/* * Copyright(c) 2007 Atheros Corporation. All rights reserved. * * Derived from Intel e1000 driver * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include <linux/pci.h> #include <linux/delay.h> #include <linux/mii.h> #include <linux/crc32.h> #include "atl1c.h" /* * check_eeprom_exist * return 1 if eeprom exist */ int atl1c_check_eeprom_exist(struct atl1c_hw *hw) { u32 data; AT_READ_REG(hw, REG_TWSI_DEBUG, &data); if (data & TWSI_DEBUG_DEV_EXIST) return 1; return 0; } void atl1c_hw_set_mac_addr(struct atl1c_hw *hw) { u32 value; /* * 00-0B-6A-F6-00-DC * 0: 6AF600DC 1: 000B * low dword */ value = (((u32)hw->mac_addr[2]) << 24) | (((u32)hw->mac_addr[3]) << 16) | (((u32)hw->mac_addr[4]) << 8) | (((u32)hw->mac_addr[5])) ; AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value); /* hight dword */ value = (((u32)hw->mac_addr[0]) << 8) | (((u32)hw->mac_addr[1])) ; AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value); } /* * atl1c_get_permanent_address * return 0 if get valid mac address, */ static int atl1c_get_permanent_address(struct atl1c_hw *hw) { u32 addr[2]; u32 i; u32 otp_ctrl_data; u32 twsi_ctrl_data; u8 eth_addr[ETH_ALEN]; /* init */ addr[0] = addr[1] = 0; AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data); if (atl1c_check_eeprom_exist(hw)) { /* Enable OTP CLK */ if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) { otp_ctrl_data |= OTP_CTRL_CLK_EN; AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data); AT_WRITE_FLUSH(hw); msleep(1); } AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data); twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART; AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data); for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) { msleep(10); AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data); if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0) break; } if (i >= AT_TWSI_EEPROM_TIMEOUT) return -1; } /* Disable OTP_CLK */ if (otp_ctrl_data & OTP_CTRL_CLK_EN) { otp_ctrl_data &= ~OTP_CTRL_CLK_EN; AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data); AT_WRITE_FLUSH(hw); msleep(1); } /* maybe MAC-address is from BIOS */ AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]); AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]); *(u32 *) ð_addr[2] = swab32(addr[0]); *(u16 *) ð_addr[0] = swab16(*(u16 *)&addr[1]); if (is_valid_ether_addr(eth_addr)) { memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); return 0; } return -1; } bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value) { int i; int ret = false; u32 otp_ctrl_data; u32 control; u32 data; if (offset & 3) return ret; /* address do not align */ AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data); if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) AT_WRITE_REG(hw, REG_OTP_CTRL, (otp_ctrl_data | OTP_CTRL_CLK_EN)); AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0); control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT; AT_WRITE_REG(hw, REG_EEPROM_CTRL, control); for (i = 0; i < 10; i++) { udelay(100); AT_READ_REG(hw, REG_EEPROM_CTRL, &control); if (control & EEPROM_CTRL_RW) break; } if (control & EEPROM_CTRL_RW) { AT_READ_REG(hw, REG_EEPROM_CTRL, &data); AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value); data = data & 0xFFFF; *p_value = swab32((data << 16) | (*p_value >> 16)); ret = true; } if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data); return ret; } /* * Reads the adapter's MAC address from the EEPROM * * hw - Struct containing variables accessed by shared code */ int atl1c_read_mac_addr(struct atl1c_hw *hw) { int err = 0; err = atl1c_get_permanent_address(hw); if (err) random_ether_addr(hw->perm_mac_addr); memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr)); return 0; } /* * atl1c_hash_mc_addr * purpose * set hash value for a multicast address * hash calcu processing : * 1. calcu 32bit CRC for multicast address * 2. reverse crc with MSB to LSB */ u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr) { u32 crc32; u32 value = 0; int i; crc32 = ether_crc_le(6, mc_addr); for (i = 0; i < 32; i++) value |= (((crc32 >> i) & 1) << (31 - i)); return value; } /* * Sets the bit in the multicast table corresponding to the hash value. * hw - Struct containing variables accessed by shared code * hash_value - Multicast address hash value */ void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value) { u32 hash_bit, hash_reg; u32 mta; /* * The HASH Table is a register array of 2 32-bit registers. * It is treated like an array of 64 bits. We want to set * bit BitArray[hash_value]. So we figure out what register * the bit is in, read it, OR in the new bit, then write * back the new value. The register is determined by the * upper bit of the hash value and the bit within that * register are determined by the lower 5 bits of the value. */ hash_reg = (hash_value >> 31) & 0x1; hash_bit = (hash_value >> 26) & 0x1F; mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg); mta |= (1 << hash_bit); AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta); } /* * Reads the value from a PHY register * hw - Struct containing variables accessed by shared code * reg_addr - address of the PHY register to read */ int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data) { u32 val; int i; val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT | MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; AT_WRITE_REG(hw, REG_MDIO_CTRL, val); for (i = 0; i < MDIO_WAIT_TIMES; i++) { udelay(2); AT_READ_REG(hw, REG_MDIO_CTRL, &val); if (!(val & (MDIO_START | MDIO_BUSY))) break; } if (!(val & (MDIO_START | MDIO_BUSY))) { *phy_data = (u16)val; return 0; } return -1; } /* * Writes a value to a PHY register * hw - Struct containing variables accessed by shared code * reg_addr - address of the PHY register to write * data - data to write to the PHY */ int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data) { int i; u32 val; val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT | (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT | MDIO_SUP_PREAMBLE | MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; AT_WRITE_REG(hw, REG_MDIO_CTRL, val); for (i = 0; i < MDIO_WAIT_TIMES; i++) { udelay(2); AT_READ_REG(hw, REG_MDIO_CTRL, &val); if (!(val & (MDIO_START | MDIO_BUSY))) break; } if (!(val & (MDIO_START | MDIO_BUSY))) return 0; return -1; } /* * Configures PHY autoneg and flow control advertisement settings * * hw - Struct containing variables accessed by shared code */ static int atl1c_phy_setup_adv(struct atl1c_hw *hw) { u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_SPEED_MASK; u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP & ~GIGA_CR_1000T_SPEED_MASK; if (hw->autoneg_advertised & ADVERTISED_10baseT_Half) mii_adv_data |= ADVERTISE_10HALF; if (hw->autoneg_advertised & ADVERTISED_10baseT_Full) mii_adv_data |= ADVERTISE_10FULL; if (hw->autoneg_advertised & ADVERTISED_100baseT_Half) mii_adv_data |= ADVERTISE_100HALF; if (hw->autoneg_advertised & ADVERTISED_100baseT_Full) mii_adv_data |= ADVERTISE_100FULL; if (hw->autoneg_advertised & ADVERTISED_Autoneg) mii_adv_data |= ADVERTISE_10HALF | ADVERTISE_10FULL | ADVERTISE_100HALF | ADVERTISE_100FULL; if (hw->ctrl_flags & ATL1C_LINK_CAP_1000M) { if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half) mii_giga_ctrl_data |= ADVERTISE_1000HALF; if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full) mii_giga_ctrl_data |= ADVERTISE_1000FULL; if (hw->autoneg_advertised & ADVERTISED_Autoneg) mii_giga_ctrl_data |= ADVERTISE_1000HALF | ADVERTISE_1000FULL; } if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 || atl1c_write_phy_reg(hw, MII_GIGA_CR, mii_giga_ctrl_data) != 0) return -1; return 0; } void atl1c_phy_disable(struct atl1c_hw *hw) { AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET); } static void atl1c_phy_magic_data(struct atl1c_hw *hw) { u16 data; data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE | ((1 & ANA_INTERVAL_SEL_TIMER_MASK) << ANA_INTERVAL_SEL_TIMER_SHIFT); atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_18); atl1c_write_phy_reg(hw, MII_DBG_DATA, data); data = (2 & ANA_SERDES_CDR_BW_MASK) | ANA_MS_PAD_DBG | ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL | ANA_SERDES_EN_LCKDT; atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_5); atl1c_write_phy_reg(hw, MII_DBG_DATA, data); data = (44 & ANA_LONG_CABLE_TH_100_MASK) | ((33 & ANA_SHORT_CABLE_TH_100_MASK) << ANA_SHORT_CABLE_TH_100_SHIFT) | ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW; atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_54); atl1c_write_phy_reg(hw, MII_DBG_DATA, data); data = (11 & ANA_IECHO_ADJ_MASK) | ((11 & ANA_IECHO_ADJ_MASK) << ANA_IECHO_ADJ_2_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) << ANA_IECHO_ADJ_1_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) << ANA_IECHO_ADJ_0_SHIFT); atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_4); atl1c_write_phy_reg(hw, MII_DBG_DATA, data); data = ANA_RESTART_CAL | ((7 & ANA_MANUL_SWICH_ON_MASK) << ANA_MANUL_SWICH_ON_SHIFT) | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB | ANA_OEN_125M; atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_0); atl1c_write_phy_reg(hw, MII_DBG_DATA, data); if (hw->ctrl_flags & ATL1C_HIB_DISABLE) { atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_41); if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0) return; data &= ~ANA_TOP_PS_EN; atl1c_write_phy_reg(hw, MII_DBG_DATA, data); atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_11); if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0) return; data &= ~ANA_PS_HIB_EN; atl1c_write_phy_reg(hw, MII_DBG_DATA, data); } } int atl1c_phy_reset(struct atl1c_hw *hw) { struct atl1c_adapter *adapter = hw->adapter; struct pci_dev *pdev = adapter->pdev; u32 phy_ctrl_data = GPHY_CTRL_DEFAULT; u32 mii_ier_data = IER_LINK_UP | IER_LINK_DOWN; int err; if (hw->ctrl_flags & ATL1C_HIB_DISABLE) phy_ctrl_data &= ~GPHY_CTRL_HIB_EN; AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data); AT_WRITE_FLUSH(hw); msleep(40); phy_ctrl_data |= GPHY_CTRL_EXT_RESET; AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data); AT_WRITE_FLUSH(hw); msleep(10); /*Enable PHY LinkChange Interrupt */ err = atl1c_write_phy_reg(hw, MII_IER, mii_ier_data); if (err) { if (netif_msg_hw(adapter)) dev_err(&pdev->dev, "Error enable PHY linkChange Interrupt\n"); return err; } if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION)) atl1c_phy_magic_data(hw); return 0; } int atl1c_phy_init(struct atl1c_hw *hw) { struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter; struct pci_dev *pdev = adapter->pdev; int ret_val; u16 mii_bmcr_data = BMCR_RESET; u16 phy_id1, phy_id2; if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &phy_id1) != 0) || (atl1c_read_phy_reg(hw, MII_PHYSID2, &phy_id2) != 0)) { if (netif_msg_link(adapter)) dev_err(&pdev->dev, "Error get phy ID\n"); return -1; } switch (hw->media_type) { case MEDIA_TYPE_AUTO_SENSOR: ret_val = atl1c_phy_setup_adv(hw); if (ret_val) { if (netif_msg_link(adapter)) dev_err(&pdev->dev, "Error Setting up Auto-Negotiation\n"); return ret_val; } mii_bmcr_data |= BMCR_AUTO_NEG_EN | BMCR_RESTART_AUTO_NEG; break; case MEDIA_TYPE_100M_FULL: mii_bmcr_data |= BMCR_SPEED_100 | BMCR_FULL_DUPLEX; break; case MEDIA_TYPE_100M_HALF: mii_bmcr_data |= BMCR_SPEED_100; break; case MEDIA_TYPE_10M_FULL: mii_bmcr_data |= BMCR_SPEED_10 | BMCR_FULL_DUPLEX; break; case MEDIA_TYPE_10M_HALF: mii_bmcr_data |= BMCR_SPEED_10; break; default: if (netif_msg_link(adapter)) dev_err(&pdev->dev, "Wrong Media type %d\n", hw->media_type); return -1; break; } ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data); if (ret_val) return ret_val; hw->phy_configured = true; return 0; } /* * Detects the current speed and duplex settings of the hardware. * * hw - Struct containing variables accessed by shared code * speed - Speed of the connection * duplex - Duplex setting of the connection */ int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex) { int err; u16 phy_data; /* Read PHY Specific Status Register (17) */ err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data); if (err) return err; if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED)) return -1; switch (phy_data & GIGA_PSSR_SPEED) { case GIGA_PSSR_1000MBS: *speed = SPEED_1000; break; case GIGA_PSSR_100MBS: *speed = SPEED_100; break; case GIGA_PSSR_10MBS: *speed = SPEED_10; break; default: return -1; break; } if (phy_data & GIGA_PSSR_DPLX) *duplex = FULL_DUPLEX; else *duplex = HALF_DUPLEX; return 0; } int atl1c_restart_autoneg(struct atl1c_hw *hw) { int err = 0; u16 mii_bmcr_data = BMCR_RESET; err = atl1c_phy_setup_adv(hw); if (err) return err; mii_bmcr_data |= BMCR_AUTO_NEG_EN | BMCR_RESTART_AUTO_NEG; return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data); }