->of_node)) { dev_err(dev, "unable to find root SMMU for device\n"); return -ENODEV; } if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) { /* * We will likely want to change this if/when KVM gets * involved. */ root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS; start = smmu->num_s2_context_banks; } else if (smmu->features & ARM_SMMU_FEAT_TRANS_S2) { root_cfg->cbar = CBAR_TYPE_S2_TRANS; start = 0; } else { root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS; start = smmu->num_s2_context_banks; } ret = __arm_smmu_alloc_bitmap(smmu->context_map, start, smmu->num_context_banks); if (IS_ERR_VALUE(ret)) return ret; root_cfg->cbndx = ret; if (smmu->version == 1) { root_cfg->irptndx = atomic_inc_return(&smmu->irptndx); root_cfg->irptndx %= smmu->num_context_irqs; } else { root_cfg->irptndx = root_cfg->cbndx; } irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx]; ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED, "arm-smmu-context-fault", domain); if (IS_ERR_VALUE(ret)) { dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n", root_cfg->irptndx, irq); root_cfg->irptndx = INVALID_IRPTNDX; goto out_free_context; } root_cfg->smmu = smmu; arm_smmu_init_context_bank(smmu_domain); return ret; out_free_context: __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx); return ret; } static void arm_smmu_destroy_domain_context(struct iommu_domain *domain) { struct arm_smmu_domain *smmu_domain = domain->priv; struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg; struct arm_smmu_device *smmu = root_cfg->smmu; void __iomem *cb_base; int irq; if (!smmu) return; /* Disable the context bank and nuke the TLB before freeing it. */ cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx); writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR); arm_smmu_tlb_inv_context(root_cfg); if (root_cfg->irptndx != INVALID_IRPTNDX) { irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx]; free_irq(irq, domain); } __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx); } static int arm_smmu_domain_init(struct iommu_domain *domain) { struct arm_smmu_domain *smmu_domain; pgd_t *pgd; /* * Allocate the domain and initialise some of its data structures. * We can't really do anything meaningful until we've added a * master. */ smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL); if (!smmu_domain) return -ENOMEM; pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL); if (!pgd) goto out_free_domain; smmu_domain->root_cfg.pgd = pgd; mutex_init(&smmu_domain->lock); domain->priv = smmu_domain; return 0; out_free_domain: kfree(smmu_domain); return -ENOMEM; } static void arm_smmu_free_ptes(pmd_t *pmd) { pgtable_t table = pmd_pgtable(*pmd); pgtable_page_dtor(table); __free_page(table); } static void arm_smmu_free_pmds(pud_t *pud) { int i; pmd_t *pmd, *pmd_base = pmd_offset(pud, 0); pmd = pmd_base; for (i = 0; i < PTRS_PER_PMD; ++i) { if (pmd_none(*pmd)) continue; arm_smmu_free_ptes(pmd); pmd++; } pmd_free(NULL, pmd_base); } static void arm_smmu_free_puds(pgd_t *pgd) { int i; pud_t *pud, *pud_base = pud_offset(pgd, 0); pud = pud_base; for (i = 0; i < PTRS_PER_PUD; ++i) { if (pud_none(*pud)) continue; arm_smmu_free_pmds(pud); pud++; } pud_free(NULL, pud_base); } static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain) { int i; struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg; pgd_t *pgd, *pgd_base = root_cfg->pgd; /* * Recursively free the page tables for this domain. We don't * care about speculative TLB filling, because the TLB will be * nuked next time this context bank is re-allocated and no devices * currently map to these tables. */ pgd = pgd_base; for (i = 0; i < PTRS_PER_PGD; ++i) { if (pgd_none(*pgd)) continue; arm_smmu_free_puds(pgd); pgd++; } kfree(pgd_base); } static void arm_smmu_domain_destroy(struct iommu_domain *domain) { struct arm_smmu_domain *smmu_domain = domain->priv; /* * Free the domain resources. We assume that all devices have * already been detached. */ arm_smmu_destroy_domain_context(domain); arm_smmu_free_pgtables(smmu_domain); kfree(smmu_domain); } static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu, struct arm_smmu_master *master) { int i; struct arm_smmu_smr *smrs; void __iomem *gr0_base = ARM_SMMU_GR0(smmu); if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH)) return 0; if (master->smrs) return -EEXIST; smrs = kmalloc(sizeof(*smrs) * master->num_streamids, GFP_KERNEL); if (!smrs) { dev_err(smmu->dev, "failed to allocate %d SMRs for master %s\n", master->num_streamids, master->of_node->name); return -ENOMEM; } /* Allocate the SMRs on the root SMMU */ for (i = 0; i < master->num_streamids; ++i) { int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0, smmu->num_mapping_groups); if (IS_ERR_VALUE(idx)) { dev_err(smmu->dev, "failed to allocate free SMR\n"); goto err_free_smrs; } smrs[i] = (struct arm_smmu_smr) { .idx = idx, .mask = 0, /* We don't currently share SMRs */ .id = master->streamids[i], }; } /* It worked! Now, poke the actual hardware */ for (i = 0; i < master->num_streamids; ++i) { u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT | smrs[i].mask << SMR_MASK_SHIFT; writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx)); } master->smrs = smrs; return 0; err_free_smrs: while (--i >= 0) __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx); kfree(smrs); return -ENOSPC; } static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu, struct arm_smmu_master *master) { int i; void __iomem *gr0_base = ARM_SMMU_GR0(smmu); struct arm_smmu_smr *smrs = master->smrs; /* Invalidate the SMRs before freeing back to the allocator */ for (i = 0; i < master->num_streamids; ++i) { u8 idx = smrs[i].idx; writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx)); __arm_smmu_free_bitmap(smmu->smr_map, idx); } master->smrs = NULL; kfree(smrs); } static void arm_smmu_bypass_stream_mapping(struct arm_smmu_device *smmu, struct arm_smmu_master *master) { int i; void __iomem *gr0_base = ARM_SMMU_GR0(smmu); for (i = 0; i < master->num_streamids; ++i) { u16 sid = master->streamids[i]; writel_relaxed(S2CR_TYPE_BYPASS, gr0_base + ARM_SMMU_GR0_S2CR(sid)); } } static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain, struct arm_smmu_master *master) { int i, ret; struct arm_smmu_device *parent, *smmu = smmu_domain->root_cfg.smmu; void __iomem *gr0_base = ARM_SMMU_GR0(smmu); ret = arm_smmu_master_configure_smrs(smmu, master); if (ret) return ret; /* Bypass the leaves */ smmu = smmu_domain->leaf_smmu; while ((parent = find_parent_smmu(smmu))) { /* * We won't have a StreamID match for anything but the root * smmu, so we only need to worry about StreamID indexing, * where we must install bypass entries in the S2CRs. */ if (smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) continue; arm_smmu_bypass_stream_mapping(smmu, master); smmu = parent; } /* Now we're at the root, time to point at our context bank */ for (i = 0; i < master->num_streamids; ++i) { u32 idx, s2cr; idx = master->smrs ? master->smrs[i].idx : master->streamids[i]; s2cr = (S2CR_TYPE_TRANS << S2CR_TYPE_SHIFT) | (smmu_domain->root_cfg.cbndx << S2CR_CBNDX_SHIFT); writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx)); } return 0; } static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain, struct arm_smmu_master *master) { struct arm_smmu_device *smmu = smmu_domain->root_cfg.smmu; /* * We *must* clear the S2CR first, because freeing the SMR means * that it can be re-allocated immediately. */ arm_smmu_bypass_stream_mapping(smmu, master); arm_smmu_master_free_smrs(smmu, master); } static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev) { int ret = -EINVAL; struct arm_smmu_domain *smmu_domain = domain->priv; struct arm_smmu_device *device_smmu = dev->archdata.iommu; struct arm_smmu_master *master; if (!device_smmu) { dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n"); return -ENXIO; } /* * Sanity check the domain. We don't currently support domains * that cross between different SMMU chains. */ mutex_lock(&smmu_domain->lock); if (!smmu_domain->leaf_smmu) { /* Now that we have a master, we can finalise the domain */ ret = arm_smmu_init_domain_context(domain, dev); if (IS_ERR_VALUE(ret)) goto err_unlock; smmu_domain->leaf_smmu = device_smmu; } else if (smmu_domain->leaf_smmu != device_smmu) { dev_err(dev, "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n", dev_name(smmu_domain->leaf_smmu->dev), dev_name(device_smmu->dev)); goto err_unlock; } mutex_unlock(&smmu_domain->lock); /* Looks ok, so add the device to the domain */ master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node); if (!master) return -ENODEV; return arm_smmu_domain_add_master(smmu_domain, master); err_unlock: mutex_unlock(&smmu_domain->lock); return ret; } static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev) { struct arm_smmu_domain *smmu_domain = domain->priv; struct arm_smmu_master *master; master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node); if (master) arm_smmu_domain_remove_master(smmu_domain, master); } static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr, size_t size) { unsigned long offset = (unsigned long)addr & ~PAGE_MASK; /* * If the SMMU can't walk tables in the CPU caches, treat them * like non-coherent DMA since we need to flush the new entries * all the way out to memory. There's no possibility of recursion * here as the SMMU table walker will not be wired through another * SMMU. */ if (!(smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)) dma_map_page(smmu->dev, virt_to_page(addr), offset, size, DMA_TO_DEVICE); } static bool arm_smmu_pte_is_contiguous_range(unsigned long addr, unsigned long end) { return !(addr & ~ARM_SMMU_PTE_CONT_MASK) && (addr + ARM_SMMU_PTE_CONT_SIZE <= end); } static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned long pfn, int flags, int stage) { pte_t *pte, *start; pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF; if (pmd_none(*pmd)) { /* Allocate a new set of tables */ pgtable_t table = alloc_page(PGALLOC_GFP); if (!table) return -ENOMEM; arm_smmu_flush_pgtable(smmu, page_address(table), ARM_SMMU_PTE_HWTABLE_SIZE); pgtable_page_ctor(table); pmd_populate(NULL, pmd, table); arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd)); } if (stage == 1) { pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG; if (!(flags & IOMMU_WRITE) && (flags & IOMMU_READ)) pteval |= ARM_SMMU_PTE_AP_RDONLY; if (flags & IOMMU_CACHE) pteval |= (MAIR_ATTR_IDX_CACHE << ARM_SMMU_PTE_ATTRINDX_SHIFT); } else { pteval |= ARM_SMMU_PTE_HAP_FAULT; if (flags & IOMMU_READ) pteval |= ARM_SMMU_PTE_HAP_READ; if (flags & IOMMU_WRITE) pteval |= ARM_SMMU_PTE_HAP_WRITE; if (flags & IOMMU_CACHE) pteval |= ARM_SMMU_PTE_MEMATTR_OIWB; else pteval |= ARM_SMMU_PTE_MEMATTR_NC; } /* If no access, create a faulting entry to avoid TLB fills */ if (!(flags & (IOMMU_READ | IOMMU_WRITE))) pteval &= ~ARM_SMMU_PTE_PAGE; pteval |= ARM_SMMU_PTE_SH_IS; start = pmd_page_vaddr(*pmd) + pte_index(addr); pte = start; /* * Install the page table entries. This is fairly complicated * since we attempt to make use of the contiguous hint in the * ptes where possible. The contiguous hint indicates a series * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically * contiguous region with the following constraints: * * - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE * - Each pte in the region has the contiguous hint bit set * * This complicates unmapping (also handled by this code, when * neither IOMMU_READ or IOMMU_WRITE are set) because it is * possible, yet highly unlikely, that a client may unmap only * part of a contiguous range. This requires clearing of the * contiguous hint bits in the range before installing the new * faulting entries. * * Note that re-mapping an address range without first unmapping * it is not supported, so TLB invalidation is not required here * and is instead performed at unmap and domain-init time. */ do { int i = 1; pteval &= ~ARM_SMMU_PTE_CONT; if (arm_smmu_pte_is_contiguous_range(addr, end)) { i = ARM_SMMU_PTE_CONT_ENTRIES; pteval |= ARM_SMMU_PTE_CONT; } else if (pte_val(*pte) & (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) { int j; pte_t *cont_start; unsigned long idx = pte_index(addr); idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1); cont_start = pmd_page_vaddr(*pmd) + idx; for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j) pte_val(*(cont_start + j)) &= ~ARM_SMMU_PTE_CONT; arm_smmu_flush_pgtable(smmu, cont_start, sizeof(*pte) * ARM_SMMU_PTE_CONT_ENTRIES); } do { *pte = pfn_pte(pfn, __pgprot(pteval)); } while (pte++, pfn++, addr += PAGE_SIZE, --i); } while (addr != end); arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start)); return 0; } static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud, unsigned long addr, unsigned long end, phys_addr_t phys, int flags, int stage) { int ret; pmd_t *pmd; unsigned long next, pfn = __phys_to_pfn(phys); #ifndef __PAGETABLE_PMD_FOLDED if (pud_none(*pud)) { pmd = pmd_alloc_one(NULL, addr); if (!pmd) return -ENOMEM; } else #endif pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, end, pfn, flags, stage); pud_populate(NULL, pud, pmd); arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud)); phys += next - addr; } while (pmd++, addr = next, addr < end); return ret; } static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd, unsigned long addr, unsigned long end, phys_addr_t phys, int flags, int stage) { int ret = 0; pud_t *pud; unsigned long next; #ifndef __PAGETABLE_PUD_FOLDED if (pgd_none(*pgd)) { pud = pud_alloc_one(NULL, addr); if (!pud) return -ENOMEM; } else #endif pud = pud_offset(pgd, addr); do { next = pud_addr_end(addr, end); ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys, flags, stage); pgd_populate(NULL, pud, pgd); arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd)); phys += next - addr; } while (pud++, addr = next, addr < end); return ret; } static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain, unsigned long iova, phys_addr_t paddr, size_t size, int flags) { int ret, stage; unsigned long end; phys_addr_t input_mask, output_mask; struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg; pgd_t *pgd = root_cfg->pgd; struct arm_smmu_device *smmu = root_cfg->smmu; if (root_cfg->cbar == CBAR_TYPE_S2_TRANS) { stage = 2; output_mask = (1ULL << smmu->s2_output_size) - 1; } else { stage = 1; output_mask = (1ULL << smmu->s1_output_size) - 1; } if (!pgd) return -EINVAL; if (size & ~PAGE_MASK) return -EINVAL; input_mask = (1ULL << smmu->input_size) - 1; if ((phys_addr_t)iova & ~input_mask) return -ERANGE; if (paddr & ~output_mask) return -ERANGE; mutex_lock(&smmu_domain->lock); pgd += pgd_index(iova); end = iova + size; do { unsigned long next = pgd_addr_end(iova, end); ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr, flags, stage); if (ret) goto out_unlock; paddr += next - iova; iova = next; } while (pgd++, iova != end); out_unlock: mutex_unlock(&smmu_domain->lock); /* Ensure new page tables are visible to the hardware walker */ if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) dsb(); return ret; } static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova, phys_addr_t paddr, size_t size, int flags) { struct arm_smmu_domain *smmu_domain = domain->priv; struct arm_smmu_device *smmu = smmu_domain->leaf_smmu; if (!smmu_domain || !smmu) return -ENODEV; /* Check for silent address truncation up the SMMU chain. */ if ((phys_addr_t)iova & ~smmu_domain->output_mask) return -ERANGE; return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, flags); } static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size) { int ret; struct arm_smmu_domain *smmu_domain = domain->priv; ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0); arm_smmu_tlb_inv_context(&smmu_domain->root_cfg); return ret ? ret : size; } static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) { pgd_t *pgdp, pgd; pud_t pud; pmd_t pmd; pte_t pte; struct arm_smmu_domain *smmu_domain = domain->priv; struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg; pgdp = root_cfg->pgd; if (!pgdp) return 0; pgd = *(pgdp + pgd_index(iova)); if (pgd_none(pgd)) return 0; pud = *pud_offset(&pgd, iova); if (pud_none(pud)) return 0; pmd = *pmd_offset(&pud, iova); if (pmd_none(pmd)) return 0; pte = *(pmd_page_vaddr(pmd) + pte_index(iova)); if (pte_none(pte)) return 0; return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK); } static int arm_smmu_domain_has_cap(struct iommu_domain *domain, unsigned long cap) { unsigned long caps = 0; struct arm_smmu_domain *smmu_domain = domain->priv; if (smmu_domain->root_cfg.smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) caps |= IOMMU_CAP_CACHE_COHERENCY; return !!(cap & caps); } static int arm_smmu_add_device(struct device *dev) { struct arm_smmu_device *child, *parent, *smmu; struct arm_smmu_master *master = NULL; spin_lock(&arm_smmu_devices_lock); list_for_each_entry(parent, &arm_smmu_devices, list) { smmu = parent; /* Try to find a child of the current SMMU. */ list_for_each_entry(child, &arm_smmu_devices, list) { if (child->parent_of_node == parent->dev->of_node) { /* Does the child sit above our master? */ master = find_smmu_master(child, dev->of_node); if (master) { smmu = NULL; break; } } } /* We found some children, so keep searching. */ if (!smmu) { master = NULL; continue; } master = find_smmu_master(smmu, dev->of_node); if (master) break; } spin_unlock(&arm_smmu_devices_lock); if (!master) return -ENODEV; dev->archdata.iommu = smmu; return 0; } static void arm_smmu_remove_device(struct device *dev) { dev->archdata.iommu = NULL; } static struct iommu_ops arm_smmu_ops = { .domain_init = arm_smmu_domain_init, .domain_destroy = arm_smmu_domain_destroy, .attach_dev = arm_smmu_attach_dev, .detach_dev = arm_smmu_detach_dev, .map = arm_smmu_map, .unmap = arm_smmu_unmap, .iova_to_phys = arm_smmu_iova_to_phys, .domain_has_cap = arm_smmu_domain_has_cap, .add_device = arm_smmu_add_device, .remove_device = arm_smmu_remove_device, .pgsize_bitmap = (SECTION_SIZE | ARM_SMMU_PTE_CONT_SIZE | PAGE_SIZE), }; static void arm_smmu_device_reset(struct arm_smmu_device *smmu) { void __iomem *gr0_base = ARM_SMMU_GR0(smmu); void __iomem *sctlr_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB_SCTLR; int i = 0; u32 scr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sCR0); /* Mark all SMRn as invalid and all S2CRn as bypass */ for (i = 0; i < smmu->num_mapping_groups; ++i) { writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(i)); writel_relaxed(S2CR_TYPE_BYPASS, gr0_base + ARM_SMMU_GR0_S2CR(i)); } /* Make sure all context banks are disabled */ for (i = 0; i < smmu->num_context_banks; ++i) writel_relaxed(0, sctlr_base + ARM_SMMU_CB(smmu, i)); /* Invalidate the TLB, just in case */ writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL); writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH); writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH); /* Enable fault reporting */ scr0 |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE); /* Disable TLB broadcasting. */ scr0 |= (sCR0_VMIDPNE | sCR0_PTM); /* Enable client access, but bypass when no mapping is found */ scr0 &= ~(sCR0_CLIENTPD | sCR0_USFCFG); /* Disable forced broadcasting */ scr0 &= ~sCR0_FB; /* Don't upgrade barriers */ scr0 &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT); /* Push the button */ arm_smmu_tlb_sync(smmu); writel(scr0, gr0_base + ARM_SMMU_GR0_sCR0); } static int arm_smmu_id_size_to_bits(int size) { switch (size) { case 0: return 32; case 1: return 36; case 2: return 40; case 3: return 42; case 4: return 44; case 5: default: return 48; } } static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu) { unsigned long size; void __iomem *gr0_base = ARM_SMMU_GR0(smmu); u32 id; dev_notice(smmu->dev, "probing hardware configuration...\n"); /* Primecell ID */ id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2); smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1; dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version); /* ID0 */ id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0); #ifndef CONFIG_64BIT if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) { dev_err(smmu->dev, "\tno v7 descriptor support!\n"); return -ENODEV; } #endif if (id & ID0_S1TS) { smmu->features |= ARM_SMMU_FEAT_TRANS_S1; dev_notice(smmu->dev, "\tstage 1 translation\n"); } if (id & ID0_S2TS) { smmu->features |= ARM_SMMU_FEAT_TRANS_S2; dev_notice(smmu->dev, "\tstage 2 translation\n"); } if (id & ID0_NTS) { smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED; dev_notice(smmu->dev, "\tnested translation\n"); } if (!(smmu->features & (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2 | ARM_SMMU_FEAT_TRANS_NESTED))) { dev_err(smmu->dev, "\tno translation support!\n"); return -ENODEV; } if (id & ID0_CTTW) { smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK; dev_notice(smmu->dev, "\tcoherent table walk\n"); } if (id & ID0_SMS) { u32 smr, sid, mask; smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH; smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK; if (smmu->num_mapping_groups == 0) { dev_err(smmu->dev, "stream-matching supported, but no SMRs present!\n"); return -ENODEV; } smr = SMR_MASK_MASK << SMR_MASK_SHIFT; smr |= (SMR_ID_MASK << SMR_ID_SHIFT); writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0)); smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0)); mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK; sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK; if ((mask & sid) != sid) { dev_err(smmu->dev, "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n", mask, sid); return -ENODEV; } dev_notice(smmu->dev, "\tstream matching with %u register groups, mask 0x%x", smmu->num_mapping_groups, mask); } /* ID1 */ id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1); smmu->pagesize = (id & ID1_PAGESIZE) ? SZ_64K : SZ_4K; /* Check that we ioremapped enough */ size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1); size *= (smmu->pagesize << 1); if (smmu->size < size) dev_warn(smmu->dev, "device is 0x%lx bytes but only mapped 0x%lx!\n", size, smmu->size); smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK; smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK; if (smmu->num_s2_context_banks > smmu->num_context_banks) { dev_err(smmu->dev, "impossible number of S2 context banks!\n"); return -ENODEV; } dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n", smmu->num_context_banks, smmu->num_s2_context_banks); /* ID2 */ id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2); size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK); /* * Stage-1 output limited by stage-2 input size due to pgd * allocation (PTRS_PER_PGD). */ #ifdef CONFIG_64BIT /* Current maximum output size of 39 bits */ smmu->s1_output_size = min(39UL, size); #else smmu->s1_output_size = min(32UL, size); #endif /* The stage-2 output mask is also applied for bypass */ size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK); smmu->s2_output_size = min((unsigned long)PHYS_MASK_SHIFT, size); if (smmu->version == 1) { smmu->input_size = 32; } else { #ifdef CONFIG_64BIT size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK; size = min(39, arm_smmu_id_size_to_bits(size)); #else size = 32; #endif smmu->input_size = size; if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) || (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) || (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) { dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n", PAGE_SIZE); return -ENODEV; } } dev_notice(smmu->dev, "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n", smmu->input_size, smmu->s1_output_size, smmu->s2_output_size); return 0; } static int arm_smmu_device_dt_probe(struct platform_device *pdev) { struct resource *res; struct arm_smmu_device *smmu; struct device_node *dev_node; struct device *dev = &pdev->dev; struct rb_node *node; struct of_phandle_args masterspec; int num_irqs, i, err; smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL); if (!smmu) { dev_err(dev, "failed to allocate arm_smmu_device\n"); return -ENOMEM; } smmu->dev = dev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(dev, "missing base address/size\n"); return -ENODEV; } smmu->size = resource_size(res); smmu->base = devm_request_and_ioremap(dev, res); if (!smmu->base) return -EADDRNOTAVAIL; if (of_property_read_u32(dev->of_node, "#global-interrupts", &smmu->num_global_irqs)) { dev_err(dev, "missing #global-interrupts property\n"); return -ENODEV; } num_irqs = 0; while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) { num_irqs++; if (num_irqs > smmu->num_global_irqs) smmu->num_context_irqs++; } if (num_irqs < smmu->num_global_irqs) { dev_warn(dev, "found %d interrupts but expected at least %d\n", num_irqs, smmu->num_global_irqs); smmu->num_global_irqs = num_irqs; } smmu->num_context_irqs = num_irqs - smmu->num_global_irqs; smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs, GFP_KERNEL); if (!smmu->irqs) { dev_err(dev, "failed to allocate %d irqs\n", num_irqs); return -ENOMEM; } for (i = 0; i < num_irqs; ++i) { int irq = platform_get_irq(pdev, i); if (irq < 0) { dev_err(dev, "failed to get irq index %d\n", i); return -ENODEV; } smmu->irqs[i] = irq; } i = 0; smmu->masters = RB_ROOT; while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters", "#stream-id-cells", i, &masterspec)) { err = register_smmu_master(smmu, dev, &masterspec); if (err) { dev_err(dev, "failed to add master %s\n", masterspec.np->name); goto out_put_masters; } i++; } dev_notice(dev, "registered %d master devices\n", i); if ((dev_node = of_parse_phandle(dev->of_node, "smmu-parent", 0))) smmu->parent_of_node = dev_node; err = arm_smmu_device_cfg_probe(smmu); if (err) goto out_put_parent; if (smmu->version > 1 && smmu->num_context_banks != smmu->num_context_irqs) { dev_err(dev, "found only %d context interrupt(s) but %d required\n", smmu->num_context_irqs, smmu->num_context_banks); goto out_put_parent; } for (i = 0; i < smmu->num_global_irqs; ++i) { err = request_irq(smmu->irqs[i], arm_smmu_global_fault, IRQF_SHARED, "arm-smmu global fault", smmu); if (err) { dev_err(dev, "failed to request global IRQ %d (%u)\n", i, smmu->irqs[i]); goto out_free_irqs; } } INIT_LIST_HEAD(&smmu->list); spin_lock(&arm_smmu_devices_lock); list_add(&smmu->list, &arm_smmu_devices); spin_unlock(&arm_smmu_devices_lock); arm_smmu_device_reset(smmu); return 0; out_free_irqs: while (i--) free_irq(smmu->irqs[i], smmu); out_put_parent: if (smmu->parent_of_node) of_node_put(smmu->parent_of_node); out_put_masters: for (node = rb_first(&smmu->masters); node; node = rb_next(node)) { struct arm_smmu_master *master; master = container_of(node, struct arm_smmu_master, node); of_node_put(master->of_node); } return err; } static int arm_smmu_device_remove(struct platform_device *pdev) { int i; struct device *dev = &pdev->dev; struct arm_smmu_device *curr, *smmu = NULL; struct rb_node *node; spin_lock(&arm_smmu_devices_lock); list_for_each_entry(curr, &arm_smmu_devices, list) { if (curr->dev == dev) { smmu = curr; list_del(&smmu->list); break; } } spin_unlock(&arm_smmu_devices_lock); if (!smmu) return -ENODEV; if (smmu->parent_of_node) of_node_put(smmu->parent_of_node); for (node = rb_first(&smmu->masters); node; node = rb_next(node)) { struct arm_smmu_master *master; master = container_of(node, struct arm_smmu_master, node); of_node_put(master->of_node); } if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS)) dev_err(dev, "removing device with active domains!\n"); for (i = 0; i < smmu->num_global_irqs; ++i) free_irq(smmu->irqs[i], smmu); /* Turn the thing off */ writel(sCR0_CLIENTPD, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_sCR0); return 0; } #ifdef CONFIG_OF static struct of_device_id arm_smmu_of_match[] = { { .compatible = "arm,smmu-v1", }, { .compatible = "arm,smmu-v2", }, { .compatible = "arm,mmu-400", }, { .compatible = "arm,mmu-500", }, { }, }; MODULE_DEVICE_TABLE(of, arm_smmu_of_match); #endif static struct platform_driver arm_smmu_driver = { .driver = { .owner = THIS_MODULE, .name = "arm-smmu", .of_match_table = of_match_ptr(arm_smmu_of_match), }, .probe = arm_smmu_device_dt_probe, .remove = arm_smmu_device_remove, }; static int __init arm_smmu_init(void) { int ret; ret = platform_driver_register(&arm_smmu_driver); if (ret) return ret; /* Oh, for a proper bus abstraction */ if (!iommu_present(&platform_bus_type)) bus_set_iommu(&platform_bus_type, &arm_smmu_ops); if (!iommu_present(&amba_bustype)) bus_set_iommu(&amba_bustype, &arm_smmu_ops); return 0; } static void __exit arm_smmu_exit(void) { return platform_driver_unregister(&arm_smmu_driver); } module_init(arm_smmu_init); module_exit(arm_smmu_exit); MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations"); MODULE_AUTHOR("Will Deacon "); MODULE_LICENSE("GPL v2");