/* * twl6030-irq.c - TWL6030 irq support * * Copyright (C) 2005-2009 Texas Instruments, Inc. * * Modifications to defer interrupt handling to a kernel thread: * Copyright (C) 2006 MontaVista Software, Inc. * * Based on tlv320aic23.c: * Copyright (c) by Kai Svahn <kai.svahn@nokia.com> * * Code cleanup and modifications to IRQ handler. * by syed khasim <x0khasim@ti.com> * * TWL6030 specific code and IRQ handling changes by * Jagadeesh Bhaskar Pakaravoor <j-pakaravoor@ti.com> * Balaji T K <balajitk@ti.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/init.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/kthread.h> #include <linux/i2c/twl.h> #include <linux/platform_device.h> #include "twl-core.h" /* * TWL6030 (unlike its predecessors, which had two level interrupt handling) * three interrupt registers INT_STS_A, INT_STS_B and INT_STS_C. * It exposes status bits saying who has raised an interrupt. There are * three mask registers that corresponds to these status registers, that * enables/disables these interrupts. * * We set up IRQs starting at a platform-specified base. An interrupt map table, * specifies mapping between interrupt number and the associated module. * */ static int twl6030_interrupt_mapping[24] = { PWR_INTR_OFFSET, /* Bit 0 PWRON */ PWR_INTR_OFFSET, /* Bit 1 RPWRON */ PWR_INTR_OFFSET, /* Bit 2 BAT_VLOW */ RTC_INTR_OFFSET, /* Bit 3 RTC_ALARM */ RTC_INTR_OFFSET, /* Bit 4 RTC_PERIOD */ HOTDIE_INTR_OFFSET, /* Bit 5 HOT_DIE */ SMPSLDO_INTR_OFFSET, /* Bit 6 VXXX_SHORT */ SMPSLDO_INTR_OFFSET, /* Bit 7 VMMC_SHORT */ SMPSLDO_INTR_OFFSET, /* Bit 8 VUSIM_SHORT */ BATDETECT_INTR_OFFSET, /* Bit 9 BAT */ SIMDETECT_INTR_OFFSET, /* Bit 10 SIM */ MMCDETECT_INTR_OFFSET, /* Bit 11 MMC */ RSV_INTR_OFFSET, /* Bit 12 Reserved */ MADC_INTR_OFFSET, /* Bit 13 GPADC_RT_EOC */ MADC_INTR_OFFSET, /* Bit 14 GPADC_SW_EOC */ GASGAUGE_INTR_OFFSET, /* Bit 15 CC_AUTOCAL */ USBOTG_INTR_OFFSET, /* Bit 16 ID_WKUP */ USBOTG_INTR_OFFSET, /* Bit 17 VBUS_WKUP */ USBOTG_INTR_OFFSET, /* Bit 18 ID */ USB_PRES_INTR_OFFSET, /* Bit 19 VBUS */ CHARGER_INTR_OFFSET, /* Bit 20 CHRG_CTRL */ CHARGERFAULT_INTR_OFFSET, /* Bit 21 EXT_CHRG */ CHARGERFAULT_INTR_OFFSET, /* Bit 22 INT_CHRG */ RSV_INTR_OFFSET, /* Bit 23 Reserved */ }; /*----------------------------------------------------------------------*/ static unsigned twl6030_irq_base; static struct completion irq_event; /* * This thread processes interrupts reported by the Primary Interrupt Handler. */ static int twl6030_irq_thread(void *data) { long irq = (long)data; static unsigned i2c_errors; static const unsigned max_i2c_errors = 100; int ret; current->flags |= PF_NOFREEZE; while (!kthread_should_stop()) { int i; union { u8 bytes[4]; u32 int_sts; } sts; /* Wait for IRQ, then read PIH irq status (also blocking) */ wait_for_completion_interruptible(&irq_event); /* read INT_STS_A, B and C in one shot using a burst read */ ret = twl_i2c_read(TWL_MODULE_PIH, sts.bytes, REG_INT_STS_A, 3); if (ret) { pr_warning("twl6030: I2C error %d reading PIH ISR\n", ret); if (++i2c_errors >= max_i2c_errors) { printk(KERN_ERR "Maximum I2C error count" " exceeded. Terminating %s.\n", __func__); break; } complete(&irq_event); continue; } sts.bytes[3] = 0; /* Only 24 bits are valid*/ /* * Since VBUS status bit is not reliable for VBUS disconnect * use CHARGER VBUS detection status bit instead. */ if (sts.bytes[2] & 0x10) sts.bytes[2] |= 0x08; for (i = 0; sts.int_sts; sts.int_sts >>= 1, i++) { local_irq_disable(); if (sts.int_sts & 0x1) { int module_irq = twl6030_irq_base + twl6030_interrupt_mapping[i]; generic_handle_irq(module_irq); } local_irq_enable(); } ret = twl_i2c_write(TWL_MODULE_PIH, sts.bytes, REG_INT_STS_A, 3); /* clear INT_STS_A */ if (ret) pr_warning("twl6030: I2C error in clearing PIH ISR\n"); enable_irq(irq); } return 0; } /* * handle_twl6030_int() is the desc->handle method for the twl6030 interrupt. * This is a chained interrupt, so there is no desc->action method for it. * Now we need to query the interrupt controller in the twl6030 to determine * which module is generating the interrupt request. However, we can't do i2c * transactions in interrupt context, so we must defer that work to a kernel * thread. All we do here is acknowledge and mask the interrupt and wakeup * the kernel thread. */ static irqreturn_t handle_twl6030_pih(int irq, void *devid) { disable_irq_nosync(irq); complete(devid); return IRQ_HANDLED; } /*----------------------------------------------------------------------*/ static inline void activate_irq(int irq) { #ifdef CONFIG_ARM /* ARM requires an extra step to clear IRQ_NOREQUEST, which it * sets on behalf of every irq_chip. Also sets IRQ_NOPROBE. */ set_irq_flags(irq, IRQF_VALID); #else /* same effect on other architectures */ irq_set_noprobe(irq); #endif } /*----------------------------------------------------------------------*/ static unsigned twl6030_irq_next; /*----------------------------------------------------------------------*/ int twl6030_interrupt_unmask(u8 bit_mask, u8 offset) { int ret; u8 unmask_value; ret = twl_i2c_read_u8(TWL_MODULE_PIH, &unmask_value, REG_INT_STS_A + offset); unmask_value &= (~(bit_mask)); ret |= twl_i2c_write_u8(TWL_MODULE_PIH, unmask_value, REG_INT_STS_A + offset); /* unmask INT_MSK_A/B/C */ return ret; } EXPORT_SYMBOL(twl6030_interrupt_unmask); int twl6030_interrupt_mask(u8 bit_mask, u8 offset) { int ret; u8 mask_value; ret = twl_i2c_read_u8(TWL_MODULE_PIH, &mask_value, REG_INT_STS_A + offset); mask_value |= (bit_mask); ret |= twl_i2c_write_u8(TWL_MODULE_PIH, mask_value, REG_INT_STS_A + offset); /* mask INT_MSK_A/B/C */ return ret; } EXPORT_SYMBOL(twl6030_interrupt_mask); int twl6030_mmc_card_detect_config(void) { int ret; u8 reg_val = 0; /* Unmasking the Card detect Interrupt line for MMC1 from Phoenix */ twl6030_interrupt_unmask(TWL6030_MMCDETECT_INT_MASK, REG_INT_MSK_LINE_B); twl6030_interrupt_unmask(TWL6030_MMCDETECT_INT_MASK, REG_INT_MSK_STS_B); /* * Initially Configuring MMC_CTRL for receiving interrupts & * Card status on TWL6030 for MMC1 */ ret = twl_i2c_read_u8(TWL6030_MODULE_ID0, ®_val, TWL6030_MMCCTRL); if (ret < 0) { pr_err("twl6030: Failed to read MMCCTRL, error %d\n", ret); return ret; } reg_val &= ~VMMC_AUTO_OFF; reg_val |= SW_FC; ret = twl_i2c_write_u8(TWL6030_MODULE_ID0, reg_val, TWL6030_MMCCTRL); if (ret < 0) { pr_err("twl6030: Failed to write MMCCTRL, error %d\n", ret); return ret; } /* Configuring PullUp-PullDown register */ ret = twl_i2c_read_u8(TWL6030_MODULE_ID0, ®_val, TWL6030_CFG_INPUT_PUPD3); if (ret < 0) { pr_err("twl6030: Failed to read CFG_INPUT_PUPD3, error %d\n", ret); return ret; } reg_val &= ~(MMC_PU | MMC_PD); ret = twl_i2c_write_u8(TWL6030_MODULE_ID0, reg_val, TWL6030_CFG_INPUT_PUPD3); if (ret < 0) { pr_err("twl6030: Failed to write CFG_INPUT_PUPD3, error %d\n", ret); return ret; } return 0; } EXPORT_SYMBOL(twl6030_mmc_card_detect_config); int twl6030_mmc_card_detect(struct device *dev, int slot) { int ret = -EIO; u8 read_reg = 0; struct platform_device *pdev = to_platform_device(dev); if (pdev->id) { /* TWL6030 provide's Card detect support for * only MMC1 controller. */ pr_err("Unknown MMC controller %d in %s\n", pdev->id, __func__); return ret; } /* * BIT0 of MMC_CTRL on TWL6030 provides card status for MMC1 * 0 - Card not present ,1 - Card present */ ret = twl_i2c_read_u8(TWL6030_MODULE_ID0, &read_reg, TWL6030_MMCCTRL); if (ret >= 0) ret = read_reg & STS_MMC; return ret; } EXPORT_SYMBOL(twl6030_mmc_card_detect); int twl6030_init_irq(int irq_num, unsigned irq_base, unsigned irq_end) { int status = 0; int i; struct task_struct *task; int ret; u8 mask[4]; static struct irq_chip twl6030_irq_chip; mask[1] = 0xFF; mask[2] = 0xFF; mask[3] = 0xFF; ret = twl_i2c_write(TWL_MODULE_PIH, &mask[0], REG_INT_MSK_LINE_A, 3); /* MASK ALL INT LINES */ ret = twl_i2c_write(TWL_MODULE_PIH, &mask[0], REG_INT_MSK_STS_A, 3); /* MASK ALL INT STS */ ret = twl_i2c_write(TWL_MODULE_PIH, &mask[0], REG_INT_STS_A, 3); /* clear INT_STS_A,B,C */ twl6030_irq_base = irq_base; /* install an irq handler for each of the modules; * clone dummy irq_chip since PIH can't *do* anything */ twl6030_irq_chip = dummy_irq_chip; twl6030_irq_chip.name = "twl6030"; twl6030_irq_chip.irq_set_type = NULL; for (i = irq_base; i < irq_end; i++) { irq_set_chip_and_handler(i, &twl6030_irq_chip, handle_simple_irq); activate_irq(i); } twl6030_irq_next = i; pr_info("twl6030: %s (irq %d) chaining IRQs %d..%d\n", "PIH", irq_num, irq_base, twl6030_irq_next - 1); /* install an irq handler to demultiplex the TWL6030 interrupt */ init_completion(&irq_event); task = kthread_run(twl6030_irq_thread, (void *)irq_num, "twl6030-irq"); if (IS_ERR(task)) { pr_err("twl6030: could not create irq %d thread!\n", irq_num); status = PTR_ERR(task); goto fail_kthread; } status = request_irq(irq_num, handle_twl6030_pih, IRQF_DISABLED, "TWL6030-PIH", &irq_event); if (status < 0) { pr_err("twl6030: could not claim irq%d: %d\n", irq_num, status); goto fail_irq; } return status; fail_irq: free_irq(irq_num, &irq_event); fail_kthread: for (i = irq_base; i < irq_end; i++) irq_set_chip_and_handler(i, NULL, NULL); return status; } int twl6030_exit_irq(void) { if (twl6030_irq_base) { pr_err("twl6030: can't yet clean up IRQs?\n"); return -ENOSYS; } return 0; }