/* * * Support for audio capture * PCI function #1 of the cx2388x. * * (c) 2007 Trent Piepho * (c) 2005,2006 Ricardo Cerqueira * (c) 2005 Mauro Carvalho Chehab * Based on a dummy cx88 module by Gerd Knorr * Based on dummy.c by Jaroslav Kysela * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cx88.h" #include "cx88-reg.h" #define dprintk(level, fmt, arg...) do { \ if (debug + 1 > level) \ printk(KERN_INFO "%s/1: " fmt, chip->core->name , ## arg);\ } while(0) #define dprintk_core(level, fmt, arg...) do { \ if (debug + 1 > level) \ printk(KERN_DEBUG "%s/1: " fmt, chip->core->name , ## arg);\ } while(0) /**************************************************************************** Data type declarations - Can be moded to a header file later ****************************************************************************/ struct cx88_audio_buffer { unsigned int bpl; struct cx88_riscmem risc; void *vaddr; struct scatterlist *sglist; int sglen; int nr_pages; }; struct cx88_audio_dev { struct cx88_core *core; struct cx88_dmaqueue q; /* pci i/o */ struct pci_dev *pci; /* audio controls */ int irq; struct snd_card *card; spinlock_t reg_lock; atomic_t count; unsigned int dma_size; unsigned int period_size; unsigned int num_periods; struct cx88_audio_buffer *buf; struct snd_pcm_substream *substream; }; typedef struct cx88_audio_dev snd_cx88_card_t; /**************************************************************************** Module global static vars ****************************************************************************/ static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ static const char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable cx88x soundcard. default enabled."); module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for cx88x capture interface(s)."); /**************************************************************************** Module macros ****************************************************************************/ MODULE_DESCRIPTION("ALSA driver module for cx2388x based TV cards"); MODULE_AUTHOR("Ricardo Cerqueira"); MODULE_AUTHOR("Mauro Carvalho Chehab "); MODULE_LICENSE("GPL"); MODULE_VERSION(CX88_VERSION); MODULE_SUPPORTED_DEVICE("{{Conexant,23881}," "{{Conexant,23882}," "{{Conexant,23883}"); static unsigned int debug; module_param(debug,int,0644); MODULE_PARM_DESC(debug,"enable debug messages"); /**************************************************************************** Module specific funtions ****************************************************************************/ /* * BOARD Specific: Sets audio DMA */ static int _cx88_start_audio_dma(snd_cx88_card_t *chip) { struct cx88_audio_buffer *buf = chip->buf; struct cx88_core *core=chip->core; const struct sram_channel *audio_ch = &cx88_sram_channels[SRAM_CH25]; /* Make sure RISC/FIFO are off before changing FIFO/RISC settings */ cx_clear(MO_AUD_DMACNTRL, 0x11); /* setup fifo + format - out channel */ cx88_sram_channel_setup(chip->core, audio_ch, buf->bpl, buf->risc.dma); /* sets bpl size */ cx_write(MO_AUDD_LNGTH, buf->bpl); /* reset counter */ cx_write(MO_AUDD_GPCNTRL, GP_COUNT_CONTROL_RESET); atomic_set(&chip->count, 0); dprintk(1, "Start audio DMA, %d B/line, %d lines/FIFO, %d periods, %d " "byte buffer\n", buf->bpl, cx_read(audio_ch->cmds_start + 8)>>1, chip->num_periods, buf->bpl * chip->num_periods); /* Enables corresponding bits at AUD_INT_STAT */ cx_write(MO_AUD_INTMSK, AUD_INT_OPC_ERR | AUD_INT_DN_SYNC | AUD_INT_DN_RISCI2 | AUD_INT_DN_RISCI1); /* Clean any pending interrupt bits already set */ cx_write(MO_AUD_INTSTAT, ~0); /* enable audio irqs */ cx_set(MO_PCI_INTMSK, chip->core->pci_irqmask | PCI_INT_AUDINT); /* start dma */ cx_set(MO_DEV_CNTRL2, (1<<5)); /* Enables Risc Processor */ cx_set(MO_AUD_DMACNTRL, 0x11); /* audio downstream FIFO and RISC enable */ if (debug) cx88_sram_channel_dump(chip->core, audio_ch); return 0; } /* * BOARD Specific: Resets audio DMA */ static int _cx88_stop_audio_dma(snd_cx88_card_t *chip) { struct cx88_core *core=chip->core; dprintk(1, "Stopping audio DMA\n"); /* stop dma */ cx_clear(MO_AUD_DMACNTRL, 0x11); /* disable irqs */ cx_clear(MO_PCI_INTMSK, PCI_INT_AUDINT); cx_clear(MO_AUD_INTMSK, AUD_INT_OPC_ERR | AUD_INT_DN_SYNC | AUD_INT_DN_RISCI2 | AUD_INT_DN_RISCI1); if (debug) cx88_sram_channel_dump(chip->core, &cx88_sram_channels[SRAM_CH25]); return 0; } #define MAX_IRQ_LOOP 50 /* * BOARD Specific: IRQ dma bits */ static const char *cx88_aud_irqs[32] = { "dn_risci1", "up_risci1", "rds_dn_risc1", /* 0-2 */ NULL, /* reserved */ "dn_risci2", "up_risci2", "rds_dn_risc2", /* 4-6 */ NULL, /* reserved */ "dnf_of", "upf_uf", "rds_dnf_uf", /* 8-10 */ NULL, /* reserved */ "dn_sync", "up_sync", "rds_dn_sync", /* 12-14 */ NULL, /* reserved */ "opc_err", "par_err", "rip_err", /* 16-18 */ "pci_abort", "ber_irq", "mchg_irq" /* 19-21 */ }; /* * BOARD Specific: Threats IRQ audio specific calls */ static void cx8801_aud_irq(snd_cx88_card_t *chip) { struct cx88_core *core = chip->core; u32 status, mask; status = cx_read(MO_AUD_INTSTAT); mask = cx_read(MO_AUD_INTMSK); if (0 == (status & mask)) return; cx_write(MO_AUD_INTSTAT, status); if (debug > 1 || (status & mask & ~0xff)) cx88_print_irqbits(core->name, "irq aud", cx88_aud_irqs, ARRAY_SIZE(cx88_aud_irqs), status, mask); /* risc op code error */ if (status & AUD_INT_OPC_ERR) { printk(KERN_WARNING "%s/1: Audio risc op code error\n",core->name); cx_clear(MO_AUD_DMACNTRL, 0x11); cx88_sram_channel_dump(core, &cx88_sram_channels[SRAM_CH25]); } if (status & AUD_INT_DN_SYNC) { dprintk(1, "Downstream sync error\n"); cx_write(MO_AUDD_GPCNTRL, GP_COUNT_CONTROL_RESET); return; } /* risc1 downstream */ if (status & AUD_INT_DN_RISCI1) { atomic_set(&chip->count, cx_read(MO_AUDD_GPCNT)); snd_pcm_period_elapsed(chip->substream); } /* FIXME: Any other status should deserve a special handling? */ } /* * BOARD Specific: Handles IRQ calls */ static irqreturn_t cx8801_irq(int irq, void *dev_id) { snd_cx88_card_t *chip = dev_id; struct cx88_core *core = chip->core; u32 status; int loop, handled = 0; for (loop = 0; loop < MAX_IRQ_LOOP; loop++) { status = cx_read(MO_PCI_INTSTAT) & (core->pci_irqmask | PCI_INT_AUDINT); if (0 == status) goto out; dprintk(3, "cx8801_irq loop %d/%d, status %x\n", loop, MAX_IRQ_LOOP, status); handled = 1; cx_write(MO_PCI_INTSTAT, status); if (status & core->pci_irqmask) cx88_core_irq(core, status); if (status & PCI_INT_AUDINT) cx8801_aud_irq(chip); } if (MAX_IRQ_LOOP == loop) { printk(KERN_ERR "%s/1: IRQ loop detected, disabling interrupts\n", core->name); cx_clear(MO_PCI_INTMSK, PCI_INT_AUDINT); } out: return IRQ_RETVAL(handled); } static int cx88_alsa_dma_init(struct cx88_audio_dev *chip, int nr_pages) { struct cx88_audio_buffer *buf = chip->buf; struct page *pg; int i; buf->vaddr = vmalloc_32(nr_pages << PAGE_SHIFT); if (NULL == buf->vaddr) { dprintk(1, "vmalloc_32(%d pages) failed\n", nr_pages); return -ENOMEM; } dprintk(1, "vmalloc is at addr 0x%08lx, size=%d\n", (unsigned long)buf->vaddr, nr_pages << PAGE_SHIFT); memset(buf->vaddr, 0, nr_pages << PAGE_SHIFT); buf->nr_pages = nr_pages; buf->sglist = vzalloc(buf->nr_pages * sizeof(*buf->sglist)); if (NULL == buf->sglist) goto vzalloc_err; sg_init_table(buf->sglist, buf->nr_pages); for (i = 0; i < buf->nr_pages; i++) { pg = vmalloc_to_page(buf->vaddr + i * PAGE_SIZE); if (NULL == pg) goto vmalloc_to_page_err; sg_set_page(&buf->sglist[i], pg, PAGE_SIZE, 0); } return 0; vmalloc_to_page_err: vfree(buf->sglist); buf->sglist = NULL; vzalloc_err: vfree(buf->vaddr); buf->vaddr = NULL; return -ENOMEM; } static int cx88_alsa_dma_map(struct cx88_audio_dev *dev) { struct cx88_audio_buffer *buf = dev->buf; buf->sglen = dma_map_sg(&dev->pci->dev, buf->sglist, buf->nr_pages, PCI_DMA_FROMDEVICE); if (0 == buf->sglen) { pr_warn("%s: cx88_alsa_map_sg failed\n", __func__); return -ENOMEM; } return 0; } static int cx88_alsa_dma_unmap(struct cx88_audio_dev *dev) { struct cx88_audio_buffer *buf = dev->buf; if (!buf->sglen) return 0; dma_unmap_sg(&dev->pci->dev, buf->sglist, buf->sglen, PCI_DMA_FROMDEVICE); buf->sglen = 0; return 0; } static int cx88_alsa_dma_free(struct cx88_audio_buffer *buf) { vfree(buf->sglist); buf->sglist = NULL; vfree(buf->vaddr); buf->vaddr = NULL; return 0; } static int dsp_buffer_free(snd_cx88_card_t *chip) { struct cx88_riscmem *risc = &chip->buf->risc; BUG_ON(!chip->dma_size); dprintk(2,"Freeing buffer\n"); cx88_alsa_dma_unmap(chip); cx88_alsa_dma_free(chip->buf); if (risc->cpu) pci_free_consistent(chip->pci, risc->size, risc->cpu, risc->dma); kfree(chip->buf); chip->buf = NULL; return 0; } /**************************************************************************** ALSA PCM Interface ****************************************************************************/ /* * Digital hardware definition */ #define DEFAULT_FIFO_SIZE 4096 static const struct snd_pcm_hardware snd_cx88_digital_hw = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID, .formats = SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_48000, .rate_min = 48000, .rate_max = 48000, .channels_min = 2, .channels_max = 2, /* Analog audio output will be full of clicks and pops if there are not exactly four lines in the SRAM FIFO buffer. */ .period_bytes_min = DEFAULT_FIFO_SIZE/4, .period_bytes_max = DEFAULT_FIFO_SIZE/4, .periods_min = 1, .periods_max = 1024, .buffer_bytes_max = (1024*1024), }; /* * audio pcm capture open callback */ static int snd_cx88_pcm_open(struct snd_pcm_substream *substream) { snd_cx88_card_t *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; if (!chip) { printk(KERN_ERR "BUG: cx88 can't find device struct." " Can't proceed with open\n"); return -ENODEV; } err = snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) goto _error; chip->substream = substream; runtime->hw = snd_cx88_digital_hw; if (cx88_sram_channels[SRAM_CH25].fifo_size != DEFAULT_FIFO_SIZE) { unsigned int bpl = cx88_sram_channels[SRAM_CH25].fifo_size / 4; bpl &= ~7; /* must be multiple of 8 */ runtime->hw.period_bytes_min = bpl; runtime->hw.period_bytes_max = bpl; } return 0; _error: dprintk(1,"Error opening PCM!\n"); return err; } /* * audio close callback */ static int snd_cx88_close(struct snd_pcm_substream *substream) { return 0; } /* * hw_params callback */ static int snd_cx88_hw_params(struct snd_pcm_substream * substream, struct snd_pcm_hw_params * hw_params) { snd_cx88_card_t *chip = snd_pcm_substream_chip(substream); struct cx88_audio_buffer *buf; int ret; if (substream->runtime->dma_area) { dsp_buffer_free(chip); substream->runtime->dma_area = NULL; } chip->period_size = params_period_bytes(hw_params); chip->num_periods = params_periods(hw_params); chip->dma_size = chip->period_size * params_periods(hw_params); BUG_ON(!chip->dma_size); BUG_ON(chip->num_periods & (chip->num_periods-1)); buf = kzalloc(sizeof(*buf), GFP_KERNEL); if (NULL == buf) return -ENOMEM; chip->buf = buf; buf->bpl = chip->period_size; ret = cx88_alsa_dma_init(chip, (PAGE_ALIGN(chip->dma_size) >> PAGE_SHIFT)); if (ret < 0) goto error; ret = cx88_alsa_dma_map(chip); if (ret < 0) goto error; ret = cx88_risc_databuffer(chip->pci, &buf->risc, buf->sglist, chip->period_size, chip->num_periods, 1); if (ret < 0) goto error; /* Loop back to start of program */ buf->risc.jmp[0] = cpu_to_le32(RISC_JUMP|RISC_IRQ1|RISC_CNT_INC); buf->risc.jmp[1] = cpu_to_le32(buf->risc.dma); substream->runtime->dma_area = chip->buf->vaddr; substream->runtime->dma_bytes = chip->dma_size; substream->runtime->dma_addr = 0; return 0; error: kfree(buf); return ret; } /* * hw free callback */ static int snd_cx88_hw_free(struct snd_pcm_substream * substream) { snd_cx88_card_t *chip = snd_pcm_substream_chip(substream); if (substream->runtime->dma_area) { dsp_buffer_free(chip); substream->runtime->dma_area = NULL; } return 0; } /* * prepare callback */ static int snd_cx88_prepare(struct snd_pcm_substream *substream) { return 0; } /* * trigger callback */ static int snd_cx88_card_trigger(struct snd_pcm_substream *substream, int cmd) { snd_cx88_card_t *chip = snd_pcm_substream_chip(substream); int err; /* Local interrupts are already disabled by ALSA */ spin_lock(&chip->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: err=_cx88_start_audio_dma(chip); break; case SNDRV_PCM_TRIGGER_STOP: err=_cx88_stop_audio_dma(chip); break; default: err=-EINVAL; break; } spin_unlock(&chip->reg_lock); return err; } /* * pointer callback */ static snd_pcm_uframes_t snd_cx88_pointer(struct snd_pcm_substream *substream) { snd_cx88_card_t *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; u16 count; count = atomic_read(&chip->count); // dprintk(2, "%s - count %d (+%u), period %d, frame %lu\n", __func__, // count, new, count & (runtime->periods-1), // runtime->period_size * (count & (runtime->periods-1))); return runtime->period_size * (count & (runtime->periods-1)); } /* * page callback (needed for mmap) */ static struct page *snd_cx88_page(struct snd_pcm_substream *substream, unsigned long offset) { void *pageptr = substream->runtime->dma_area + offset; return vmalloc_to_page(pageptr); } /* * operators */ static struct snd_pcm_ops snd_cx88_pcm_ops = { .open = snd_cx88_pcm_open, .close = snd_cx88_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_cx88_hw_params, .hw_free = snd_cx88_hw_free, .prepare = snd_cx88_prepare, .trigger = snd_cx88_card_trigger, .pointer = snd_cx88_pointer, .page = snd_cx88_page, }; /* * create a PCM device */ static int snd_cx88_pcm(snd_cx88_card_t *chip, int device, const char *name) { int err; struct snd_pcm *pcm; err = snd_pcm_new(chip->card, name, device, 0, 1, &pcm); if (err < 0) return err; pcm->private_data = chip; strcpy(pcm->name, name); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cx88_pcm_ops); return 0; } /**************************************************************************** CONTROL INTERFACE ****************************************************************************/ static int snd_cx88_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) { info->type = SNDRV_CTL_ELEM_TYPE_INTEGER; info->count = 2; info->value.integer.min = 0; info->value.integer.max = 0x3f; return 0; } static int snd_cx88_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { snd_cx88_card_t *chip = snd_kcontrol_chip(kcontrol); struct cx88_core *core=chip->core; int vol = 0x3f - (cx_read(AUD_VOL_CTL) & 0x3f), bal = cx_read(AUD_BAL_CTL); value->value.integer.value[(bal & 0x40) ? 0 : 1] = vol; vol -= (bal & 0x3f); value->value.integer.value[(bal & 0x40) ? 1 : 0] = vol < 0 ? 0 : vol; return 0; } static void snd_cx88_wm8775_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { snd_cx88_card_t *chip = snd_kcontrol_chip(kcontrol); struct cx88_core *core = chip->core; int left = value->value.integer.value[0]; int right = value->value.integer.value[1]; int v, b; /* Pass volume & balance onto any WM8775 */ if (left >= right) { v = left << 10; b = left ? (0x8000 * right) / left : 0x8000; } else { v = right << 10; b = right ? 0xffff - (0x8000 * left) / right : 0x8000; } wm8775_s_ctrl(core, V4L2_CID_AUDIO_VOLUME, v); wm8775_s_ctrl(core, V4L2_CID_AUDIO_BALANCE, b); } /* OK - TODO: test it */ static int snd_cx88_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { snd_cx88_card_t *chip = snd_kcontrol_chip(kcontrol); struct cx88_core *core=chip->core; int left, right, v, b; int changed = 0; u32 old; if (core->sd_wm8775) snd_cx88_wm8775_volume_put(kcontrol, value); left = value->value.integer.value[0] & 0x3f; right = value->value.integer.value[1] & 0x3f; b = right - left; if (b < 0) { v = 0x3f - left; b = (-b) | 0x40; } else { v = 0x3f - right; } /* Do we really know this will always be called with IRQs on? */ spin_lock_irq(&chip->reg_lock); old = cx_read(AUD_VOL_CTL); if (v != (old & 0x3f)) { cx_swrite(SHADOW_AUD_VOL_CTL, AUD_VOL_CTL, (old & ~0x3f) | v); changed = 1; } if ((cx_read(AUD_BAL_CTL) & 0x7f) != b) { cx_write(AUD_BAL_CTL, b); changed = 1; } spin_unlock_irq(&chip->reg_lock); return changed; } static const DECLARE_TLV_DB_SCALE(snd_cx88_db_scale, -6300, 100, 0); static const struct snd_kcontrol_new snd_cx88_volume = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, .name = "Analog-TV Volume", .info = snd_cx88_volume_info, .get = snd_cx88_volume_get, .put = snd_cx88_volume_put, .tlv.p = snd_cx88_db_scale, }; static int snd_cx88_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { snd_cx88_card_t *chip = snd_kcontrol_chip(kcontrol); struct cx88_core *core = chip->core; u32 bit = kcontrol->private_value; value->value.integer.value[0] = !(cx_read(AUD_VOL_CTL) & bit); return 0; } static int snd_cx88_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { snd_cx88_card_t *chip = snd_kcontrol_chip(kcontrol); struct cx88_core *core = chip->core; u32 bit = kcontrol->private_value; int ret = 0; u32 vol; spin_lock_irq(&chip->reg_lock); vol = cx_read(AUD_VOL_CTL); if (value->value.integer.value[0] != !(vol & bit)) { vol ^= bit; cx_swrite(SHADOW_AUD_VOL_CTL, AUD_VOL_CTL, vol); /* Pass mute onto any WM8775 */ if (core->sd_wm8775 && ((1<<6) == bit)) wm8775_s_ctrl(core, V4L2_CID_AUDIO_MUTE, 0 != (vol & bit)); ret = 1; } spin_unlock_irq(&chip->reg_lock); return ret; } static const struct snd_kcontrol_new snd_cx88_dac_switch = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Audio-Out Switch", .info = snd_ctl_boolean_mono_info, .get = snd_cx88_switch_get, .put = snd_cx88_switch_put, .private_value = (1<<8), }; static const struct snd_kcontrol_new snd_cx88_source_switch = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Analog-TV Switch", .info = snd_ctl_boolean_mono_info, .get = snd_cx88_switch_get, .put = snd_cx88_switch_put, .private_value = (1<<6), }; static int snd_cx88_alc_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { snd_cx88_card_t *chip = snd_kcontrol_chip(kcontrol); struct cx88_core *core = chip->core; s32 val; val = wm8775_g_ctrl(core, V4L2_CID_AUDIO_LOUDNESS); value->value.integer.value[0] = val ? 1 : 0; return 0; } static int snd_cx88_alc_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { snd_cx88_card_t *chip = snd_kcontrol_chip(kcontrol); struct cx88_core *core = chip->core; struct v4l2_control client_ctl; memset(&client_ctl, 0, sizeof(client_ctl)); client_ctl.value = 0 != value->value.integer.value[0]; client_ctl.id = V4L2_CID_AUDIO_LOUDNESS; call_hw(core, WM8775_GID, core, s_ctrl, &client_ctl); return 0; } static struct snd_kcontrol_new snd_cx88_alc_switch = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Line-In ALC Switch", .info = snd_ctl_boolean_mono_info, .get = snd_cx88_alc_get, .put = snd_cx88_alc_put, }; /**************************************************************************** Basic Flow for Sound Devices ****************************************************************************/ /* * PCI ID Table - 14f1:8801 and 14f1:8811 means function 1: Audio * Only boards with eeprom and byte 1 at eeprom=1 have it */ static const struct pci_device_id cx88_audio_pci_tbl[] = { {0x14f1,0x8801,PCI_ANY_ID,PCI_ANY_ID,0,0,0}, {0x14f1,0x8811,PCI_ANY_ID,PCI_ANY_ID,0,0,0}, {0, } }; MODULE_DEVICE_TABLE(pci, cx88_audio_pci_tbl); /* * Chip-specific destructor */ static int snd_cx88_free(snd_cx88_card_t *chip) { if (chip->irq >= 0) free_irq(chip->irq, chip); cx88_core_put(chip->core,chip->pci); pci_disable_device(chip->pci); return 0; } /* * Component Destructor */ static void snd_cx88_dev_free(struct snd_card * card) { snd_cx88_card_t *chip = card->private_data; snd_cx88_free(chip); } /* * Alsa Constructor - Component probe */ static int devno; static int snd_cx88_create(struct snd_card *card, struct pci_dev *pci, snd_cx88_card_t **rchip, struct cx88_core **core_ptr) { snd_cx88_card_t *chip; struct cx88_core *core; int err; unsigned char pci_lat; *rchip = NULL; err = pci_enable_device(pci); if (err < 0) return err; pci_set_master(pci); chip = card->private_data; core = cx88_core_get(pci); if (NULL == core) { err = -EINVAL; return err; } if (!pci_set_dma_mask(pci,DMA_BIT_MASK(32))) { dprintk(0, "%s/1: Oops: no 32bit PCI DMA ???\n",core->name); err = -EIO; cx88_core_put(core, pci); return err; } /* pci init */ chip->card = card; chip->pci = pci; chip->irq = -1; spin_lock_init(&chip->reg_lock); chip->core = core; /* get irq */ err = request_irq(chip->pci->irq, cx8801_irq, IRQF_SHARED, chip->core->name, chip); if (err < 0) { dprintk(0, "%s: can't get IRQ %d\n", chip->core->name, chip->pci->irq); return err; } /* print pci info */ pci_read_config_byte(pci, PCI_LATENCY_TIMER, &pci_lat); dprintk(1,"ALSA %s/%i: found at %s, rev: %d, irq: %d, " "latency: %d, mmio: 0x%llx\n", core->name, devno, pci_name(pci), pci->revision, pci->irq, pci_lat, (unsigned long long)pci_resource_start(pci,0)); chip->irq = pci->irq; synchronize_irq(chip->irq); *rchip = chip; *core_ptr = core; return 0; } static int cx88_audio_initdev(struct pci_dev *pci, const struct pci_device_id *pci_id) { struct snd_card *card; snd_cx88_card_t *chip; struct cx88_core *core = NULL; int err; if (devno >= SNDRV_CARDS) return (-ENODEV); if (!enable[devno]) { ++devno; return (-ENOENT); } err = snd_card_new(&pci->dev, index[devno], id[devno], THIS_MODULE, sizeof(snd_cx88_card_t), &card); if (err < 0) return err; card->private_free = snd_cx88_dev_free; err = snd_cx88_create(card, pci, &chip, &core); if (err < 0) goto error; err = snd_cx88_pcm(chip, 0, "CX88 Digital"); if (err < 0) goto error; err = snd_ctl_add(card, snd_ctl_new1(&snd_cx88_volume, chip)); if (err < 0) goto error; err = snd_ctl_add(card, snd_ctl_new1(&snd_cx88_dac_switch, chip)); if (err < 0) goto error; err = snd_ctl_add(card, snd_ctl_new1(&snd_cx88_source_switch, chip)); if (err < 0) goto error; /* If there's a wm8775 then add a Line-In ALC switch */ if (core->sd_wm8775) snd_ctl_add(card, snd_ctl_new1(&snd_cx88_alc_switch, chip)); strcpy (card->driver, "CX88x"); sprintf(card->shortname, "Conexant CX%x", pci->device); sprintf(card->longname, "%s at %#llx", card->shortname,(unsigned long long)pci_resource_start(pci, 0)); strcpy (card->mixername, "CX88"); dprintk (0, "%s/%i: ALSA support for cx2388x boards\n", card->driver,devno); err = snd_card_register(card); if (err < 0) goto error; pci_set_drvdata(pci,card); devno++; return 0; error: snd_card_free(card); return err; } /* * ALSA destructor */ static void cx88_audio_finidev(struct pci_dev *pci) { struct snd_card *card = pci_get_drvdata(pci); snd_card_free(card); devno--; } /* * PCI driver definition */ static struct pci_driver cx88_audio_pci_driver = { .name = "cx88_audio", .id_table = cx88_audio_pci_tbl, .probe = cx88_audio_initdev, .remove = cx88_audio_finidev, }; module_pci_driver(cx88_audio_pci_driver);