/* * drivers/mtd/nand.c * * Overview: * This is the generic MTD driver for NAND flash devices. It should be * capable of working with almost all NAND chips currently available. * Basic support for AG-AND chips is provided. * * Additional technical information is available on * http://www.linux-mtd.infradead.org/tech/nand.html * * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) * 2002-2006 Thomas Gleixner (tglx@linutronix.de) * * Credits: * David Woodhouse for adding multichip support * * Aleph One Ltd. and Toby Churchill Ltd. for supporting the * rework for 2K page size chips * * TODO: * Enable cached programming for 2k page size chips * Check, if mtd->ecctype should be set to MTD_ECC_HW * if we have HW ecc support. * The AG-AND chips have nice features for speed improvement, * which are not supported yet. Read / program 4 pages in one go. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_MTD_PARTITIONS #include #endif /* Define default oob placement schemes for large and small page devices */ static struct nand_oobinfo nand_oob_8 = { .useecc = MTD_NANDECC_AUTOPLACE, .eccbytes = 3, .eccpos = {0, 1, 2}, .oobfree = {{3, 2}, {6, 2}} }; static struct nand_oobinfo nand_oob_16 = { .useecc = MTD_NANDECC_AUTOPLACE, .eccbytes = 6, .eccpos = {0, 1, 2, 3, 6, 7}, .oobfree = {{8, 8}} }; static struct nand_oobinfo nand_oob_64 = { .useecc = MTD_NANDECC_AUTOPLACE, .eccbytes = 24, .eccpos = { 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}, .oobfree = {{2, 38}} }; /* This is used for padding purposes in nand_write_oob */ static uint8_t ffchars[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, }; static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf); static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state); /* * For devices which display every fart in the system on a seperate LED. Is * compiled away when LED support is disabled. */ DEFINE_LED_TRIGGER(nand_led_trigger); /** * nand_release_device - [GENERIC] release chip * @mtd: MTD device structure * * Deselect, release chip lock and wake up anyone waiting on the device */ static void nand_release_device(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; /* De-select the NAND device */ chip->select_chip(mtd, -1); /* Release the controller and the chip */ spin_lock(&chip->controller->lock); chip->controller->active = NULL; chip->state = FL_READY; wake_up(&chip->controller->wq); spin_unlock(&chip->controller->lock); } /** * nand_read_byte - [DEFAULT] read one byte from the chip * @mtd: MTD device structure * * Default read function for 8bit buswith */ static uint8_t nand_read_byte(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; return readb(chip->IO_ADDR_R); } /** * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip * @mtd: MTD device structure * * Default read function for 16bit buswith with * endianess conversion */ static uint8_t nand_read_byte16(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R)); } /** * nand_read_word - [DEFAULT] read one word from the chip * @mtd: MTD device structure * * Default read function for 16bit buswith without * endianess conversion */ static u16 nand_read_word(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; return readw(chip->IO_ADDR_R); } /** * nand_select_chip - [DEFAULT] control CE line * @mtd: MTD device structure * @chip: chipnumber to select, -1 for deselect * * Default select function for 1 chip devices. */ static void nand_select_chip(struct mtd_info *mtd, int chipnr) { struct nand_chip *chip = mtd->priv; switch (chipnr) { case -1: chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); break; case 0: chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); break; default: BUG(); } } /** * nand_write_buf - [DEFAULT] write buffer to chip * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write * * Default write function for 8bit buswith */ static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd->priv; for (i = 0; i < len; i++) writeb(buf[i], chip->IO_ADDR_W); } /** * nand_read_buf - [DEFAULT] read chip data into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read * * Default read function for 8bit buswith */ static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd->priv; for (i = 0; i < len; i++) buf[i] = readb(chip->IO_ADDR_R); } /** * nand_verify_buf - [DEFAULT] Verify chip data against buffer * @mtd: MTD device structure * @buf: buffer containing the data to compare * @len: number of bytes to compare * * Default verify function for 8bit buswith */ static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd->priv; for (i = 0; i < len; i++) if (buf[i] != readb(chip->IO_ADDR_R)) return -EFAULT; return 0; } /** * nand_write_buf16 - [DEFAULT] write buffer to chip * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write * * Default write function for 16bit buswith */ static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd->priv; u16 *p = (u16 *) buf; len >>= 1; for (i = 0; i < len; i++) writew(p[i], chip->IO_ADDR_W); } /** * nand_read_buf16 - [DEFAULT] read chip data into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read * * Default read function for 16bit buswith */ static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd->priv; u16 *p = (u16 *) buf; len >>= 1; for (i = 0; i < len; i++) p[i] = readw(chip->IO_ADDR_R); } /** * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer * @mtd: MTD device structure * @buf: buffer containing the data to compare * @len: number of bytes to compare * * Default verify function for 16bit buswith */ static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd->priv; u16 *p = (u16 *) buf; len >>= 1; for (i = 0; i < len; i++) if (p[i] != readw(chip->IO_ADDR_R)) return -EFAULT; return 0; } /** * nand_block_bad - [DEFAULT] Read bad block marker from the chip * @mtd: MTD device structure * @ofs: offset from device start * @getchip: 0, if the chip is already selected * * Check, if the block is bad. */ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) { int page, chipnr, res = 0; struct nand_chip *chip = mtd->priv; u16 bad; if (getchip) { page = (int)(ofs >> chip->page_shift); chipnr = (int)(ofs >> chip->chip_shift); nand_get_device(chip, mtd, FL_READING); /* Select the NAND device */ chip->select_chip(mtd, chipnr); } else page = (int)ofs; if (chip->options & NAND_BUSWIDTH_16) { chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE, page & chip->pagemask); bad = cpu_to_le16(chip->read_word(mtd)); if (chip->badblockpos & 0x1) bad >>= 8; if ((bad & 0xFF) != 0xff) res = 1; } else { chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page & chip->pagemask); if (chip->read_byte(mtd) != 0xff) res = 1; } if (getchip) nand_release_device(mtd); return res; } /** * nand_default_block_markbad - [DEFAULT] mark a block bad * @mtd: MTD device structure * @ofs: offset from device start * * This is the default implementation, which can be overridden by * a hardware specific driver. */ static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct nand_chip *chip = mtd->priv; uint8_t buf[2] = { 0, 0 }; size_t retlen; int block; /* Get block number */ block = ((int)ofs) >> chip->bbt_erase_shift; if (chip->bbt) chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); /* Do we have a flash based bad block table ? */ if (chip->options & NAND_USE_FLASH_BBT) return nand_update_bbt(mtd, ofs); /* We write two bytes, so we dont have to mess with 16 bit access */ ofs += mtd->oobsize + (chip->badblockpos & ~0x01); return nand_write_oob(mtd, ofs, 2, &retlen, buf); } /** * nand_check_wp - [GENERIC] check if the chip is write protected * @mtd: MTD device structure * Check, if the device is write protected * * The function expects, that the device is already selected */ static int nand_check_wp(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; /* Check the WP bit */ chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1; } /** * nand_block_checkbad - [GENERIC] Check if a block is marked bad * @mtd: MTD device structure * @ofs: offset from device start * @getchip: 0, if the chip is already selected * @allowbbt: 1, if its allowed to access the bbt area * * Check, if the block is bad. Either by reading the bad block table or * calling of the scan function. */ static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt) { struct nand_chip *chip = mtd->priv; if (!chip->bbt) return chip->block_bad(mtd, ofs, getchip); /* Return info from the table */ return nand_isbad_bbt(mtd, ofs, allowbbt); } /* * Wait for the ready pin, after a command * The timeout is catched later. */ static void nand_wait_ready(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; unsigned long timeo = jiffies + 2; led_trigger_event(nand_led_trigger, LED_FULL); /* wait until command is processed or timeout occures */ do { if (chip->dev_ready(mtd)) break; touch_softlockup_watchdog(); } while (time_before(jiffies, timeo)); led_trigger_event(nand_led_trigger, LED_OFF); } /** * nand_command - [DEFAULT] Send command to NAND device * @mtd: MTD device structure * @command: the command to be sent * @column: the column address for this command, -1 if none * @page_addr: the page address for this command, -1 if none * * Send command to NAND device. This function is used for small page * devices (256/512 Bytes per page) */ static void nand_command(struct mtd_info *mtd, unsigned int command, int column, int page_addr) { register struct nand_chip *chip = mtd->priv; int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; /* * Write out the command to the device. */ if (command == NAND_CMD_SEQIN) { int readcmd; if (column >= mtd->writesize) { /* OOB area */ column -= mtd->writesize; readcmd = NAND_CMD_READOOB; } else if (column < 256) { /* First 256 bytes --> READ0 */ readcmd = NAND_CMD_READ0; } else { column -= 256; readcmd = NAND_CMD_READ1; } chip->cmd_ctrl(mtd, readcmd, ctrl); ctrl &= ~NAND_CTRL_CHANGE; } chip->cmd_ctrl(mtd, command, ctrl); /* * Address cycle, when necessary */ ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ if (chip->options & NAND_BUSWIDTH_16) column >>= 1; chip->cmd_ctrl(mtd, column, ctrl); ctrl &= ~NAND_CTRL_CHANGE; } if (page_addr != -1) { chip->cmd_ctrl(mtd, page_addr, ctrl); ctrl &= ~NAND_CTRL_CHANGE; chip->cmd_ctrl(mtd, page_addr >> 8, ctrl); /* One more address cycle for devices > 32MiB */ if (chip->chipsize > (32 << 20)) chip->cmd_ctrl(mtd, page_addr >> 16, ctrl); } chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); /* * program and erase have their own busy handlers * status and sequential in needs no delay */ switch (command) { case NAND_CMD_PAGEPROG: case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: case NAND_CMD_SEQIN: case NAND_CMD_STATUS: chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE); return; case NAND_CMD_RESET: if (chip->dev_ready) break; udelay(chip->chip_delay); chip->cmd_ctrl(mtd, NAND_CMD_STATUS, NAND_CTRL_CLE | NAND_CTRL_CHANGE); chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ; return; /* This applies to read commands */ default: /* * If we don't have access to the busy pin, we apply the given * command delay */ if (!chip->dev_ready) { udelay(chip->chip_delay); return; } } /* Apply this short delay always to ensure that we do wait tWB in * any case on any machine. */ ndelay(100); nand_wait_ready(mtd); } /** * nand_command_lp - [DEFAULT] Send command to NAND large page device * @mtd: MTD device structure * @command: the command to be sent * @column: the column address for this command, -1 if none * @page_addr: the page address for this command, -1 if none * * Send command to NAND device. This is the version for the new large page * devices We dont have the separate regions as we have in the small page * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. * */ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, int column, int page_addr) { register struct nand_chip *chip = mtd->priv; /* Emulate NAND_CMD_READOOB */ if (command == NAND_CMD_READOOB) { column += mtd->writesize; command = NAND_CMD_READ0; } /* Command latch cycle */ chip->cmd_ctrl(mtd, command & 0xff, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); if (column != -1 || page_addr != -1) { int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ if (chip->options & NAND_BUSWIDTH_16) column >>= 1; chip->cmd_ctrl(mtd, column, ctrl); ctrl &= ~NAND_CTRL_CHANGE; chip->cmd_ctrl(mtd, column >> 8, ctrl); } if (page_addr != -1) { chip->cmd_ctrl(mtd, page_addr, ctrl); chip->cmd_ctrl(mtd, page_addr >> 8, NAND_NCE | NAND_ALE); /* One more address cycle for devices > 128MiB */ if (chip->chipsize > (128 << 20)) chip->cmd_ctrl(mtd, page_addr >> 16, NAND_NCE | NAND_ALE); } } chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); /* * program and erase have their own busy handlers * status, sequential in, and deplete1 need no delay */ switch (command) { case NAND_CMD_CACHEDPROG: case NAND_CMD_PAGEPROG: case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: case NAND_CMD_SEQIN: case NAND_CMD_STATUS: case NAND_CMD_DEPLETE1: return; /* * read error status commands require only a short delay */ case NAND_CMD_STATUS_ERROR: case NAND_CMD_STATUS_ERROR0: case NAND_CMD_STATUS_ERROR1: case NAND_CMD_STATUS_ERROR2: case NAND_CMD_STATUS_ERROR3: udelay(chip->chip_delay); return; case NAND_CMD_RESET: if (chip->dev_ready) break; udelay(chip->chip_delay); chip->cmd_ctrl(mtd, NAND_CMD_STATUS, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ; return; case NAND_CMD_READ0: chip->cmd_ctrl(mtd, NAND_CMD_READSTART, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); /* This applies to read commands */ default: /* * If we don't have access to the busy pin, we apply the given * command delay */ if (!chip->dev_ready) { udelay(chip->chip_delay); return; } } /* Apply this short delay always to ensure that we do wait tWB in * any case on any machine. */ ndelay(100); nand_wait_ready(mtd); } /** * nand_get_device - [GENERIC] Get chip for selected access * @this: the nand chip descriptor * @mtd: MTD device structure * @new_state: the state which is requested * * Get the device and lock it for exclusive access */ static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state) { spinlock_t *lock = &chip->controller->lock; wait_queue_head_t *wq = &chip->controller->wq; DECLARE_WAITQUEUE(wait, current); retry: spin_lock(lock); /* Hardware controller shared among independend devices */ /* Hardware controller shared among independend devices */ if (!chip->controller->active) chip->controller->active = chip; if (chip->controller->active == chip && chip->state == FL_READY) { chip->state = new_state; spin_unlock(lock); return 0; } if (new_state == FL_PM_SUSPENDED) { spin_unlock(lock); return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN; } set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(wq, &wait); spin_unlock(lock); schedule(); remove_wait_queue(wq, &wait); goto retry; } /** * nand_wait - [DEFAULT] wait until the command is done * @mtd: MTD device structure * @this: NAND chip structure * @state: state to select the max. timeout value * * Wait for command done. This applies to erase and program only * Erase can take up to 400ms and program up to 20ms according to * general NAND and SmartMedia specs * */ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip, int state) { unsigned long timeo = jiffies; int status; if (state == FL_ERASING) timeo += (HZ * 400) / 1000; else timeo += (HZ * 20) / 1000; led_trigger_event(nand_led_trigger, LED_FULL); /* Apply this short delay always to ensure that we do wait tWB in * any case on any machine. */ ndelay(100); if ((state == FL_ERASING) && (chip->options & NAND_IS_AND)) chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1); else chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); while (time_before(jiffies, timeo)) { /* Check, if we were interrupted */ if (chip->state != state) return 0; if (chip->dev_ready) { if (chip->dev_ready(mtd)) break; } else { if (chip->read_byte(mtd) & NAND_STATUS_READY) break; } cond_resched(); } led_trigger_event(nand_led_trigger, LED_OFF); status = (int)chip->read_byte(mtd); return status; } /** * nand_read_page_swecc - {REPLACABLE] software ecc based page read function * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data */ static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *ecc_calc = chip->buffers.ecccalc; uint8_t *ecc_code = chip->buffers.ecccode; int *eccpos = chip->autooob->eccpos; chip->read_buf(mtd, buf, mtd->writesize); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); if (chip->ecc.mode == NAND_ECC_NONE) return 0; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) chip->ecc.calculate(mtd, p, &ecc_calc[i]); for (i = 0; i < chip->ecc.total; i++) ecc_code[i] = chip->oob_poi[eccpos[i]]; eccsteps = chip->ecc.steps; p = buf; for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { int stat; stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); if (stat == -1) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; } return 0; } /** * nand_read_page_hwecc - {REPLACABLE] hardware ecc based page read function * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * * Not for syndrome calculating ecc controllers which need a special oob layout */ static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *ecc_calc = chip->buffers.ecccalc; uint8_t *ecc_code = chip->buffers.ecccode; int *eccpos = chip->autooob->eccpos; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { chip->ecc.hwctl(mtd, NAND_ECC_READ); chip->read_buf(mtd, p, eccsize); chip->ecc.calculate(mtd, p, &ecc_calc[i]); } chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); for (i = 0; i < chip->ecc.total; i++) ecc_code[i] = chip->oob_poi[eccpos[i]]; eccsteps = chip->ecc.steps; p = buf; for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { int stat; stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); if (stat == -1) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; } return 0; } /** * nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * * The hw generator calculates the error syndrome automatically. Therefor * we need a special oob layout and handling. */ static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *oob = chip->oob_poi; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { int stat; chip->ecc.hwctl(mtd, NAND_ECC_READ); chip->read_buf(mtd, p, eccsize); if (chip->ecc.prepad) { chip->read_buf(mtd, oob, chip->ecc.prepad); oob += chip->ecc.prepad; } chip->ecc.hwctl(mtd, NAND_ECC_READSYN); chip->read_buf(mtd, oob, eccbytes); stat = chip->ecc.correct(mtd, p, oob, NULL); if (stat == -1) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; oob += eccbytes; if (chip->ecc.postpad) { chip->read_buf(mtd, oob, chip->ecc.postpad); oob += chip->ecc.postpad; } } /* Calculate remaining oob bytes */ i = oob - chip->oob_poi; if (i) chip->read_buf(mtd, oob, i); return 0; } /** * nand_do_read - [Internal] Read data with ECC * * @mtd: MTD device structure * @from: offset to read from * @len: number of bytes to read * @retlen: pointer to variable to store the number of read bytes * @buf: the databuffer to put data * * Internal function. Called with chip held. */ int nand_do_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, uint8_t *buf) { int chipnr, page, realpage, col, bytes, aligned; struct nand_chip *chip = mtd->priv; struct mtd_ecc_stats stats; int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1; int sndcmd = 1; int ret = 0; uint32_t readlen = len; uint8_t *bufpoi; stats = mtd->ecc_stats; chipnr = (int)(from >> chip->chip_shift); chip->select_chip(mtd, chipnr); realpage = (int)(from >> chip->page_shift); page = realpage & chip->pagemask; col = (int)(from & (mtd->writesize - 1)); chip->oob_poi = chip->buffers.oobrbuf; while(1) { bytes = min(mtd->writesize - col, readlen); aligned = (bytes == mtd->writesize); /* Is the current page in the buffer ? */ if (realpage != chip->pagebuf) { bufpoi = aligned ? buf : chip->buffers.databuf; if (likely(sndcmd)) { chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); sndcmd = 0; } /* Now read the page into the buffer */ ret = chip->ecc.read_page(mtd, chip, bufpoi); if (ret < 0) break; /* Transfer not aligned data */ if (!aligned) { chip->pagebuf = realpage; memcpy(buf, chip->buffers.databuf + col, bytes); } if (!(chip->options & NAND_NO_READRDY)) { /* * Apply delay or wait for ready/busy pin. Do * this before the AUTOINCR check, so no * problems arise if a chip which does auto * increment is marked as NOAUTOINCR by the * board driver. */ if (!chip->dev_ready) udelay(chip->chip_delay); else nand_wait_ready(mtd); } } else memcpy(buf, chip->buffers.databuf + col, bytes); buf += bytes; readlen -= bytes; if (!readlen) break; /* For subsequent reads align to page boundary. */ col = 0; /* Increment page address */ realpage++; page = realpage & chip->pagemask; /* Check, if we cross a chip boundary */ if (!page) { chipnr++; chip->select_chip(mtd, -1); chip->select_chip(mtd, chipnr); } /* Check, if the chip supports auto page increment * or if we have hit a block boundary. */ if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck)) sndcmd = 1; } *retlen = len - (size_t) readlen; if (ret) return ret; return mtd->ecc_stats.failed - stats.failed ? -EBADMSG : 0; } /** * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc * @mtd: MTD device structure * @from: offset to read from * @len: number of bytes to read * @retlen: pointer to variable to store the number of read bytes * @buf: the databuffer to put data * * Get hold of the chip and call nand_do_read */ static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, uint8_t *buf) { int ret; *retlen = 0; /* Do not allow reads past end of device */ if ((from + len) > mtd->size) return -EINVAL; if (!len) return 0; nand_get_device(mtd->priv, mtd, FL_READING); ret = nand_do_read(mtd, from, len, retlen, buf); nand_release_device(mtd); return ret; } /** * nand_read_oob - [MTD Interface] NAND read out-of-band * @mtd: MTD device structure * @from: offset to read from * @len: number of bytes to read * @retlen: pointer to variable to store the number of read bytes * @buf: the databuffer to put data * * NAND read out-of-band data from the spare area */ static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, uint8_t *buf) { int col, page, realpage, chipnr, sndcmd = 1; struct nand_chip *chip = mtd->priv; int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1; int readlen = len; DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int)from, (int)len); /* Initialize return length value */ *retlen = 0; /* Do not allow reads past end of device */ if ((from + len) > mtd->size) { DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: " "Attempt read beyond end of device\n"); return -EINVAL; } nand_get_device(chip, mtd, FL_READING); chipnr = (int)(from >> chip->chip_shift); chip->select_chip(mtd, chipnr); /* Shift to get page */ realpage = (int)(from >> chip->page_shift); page = realpage & chip->pagemask; /* Mask to get column */ col = from & (mtd->oobsize - 1); while(1) { int bytes = min((int)(mtd->oobsize - col), readlen); if (likely(sndcmd)) { chip->cmdfunc(mtd, NAND_CMD_READOOB, col, page); sndcmd = 0; } chip->read_buf(mtd, buf, bytes); readlen -= bytes; if (!readlen) break; if (!(chip->options & NAND_NO_READRDY)) { /* * Apply delay or wait for ready/busy pin. Do this * before the AUTOINCR check, so no problems arise if a * chip which does auto increment is marked as * NOAUTOINCR by the board driver. */ if (!chip->dev_ready) udelay(chip->chip_delay); else nand_wait_ready(mtd); } buf += bytes; bytes = mtd->oobsize; col = 0; /* Increment page address */ realpage++; page = realpage & chip->pagemask; /* Check, if we cross a chip boundary */ if (!page) { chipnr++; chip->select_chip(mtd, -1); chip->select_chip(mtd, chipnr); } /* Check, if the chip supports auto page increment * or if we have hit a block boundary. */ if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck)) sndcmd = 1; } /* Deselect and wake up anyone waiting on the device */ nand_release_device(mtd); *retlen = len; return 0; } /** * nand_read_raw - [GENERIC] Read raw data including oob into buffer * @mtd: MTD device structure * @buf: temporary buffer * @from: offset to read from * @len: number of bytes to read * @ooblen: number of oob data bytes to read * * Read raw data including oob into buffer */ int nand_read_raw(struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen) { struct nand_chip *chip = mtd->priv; int page = (int)(from >> chip->page_shift); int chipnr = (int)(from >> chip->chip_shift); int sndcmd = 1; int cnt = 0; int pagesize = mtd->writesize + mtd->oobsize; int blockcheck; /* Do not allow reads past end of device */ if ((from + len) > mtd->size) { DEBUG(MTD_DEBUG_LEVEL0, "nand_read_raw: " "Attempt read beyond end of device\n"); return -EINVAL; } /* Grab the lock and see if the device is available */ nand_get_device(chip, mtd, FL_READING); chip->select_chip(mtd, chipnr); /* Add requested oob length */ len += ooblen; blockcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1; while (len) { if (likely(sndcmd)) { chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page & chip->pagemask); sndcmd = 0; } chip->read_buf(mtd, &buf[cnt], pagesize); len -= pagesize; cnt += pagesize; page++; if (!(chip->options & NAND_NO_READRDY)) { if (!chip->dev_ready) udelay(chip->chip_delay); else nand_wait_ready(mtd); } /* * Check, if the chip supports auto page increment or if we * cross a block boundary. */ if (!NAND_CANAUTOINCR(chip) || !(page & blockcheck)) sndcmd = 1; } /* Deselect and wake up anyone waiting on the device */ nand_release_device(mtd); return 0; } /** * nand_write_page_swecc - {REPLACABLE] software ecc based page write function * @mtd: mtd info structure * @chip: nand chip info structure * @buf: data buffer */ static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *ecc_calc = chip->buffers.ecccalc; const uint8_t *p = buf; int *eccpos = chip->autooob->eccpos; if (chip->ecc.mode != NAND_ECC_NONE) { /* Software ecc calculation */ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) chip->ecc.calculate(mtd, p, &ecc_calc[i]); for (i = 0; i < chip->ecc.total; i++) chip->oob_poi[eccpos[i]] = ecc_calc[i]; } chip->write_buf(mtd, buf, mtd->writesize); chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); } /** * nand_write_page_hwecc - {REPLACABLE] hardware ecc based page write function * @mtd: mtd info structure * @chip: nand chip info structure * @buf: data buffer */ static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *ecc_calc = chip->buffers.ecccalc; const uint8_t *p = buf; int *eccpos = chip->autooob->eccpos; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { chip->ecc.hwctl(mtd, NAND_ECC_WRITE); chip->write_buf(mtd, p, eccsize); chip->ecc.calculate(mtd, p, &ecc_calc[i]); } for (i = 0; i < chip->ecc.total; i++) chip->oob_poi[eccpos[i]] = ecc_calc[i]; chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); } /** * nand_write_page_syndrome - {REPLACABLE] hardware ecc syndrom based page write * @mtd: mtd info structure * @chip: nand chip info structure * @buf: data buffer * * The hw generator calculates the error syndrome automatically. Therefor * we need a special oob layout and handling. */ static void nand_write_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; const uint8_t *p = buf; uint8_t *oob = chip->oob_poi; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { chip->ecc.hwctl(mtd, NAND_ECC_WRITE); chip->write_buf(mtd, p, eccsize); if (chip->ecc.prepad) { chip->write_buf(mtd, oob, chip->ecc.prepad); oob += chip->ecc.prepad; } chip->ecc.calculate(mtd, p, oob); chip->write_buf(mtd, oob, eccbytes); oob += eccbytes; if (chip->ecc.postpad) { chip->write_buf(mtd, oob, chip->ecc.postpad); oob += chip->ecc.postpad; } } /* Calculate remaining oob bytes */ i = oob - chip->oob_poi; if (i) chip->write_buf(mtd, oob, i); } /** * nand_write_page - [INTERNAL] write one page * @mtd: MTD device structure * @chip: NAND chip descriptor * @buf: the data to write * @page: page number to write * @cached: cached programming */ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int page, int cached) { int status; chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); chip->ecc.write_page(mtd, chip, buf); /* * Cached progamming disabled for now, Not sure if its worth the * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s) */ cached = 0; if (!cached || !(chip->options & NAND_CACHEPRG)) { chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip, FL_WRITING); /* * See if operation failed and additional status checks are * available */ if ((status & NAND_STATUS_FAIL) && (chip->errstat)) status = chip->errstat(mtd, chip, FL_WRITING, status, page); if (status & NAND_STATUS_FAIL) return -EIO; } else { chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1); status = chip->waitfunc(mtd, chip, FL_WRITING); } #ifdef CONFIG_MTD_NAND_VERIFY_WRITE /* Send command to read back the data */ chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); if (chip->verify_buf(mtd, buf, mtd->writesize)) return -EIO; #endif return 0; } #define NOTALIGNED(x) (x & (mtd->writesize-1)) != 0 /** * nand_write - [MTD Interface] NAND write with ECC * @mtd: MTD device structure * @to: offset to write to * @len: number of bytes to write * @retlen: pointer to variable to store the number of written bytes * @buf: the data to write * * NAND write with ECC */ static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf) { int chipnr, realpage, page, blockmask; struct nand_chip *chip = mtd->priv; uint32_t writelen = len; int bytes = mtd->writesize; int ret = -EIO; *retlen = 0; /* Do not allow write past end of device */ if ((to + len) > mtd->size) { DEBUG(MTD_DEBUG_LEVEL0, "nand_write: " "Attempt to write past end of page\n"); return -EINVAL; } /* reject writes, which are not page aligned */ if (NOTALIGNED(to) || NOTALIGNED(len)) { printk(KERN_NOTICE "nand_write: " "Attempt to write not page aligned data\n"); return -EINVAL; } if (!len) return 0; nand_get_device(chip, mtd, FL_WRITING); /* Check, if it is write protected */ if (nand_check_wp(mtd)) goto out; chipnr = (int)(to >> chip->chip_shift); chip->select_chip(mtd, chipnr); realpage = (int)(to >> chip->page_shift); page = realpage & chip->pagemask; blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1; /* Invalidate the page cache, when we write to the cached page */ if (to <= (chip->pagebuf << chip->page_shift) && (chip->pagebuf << chip->page_shift) < (to + len)) chip->pagebuf = -1; chip->oob_poi = chip->buffers.oobwbuf; while(1) { int cached = writelen > bytes && page != blockmask; ret = nand_write_page(mtd, chip, buf, page, cached); if (ret) break; writelen -= bytes; if (!writelen) break; buf += bytes; realpage++; page = realpage & chip->pagemask; /* Check, if we cross a chip boundary */ if (!page) { chipnr++; chip->select_chip(mtd, -1); chip->select_chip(mtd, chipnr); } } out: *retlen = len - writelen; nand_release_device(mtd); return ret; } /** * nand_write_raw - [GENERIC] Write raw data including oob * @mtd: MTD device structure * @buf: source buffer * @to: offset to write to * @len: number of bytes to write * @buf: source buffer * @oob: oob buffer * * Write raw data including oob */ int nand_write_raw(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf, uint8_t *oob) { struct nand_chip *chip = mtd->priv; int page = (int)(to >> chip->page_shift); int chipnr = (int)(to >> chip->chip_shift); int ret; *retlen = 0; /* Do not allow writes past end of device */ if ((to + len) > mtd->size) { DEBUG(MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt write " "beyond end of device\n"); return -EINVAL; } /* Grab the lock and see if the device is available */ nand_get_device(chip, mtd, FL_WRITING); chip->select_chip(mtd, chipnr); chip->oob_poi = oob; while (len != *retlen) { ret = nand_write_page(mtd, chip, buf, page, 0); if (ret) return ret; page++; *retlen += mtd->writesize; buf += mtd->writesize; chip->oob_poi += mtd->oobsize; } /* Deselect and wake up anyone waiting on the device */ nand_release_device(mtd); return 0; } EXPORT_SYMBOL_GPL(nand_write_raw); /** * nand_write_oob - [MTD Interface] NAND write out-of-band * @mtd: MTD device structure * @to: offset to write to * @len: number of bytes to write * @retlen: pointer to variable to store the number of written bytes * @buf: the data to write * * NAND write out-of-band */ static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf) { int column, page, status, ret = -EIO, chipnr; struct nand_chip *chip = mtd->priv; DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int)to, (int)len); /* Initialize return length value */ *retlen = 0; /* Do not allow write past end of page */ column = to & (mtd->oobsize - 1); if ((column + len) > mtd->oobsize) { DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: " "Attempt to write past end of page\n"); return -EINVAL; } nand_get_device(chip, mtd, FL_WRITING); chipnr = (int)(to >> chip->chip_shift); chip->select_chip(mtd, chipnr); /* Shift to get page */ page = (int)(to >> chip->page_shift); /* * Reset the chip. Some chips (like the Toshiba TC5832DC found in one * of my DiskOnChip 2000 test units) will clear the whole data page too * if we don't do this. I have no clue why, but I seem to have 'fixed' * it in the doc2000 driver in August 1999. dwmw2. */ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); /* Check, if it is write protected */ if (nand_check_wp(mtd)) goto out; /* Invalidate the page cache, if we write to the cached page */ if (page == chip->pagebuf) chip->pagebuf = -1; if (NAND_MUST_PAD(chip)) { chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page & chip->pagemask); /* prepad 0xff for partial programming */ chip->write_buf(mtd, ffchars, column); /* write data */ chip->write_buf(mtd, buf, len); /* postpad 0xff for partial programming */ chip->write_buf(mtd, ffchars, mtd->oobsize - (len + column)); } else { chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize + column, page & chip->pagemask); chip->write_buf(mtd, buf, len); } /* Send command to program the OOB data */ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip, FL_WRITING); /* See if device thinks it succeeded */ if (status & NAND_STATUS_FAIL) { DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page); ret = -EIO; goto out; } *retlen = len; #ifdef CONFIG_MTD_NAND_VERIFY_WRITE /* Send command to read back the data */ chip->cmdfunc(mtd, NAND_CMD_READOOB, column, page & chip->pagemask); if (chip->verify_buf(mtd, buf, len)) { DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page); ret = -EIO; goto out; } #endif ret = 0; out: /* Deselect and wake up anyone waiting on the device */ nand_release_device(mtd); return ret; } /** * single_erease_cmd - [GENERIC] NAND standard block erase command function * @mtd: MTD device structure * @page: the page address of the block which will be erased * * Standard erase command for NAND chips */ static void single_erase_cmd(struct mtd_info *mtd, int page) { struct nand_chip *chip = mtd->priv; /* Send commands to erase a block */ chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); } /** * multi_erease_cmd - [GENERIC] AND specific block erase command function * @mtd: MTD device structure * @page: the page address of the block which will be erased * * AND multi block erase command function * Erase 4 consecutive blocks */ static void multi_erase_cmd(struct mtd_info *mtd, int page) { struct nand_chip *chip = mtd->priv; /* Send commands to erase a block */ chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); } /** * nand_erase - [MTD Interface] erase block(s) * @mtd: MTD device structure * @instr: erase instruction * * Erase one ore more blocks */ static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) { return nand_erase_nand(mtd, instr, 0); } #define BBT_PAGE_MASK 0xffffff3f /** * nand_erase_nand - [Internal] erase block(s) * @mtd: MTD device structure * @instr: erase instruction * @allowbbt: allow erasing the bbt area * * Erase one ore more blocks */ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, int allowbbt) { int page, len, status, pages_per_block, ret, chipnr; struct nand_chip *chip = mtd->priv; int rewrite_bbt[NAND_MAX_CHIPS]={0}; unsigned int bbt_masked_page = 0xffffffff; DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n", (unsigned int)instr->addr, (unsigned int)instr->len); /* Start address must align on block boundary */ if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) { DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n"); return -EINVAL; } /* Length must align on block boundary */ if (instr->len & ((1 << chip->phys_erase_shift) - 1)) { DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: " "Length not block aligned\n"); return -EINVAL; } /* Do not allow erase past end of device */ if ((instr->len + instr->addr) > mtd->size) { DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: " "Erase past end of device\n"); return -EINVAL; } instr->fail_addr = 0xffffffff; /* Grab the lock and see if the device is available */ nand_get_device(chip, mtd, FL_ERASING); /* Shift to get first page */ page = (int)(instr->addr >> chip->page_shift); chipnr = (int)(instr->addr >> chip->chip_shift); /* Calculate pages in each block */ pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); /* Select the NAND device */ chip->select_chip(mtd, chipnr); /* Check, if it is write protected */ if (nand_check_wp(mtd)) { DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: " "Device is write protected!!!\n"); instr->state = MTD_ERASE_FAILED; goto erase_exit; } /* * If BBT requires refresh, set the BBT page mask to see if the BBT * should be rewritten. Otherwise the mask is set to 0xffffffff which * can not be matched. This is also done when the bbt is actually * erased to avoid recusrsive updates */ if (chip->options & BBT_AUTO_REFRESH && !allowbbt) bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK; /* Loop through the pages */ len = instr->len; instr->state = MTD_ERASING; while (len) { /* * heck if we have a bad block, we do not erase bad blocks ! */ if (nand_block_checkbad(mtd, ((loff_t) page) << chip->page_shift, 0, allowbbt)) { printk(KERN_WARNING "nand_erase: attempt to erase a " "bad block at page 0x%08x\n", page); instr->state = MTD_ERASE_FAILED; goto erase_exit; } /* * Invalidate the page cache, if we erase the block which * contains the current cached page */ if (page <= chip->pagebuf && chip->pagebuf < (page + pages_per_block)) chip->pagebuf = -1; chip->erase_cmd(mtd, page & chip->pagemask); status = chip->waitfunc(mtd, chip, FL_ERASING); /* * See if operation failed and additional status checks are * available */ if ((status & NAND_STATUS_FAIL) && (chip->errstat)) status = chip->errstat(mtd, chip, FL_ERASING, status, page); /* See if block erase succeeded */ if (status & NAND_STATUS_FAIL) { DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page); instr->state = MTD_ERASE_FAILED; instr->fail_addr = (page << chip->page_shift); goto erase_exit; } /* * If BBT requires refresh, set the BBT rewrite flag to the * page being erased */ if (bbt_masked_page != 0xffffffff && (page & BBT_PAGE_MASK) == bbt_masked_page) rewrite_bbt[chipnr] = (page << chip->page_shift); /* Increment page address and decrement length */ len -= (1 << chip->phys_erase_shift); page += pages_per_block; /* Check, if we cross a chip boundary */ if (len && !(page & chip->pagemask)) { chipnr++; chip->select_chip(mtd, -1); chip->select_chip(mtd, chipnr); /* * If BBT requires refresh and BBT-PERCHIP, set the BBT * page mask to see if this BBT should be rewritten */ if (bbt_masked_page != 0xffffffff && (chip->bbt_td->options & NAND_BBT_PERCHIP)) bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK; } } instr->state = MTD_ERASE_DONE; erase_exit: ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; /* Do call back function */ if (!ret) mtd_erase_callback(instr); /* Deselect and wake up anyone waiting on the device */ nand_release_device(mtd); /* * If BBT requires refresh and erase was successful, rewrite any * selected bad block tables */ if (bbt_masked_page == 0xffffffff || ret) return ret; for (chipnr = 0; chipnr < chip->numchips; chipnr++) { if (!rewrite_bbt[chipnr]) continue; /* update the BBT for chip */ DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt " "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]); nand_update_bbt(mtd, rewrite_bbt[chipnr]); } /* Return more or less happy */ return ret; } /** * nand_sync - [MTD Interface] sync * @mtd: MTD device structure * * Sync is actually a wait for chip ready function */ static void nand_sync(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n"); /* Grab the lock and see if the device is available */ nand_get_device(chip, mtd, FL_SYNCING); /* Release it and go back */ nand_release_device(mtd); } /** * nand_block_isbad - [MTD Interface] Check if block at offset is bad * @mtd: MTD device structure * @ofs: offset relative to mtd start */ static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) { /* Check for invalid offset */ if (offs > mtd->size) return -EINVAL; return nand_block_checkbad(mtd, offs, 1, 0); } /** * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad * @mtd: MTD device structure * @ofs: offset relative to mtd start */ static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct nand_chip *chip = mtd->priv; int ret; if ((ret = nand_block_isbad(mtd, ofs))) { /* If it was bad already, return success and do nothing. */ if (ret > 0) return 0; return ret; } return chip->block_markbad(mtd, ofs); } /** * nand_suspend - [MTD Interface] Suspend the NAND flash * @mtd: MTD device structure */ static int nand_suspend(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; return nand_get_device(chip, mtd, FL_PM_SUSPENDED); } /** * nand_resume - [MTD Interface] Resume the NAND flash * @mtd: MTD device structure */ static void nand_resume(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; if (chip->state == FL_PM_SUSPENDED) nand_release_device(mtd); else printk(KERN_ERR "nand_resume() called for a chip which is not " "in suspended state\n"); } /* * Set default functions */ static void nand_set_defaults(struct nand_chip *chip, int busw) { /* check for proper chip_delay setup, set 20us if not */ if (!chip->chip_delay) chip->chip_delay = 20; /* check, if a user supplied command function given */ if (chip->cmdfunc == NULL) chip->cmdfunc = nand_command; /* check, if a user supplied wait function given */ if (chip->waitfunc == NULL) chip->waitfunc = nand_wait; if (!chip->select_chip) chip->select_chip = nand_select_chip; if (!chip->read_byte) chip->read_byte = busw ? nand_read_byte16 : nand_read_byte; if (!chip->read_word) chip->read_word = nand_read_word; if (!chip->block_bad) chip->block_bad = nand_block_bad; if (!chip->block_markbad) chip->block_markbad = nand_default_block_markbad; if (!chip->write_buf) chip->write_buf = busw ? nand_write_buf16 : nand_write_buf; if (!chip->read_buf) chip->read_buf = busw ? nand_read_buf16 : nand_read_buf; if (!chip->verify_buf) chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf; if (!chip->scan_bbt) chip->scan_bbt = nand_default_bbt; if (!chip->controller) { chip->controller = &chip->hwcontrol; spin_lock_init(&chip->controller->lock); init_waitqueue_head(&chip->controller->wq); } } /* * Get the flash and manufacturer id and lookup if the type is supported */ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip, int busw, int *maf_id) { struct nand_flash_dev *type = NULL; int i, dev_id, maf_idx; /* Select the device */ chip->select_chip(mtd, 0); /* Send the command for reading device ID */ chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); /* Read manufacturer and device IDs */ *maf_id = chip->read_byte(mtd); dev_id = chip->read_byte(mtd); /* Lookup the flash id */ for (i = 0; nand_flash_ids[i].name != NULL; i++) { if (dev_id == nand_flash_ids[i].id) { type = &nand_flash_ids[i]; break; } } if (!type) return ERR_PTR(-ENODEV); chip->chipsize = nand_flash_ids[i].chipsize << 20; /* Newer devices have all the information in additional id bytes */ if (!nand_flash_ids[i].pagesize) { int extid; /* The 3rd id byte contains non relevant data ATM */ extid = chip->read_byte(mtd); /* The 4th id byte is the important one */ extid = chip->read_byte(mtd); /* Calc pagesize */ mtd->writesize = 1024 << (extid & 0x3); extid >>= 2; /* Calc oobsize */ mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); extid >>= 2; /* Calc blocksize. Blocksize is multiples of 64KiB */ mtd->erasesize = (64 * 1024) << (extid & 0x03); extid >>= 2; /* Get buswidth information */ busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; } else { /* * Old devices have chip data hardcoded in the device id table */ mtd->erasesize = nand_flash_ids[i].erasesize; mtd->writesize = nand_flash_ids[i].pagesize; mtd->oobsize = mtd->writesize / 32; busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16; } /* Try to identify manufacturer */ for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_id++) { if (nand_manuf_ids[maf_idx].id == *maf_id) break; } /* * Check, if buswidth is correct. Hardware drivers should set * chip correct ! */ if (busw != (chip->options & NAND_BUSWIDTH_16)) { printk(KERN_INFO "NAND device: Manufacturer ID:" " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id, nand_manuf_ids[maf_idx].name, mtd->name); printk(KERN_WARNING "NAND bus width %d instead %d bit\n", (chip->options & NAND_BUSWIDTH_16) ? 16 : 8, busw ? 16 : 8); return ERR_PTR(-EINVAL); } /* Calculate the address shift from the page size */ chip->page_shift = ffs(mtd->writesize) - 1; /* Convert chipsize to number of pages per chip -1. */ chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; chip->bbt_erase_shift = chip->phys_erase_shift = ffs(mtd->erasesize) - 1; chip->chip_shift = ffs(chip->chipsize) - 1; /* Set the bad block position */ chip->badblockpos = mtd->writesize > 512 ? NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS; /* Get chip options, preserve non chip based options */ chip->options &= ~NAND_CHIPOPTIONS_MSK; chip->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK; /* * Set chip as a default. Board drivers can override it, if necessary */ chip->options |= NAND_NO_AUTOINCR; /* Check if chip is a not a samsung device. Do not clear the * options for chips which are not having an extended id. */ if (*maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize) chip->options &= ~NAND_SAMSUNG_LP_OPTIONS; /* Check for AND chips with 4 page planes */ if (chip->options & NAND_4PAGE_ARRAY) chip->erase_cmd = multi_erase_cmd; else chip->erase_cmd = single_erase_cmd; /* Do not replace user supplied command function ! */ if (mtd->writesize > 512 && chip->cmdfunc == nand_command) chip->cmdfunc = nand_command_lp; printk(KERN_INFO "NAND device: Manufacturer ID:" " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id, nand_manuf_ids[maf_idx].name, type->name); return type; } /* module_text_address() isn't exported, and it's mostly a pointless test if this is a module _anyway_ -- they'd have to try _really_ hard to call us from in-kernel code if the core NAND support is modular. */ #ifdef MODULE #define caller_is_module() (1) #else #define caller_is_module() \ module_text_address((unsigned long)__builtin_return_address(0)) #endif /** * nand_scan - [NAND Interface] Scan for the NAND device * @mtd: MTD device structure * @maxchips: Number of chips to scan for * * This fills out all the uninitialized function pointers * with the defaults. * The flash ID is read and the mtd/chip structures are * filled with the appropriate values. * The mtd->owner field must be set to the module of the caller * */ int nand_scan(struct mtd_info *mtd, int maxchips) { int i, busw, nand_maf_id; struct nand_chip *chip = mtd->priv; struct nand_flash_dev *type; /* Many callers got this wrong, so check for it for a while... */ if (!mtd->owner && caller_is_module()) { printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n"); BUG(); } /* Get buswidth to select the correct functions */ busw = chip->options & NAND_BUSWIDTH_16; /* Set the default functions */ nand_set_defaults(chip, busw); /* Read the flash type */ type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id); if (IS_ERR(type)) { printk(KERN_WARNING "No NAND device found!!!\n"); chip->select_chip(mtd, -1); return PTR_ERR(type); } /* Check for a chip array */ for (i = 1; i < maxchips; i++) { chip->select_chip(mtd, i); /* Send the command for reading device ID */ chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); /* Read manufacturer and device IDs */ if (nand_maf_id != chip->read_byte(mtd) || type->id != chip->read_byte(mtd)) break; } if (i > 1) printk(KERN_INFO "%d NAND chips detected\n", i); /* Store the number of chips and calc total size for mtd */ chip->numchips = i; mtd->size = i * chip->chipsize; /* Preset the internal oob write buffer */ memset(chip->buffers.oobwbuf, 0xff, mtd->oobsize); /* * If no default placement scheme is given, select an appropriate one */ if (!chip->autooob) { switch (mtd->oobsize) { case 8: chip->autooob = &nand_oob_8; break; case 16: chip->autooob = &nand_oob_16; break; case 64: chip->autooob = &nand_oob_64; break; default: printk(KERN_WARNING "No oob scheme defined for " "oobsize %d\n", mtd->oobsize); BUG(); } } /* * The number of bytes available for the filesystem to place fs * dependend oob data */ mtd->oobavail = 0; for (i = 0; chip->autooob->oobfree[i][1]; i++) mtd->oobavail += chip->autooob->oobfree[i][1]; /* * check ECC mode, default to software if 3byte/512byte hardware ECC is * selected and we have 256 byte pagesize fallback to software ECC */ switch (chip->ecc.mode) { case NAND_ECC_HW: /* Use standard hwecc read page function ? */ if (!chip->ecc.read_page) chip->ecc.read_page = nand_read_page_hwecc; if (!chip->ecc.write_page) chip->ecc.write_page = nand_write_page_hwecc; case NAND_ECC_HW_SYNDROME: if (!chip->ecc.calculate || !chip->ecc.correct || !chip->ecc.hwctl) { printk(KERN_WARNING "No ECC functions supplied, " "Hardware ECC not possible\n"); BUG(); } /* Use standard syndrome read/write page function ? */ if (!chip->ecc.read_page) chip->ecc.read_page = nand_read_page_syndrome; if (!chip->ecc.write_page) chip->ecc.write_page = nand_write_page_syndrome; if (mtd->writesize >= chip->ecc.size) break; printk(KERN_WARNING "%d byte HW ECC not possible on " "%d byte page size, fallback to SW ECC\n", chip->ecc.size, mtd->writesize); chip->ecc.mode = NAND_ECC_SOFT; case NAND_ECC_SOFT: chip->ecc.calculate = nand_calculate_ecc; chip->ecc.correct = nand_correct_data; chip->ecc.read_page = nand_read_page_swecc; chip->ecc.write_page = nand_write_page_swecc; chip->ecc.size = 256; chip->ecc.bytes = 3; break; case NAND_ECC_NONE: printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. " "This is not recommended !!\n"); chip->ecc.read_page = nand_read_page_swecc; chip->ecc.write_page = nand_write_page_swecc; chip->ecc.size = mtd->writesize; chip->ecc.bytes = 0; break; default: printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n", chip->ecc.mode); BUG(); } /* * Set the number of read / write steps for one page depending on ECC * mode */ chip->ecc.steps = mtd->writesize / chip->ecc.size; if(chip->ecc.steps * chip->ecc.size != mtd->writesize) { printk(KERN_WARNING "Invalid ecc parameters\n"); BUG(); } chip->ecc.total = chip->ecc.steps * chip->ecc.bytes; /* Initialize state */ chip->state = FL_READY; /* De-select the device */ chip->select_chip(mtd, -1); /* Invalidate the pagebuffer reference */ chip->pagebuf = -1; /* Fill in remaining MTD driver data */ mtd->type = MTD_NANDFLASH; mtd->flags = MTD_CAP_NANDFLASH; mtd->ecctype = MTD_ECC_SW; mtd->erase = nand_erase; mtd->point = NULL; mtd->unpoint = NULL; mtd->read = nand_read; mtd->write = nand_write; mtd->read_oob = nand_read_oob; mtd->write_oob = nand_write_oob; mtd->sync = nand_sync; mtd->lock = NULL; mtd->unlock = NULL; mtd->suspend = nand_suspend; mtd->resume = nand_resume; mtd->block_isbad = nand_block_isbad; mtd->block_markbad = nand_block_markbad; /* and make the autooob the default one */ memcpy(&mtd->oobinfo, chip->autooob, sizeof(mtd->oobinfo)); /* Check, if we should skip the bad block table scan */ if (chip->options & NAND_SKIP_BBTSCAN) return 0; /* Build bad block table */ return chip->scan_bbt(mtd); } /** * nand_release - [NAND Interface] Free resources held by the NAND device * @mtd: MTD device structure */ void nand_release(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; #ifdef CONFIG_MTD_PARTITIONS /* Deregister partitions */ del_mtd_partitions(mtd); #endif /* Deregister the device */ del_mtd_device(mtd); /* Free bad block table memory */ kfree(chip->bbt); } EXPORT_SYMBOL_GPL(nand_scan); EXPORT_SYMBOL_GPL(nand_release); static int __init nand_base_init(void) { led_trigger_register_simple("nand-disk", &nand_led_trigger); return 0; } static void __exit nand_base_exit(void) { led_trigger_unregister_simple(nand_led_trigger); } module_init(nand_base_init); module_exit(nand_base_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Steven J. Hill , Thomas Gleixner "); MODULE_DESCRIPTION("Generic NAND flash driver code");