/* * flexcan.c - FLEXCAN CAN controller driver * * Copyright (c) 2005-2006 Varma Electronics Oy * Copyright (c) 2009 Sascha Hauer, Pengutronix * Copyright (c) 2010-2017 Pengutronix, Marc Kleine-Budde * Copyright (c) 2014 David Jander, Protonic Holland * * Based on code originally by Andrey Volkov * * LICENCE: * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_ARCH_MXC_ARM64 #include #endif #define DRV_NAME "flexcan" /* 8 for RX fifo and 2 error handling */ #define FLEXCAN_NAPI_WEIGHT (8 + 2) /* FLEXCAN module configuration register (CANMCR) bits */ #define FLEXCAN_MCR_MDIS BIT(31) #define FLEXCAN_MCR_FRZ BIT(30) #define FLEXCAN_MCR_FEN BIT(29) #define FLEXCAN_MCR_HALT BIT(28) #define FLEXCAN_MCR_NOT_RDY BIT(27) #define FLEXCAN_MCR_WAK_MSK BIT(26) #define FLEXCAN_MCR_SOFTRST BIT(25) #define FLEXCAN_MCR_FRZ_ACK BIT(24) #define FLEXCAN_MCR_SUPV BIT(23) #define FLEXCAN_MCR_SLF_WAK BIT(22) #define FLEXCAN_MCR_WRN_EN BIT(21) #define FLEXCAN_MCR_LPM_ACK BIT(20) #define FLEXCAN_MCR_WAK_SRC BIT(19) #define FLEXCAN_MCR_DOZE BIT(18) #define FLEXCAN_MCR_SRX_DIS BIT(17) #define FLEXCAN_MCR_IRMQ BIT(16) #define FLEXCAN_MCR_LPRIO_EN BIT(13) #define FLEXCAN_MCR_AEN BIT(12) #define FLEXCAN_MCR_FDEN BIT(11) /* MCR_MAXMB: maximum used MBs is MAXMB + 1 */ #define FLEXCAN_MCR_MAXMB(x) ((x) & 0x7f) #define FLEXCAN_MCR_IDAM_A (0x0 << 8) #define FLEXCAN_MCR_IDAM_B (0x1 << 8) #define FLEXCAN_MCR_IDAM_C (0x2 << 8) #define FLEXCAN_MCR_IDAM_D (0x3 << 8) /* FLEXCAN control register (CANCTRL) bits */ #define FLEXCAN_CTRL_PRESDIV(x) (((x) & 0xff) << 24) #define FLEXCAN_CTRL_RJW(x) (((x) & 0x03) << 22) #define FLEXCAN_CTRL_PSEG1(x) (((x) & 0x07) << 19) #define FLEXCAN_CTRL_PSEG2(x) (((x) & 0x07) << 16) #define FLEXCAN_CTRL_BOFF_MSK BIT(15) #define FLEXCAN_CTRL_ERR_MSK BIT(14) #define FLEXCAN_CTRL_CLK_SRC BIT(13) #define FLEXCAN_CTRL_LPB BIT(12) #define FLEXCAN_CTRL_TWRN_MSK BIT(11) #define FLEXCAN_CTRL_RWRN_MSK BIT(10) #define FLEXCAN_CTRL_SMP BIT(7) #define FLEXCAN_CTRL_BOFF_REC BIT(6) #define FLEXCAN_CTRL_TSYN BIT(5) #define FLEXCAN_CTRL_LBUF BIT(4) #define FLEXCAN_CTRL_LOM BIT(3) #define FLEXCAN_CTRL_PROPSEG(x) ((x) & 0x07) #define FLEXCAN_CTRL_ERR_BUS (FLEXCAN_CTRL_ERR_MSK) #define FLEXCAN_CTRL_ERR_STATE \ (FLEXCAN_CTRL_TWRN_MSK | FLEXCAN_CTRL_RWRN_MSK | \ FLEXCAN_CTRL_BOFF_MSK) #define FLEXCAN_CTRL_ERR_ALL \ (FLEXCAN_CTRL_ERR_BUS | FLEXCAN_CTRL_ERR_STATE) /* FLEXCAN control register 2 (CTRL2) bits */ #define FLEXCAN_CTRL2_ECRWRE BIT(29) #define FLEXCAN_CTRL2_WRMFRZ BIT(28) #define FLEXCAN_CTRL2_RFFN(x) (((x) & 0x0f) << 24) #define FLEXCAN_CTRL2_TASD(x) (((x) & 0x1f) << 19) #define FLEXCAN_CTRL2_MRP BIT(18) #define FLEXCAN_CTRL2_RRS BIT(17) #define FLEXCAN_CTRL2_EACEN BIT(16) #define FLEXCAN_CTRL2_ISOCANFDEN BIT(12) /* FLEXCAN memory error control register (MECR) bits */ #define FLEXCAN_MECR_ECRWRDIS BIT(31) #define FLEXCAN_MECR_HANCEI_MSK BIT(19) #define FLEXCAN_MECR_FANCEI_MSK BIT(18) #define FLEXCAN_MECR_CEI_MSK BIT(16) #define FLEXCAN_MECR_HAERRIE BIT(15) #define FLEXCAN_MECR_FAERRIE BIT(14) #define FLEXCAN_MECR_EXTERRIE BIT(13) #define FLEXCAN_MECR_RERRDIS BIT(9) #define FLEXCAN_MECR_ECCDIS BIT(8) #define FLEXCAN_MECR_NCEFAFRZ BIT(7) /* FLEXCAN error and status register (ESR) bits */ #define FLEXCAN_ESR_TWRN_INT BIT(17) #define FLEXCAN_ESR_RWRN_INT BIT(16) #define FLEXCAN_ESR_BIT1_ERR BIT(15) #define FLEXCAN_ESR_BIT0_ERR BIT(14) #define FLEXCAN_ESR_ACK_ERR BIT(13) #define FLEXCAN_ESR_CRC_ERR BIT(12) #define FLEXCAN_ESR_FRM_ERR BIT(11) #define FLEXCAN_ESR_STF_ERR BIT(10) #define FLEXCAN_ESR_TX_WRN BIT(9) #define FLEXCAN_ESR_RX_WRN BIT(8) #define FLEXCAN_ESR_IDLE BIT(7) #define FLEXCAN_ESR_TXRX BIT(6) #define FLEXCAN_EST_FLT_CONF_SHIFT (4) #define FLEXCAN_ESR_FLT_CONF_MASK (0x3 << FLEXCAN_EST_FLT_CONF_SHIFT) #define FLEXCAN_ESR_FLT_CONF_ACTIVE (0x0 << FLEXCAN_EST_FLT_CONF_SHIFT) #define FLEXCAN_ESR_FLT_CONF_PASSIVE (0x1 << FLEXCAN_EST_FLT_CONF_SHIFT) #define FLEXCAN_ESR_BOFF_INT BIT(2) #define FLEXCAN_ESR_ERR_INT BIT(1) #define FLEXCAN_ESR_WAK_INT BIT(0) #define FLEXCAN_ESR_ERR_BUS \ (FLEXCAN_ESR_BIT1_ERR | FLEXCAN_ESR_BIT0_ERR | \ FLEXCAN_ESR_ACK_ERR | FLEXCAN_ESR_CRC_ERR | \ FLEXCAN_ESR_FRM_ERR | FLEXCAN_ESR_STF_ERR) #define FLEXCAN_ESR_ERR_STATE \ (FLEXCAN_ESR_TWRN_INT | FLEXCAN_ESR_RWRN_INT | FLEXCAN_ESR_BOFF_INT) #define FLEXCAN_ESR_ERR_ALL \ (FLEXCAN_ESR_ERR_BUS | FLEXCAN_ESR_ERR_STATE) #define FLEXCAN_ESR_ALL_INT \ (FLEXCAN_ESR_TWRN_INT | FLEXCAN_ESR_RWRN_INT | \ FLEXCAN_ESR_BOFF_INT | FLEXCAN_ESR_ERR_INT | \ FLEXCAN_ESR_WAK_INT) /* FLEXCAN Bit Timing register (CBT) bits */ #define FLEXCAN_CBT_BTF BIT(31) #define FLEXCAN_CBT_EPRESDIV(x) (((x) & 0x3ff) << 21) #define FLEXCAN_CBT_ERJW(x) (((x) & 0x1f) << 16) #define FLEXCAN_CBT_EPROPSEG(x) (((x) & 0x3f) << 10) #define FLEXCAN_CBT_EPSEG1(x) (((x) & 0x1f) << 5) #define FLEXCAN_CBT_EPSEG2(x) ((x) & 0x1f) /* FLEXCAN FD Bit Timing register (FDCBT) bits */ #define FLEXCAN_FDCBT_FPRESDIV(x) (((x) & 0x3ff) << 20) #define FLEXCAN_FDCBT_FRJW(x) (((x) & 0x07) << 16) #define FLEXCAN_FDCBT_FPROPSEG(x) (((x) & 0x1f) << 10) #define FLEXCAN_FDCBT_FPSEG1(x) (((x) & 0x07) << 5) #define FLEXCAN_FDCBT_FPSEG2(x) ((x) & 0x07) /* FLEXCAN interrupt flag register (IFLAG) bits */ /* Errata ERR005829 step7: Reserve first valid MB */ #define FLEXCAN_TX_MB_RESERVED_OFF_FIFO 8 #define FLEXCAN_TX_MB_OFF_FIFO 9 #define FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP 0 #define FLEXCAN_TX_MB_OFF_TIMESTAMP 1 #define FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP_FD 0 #define FLEXCAN_TX_MB_OFF_TIMESTAMP_FD 1 #define FLEXCAN_RX_MB_OFF_TIMESTAMP_FIRST (FLEXCAN_TX_MB_OFF_TIMESTAMP + 1) #define FLEXCAN_RX_MB_OFF_TIMESTAMP_LAST 63 #define FLEXCAN_RX_MB_OFF_TIMESTAMP_FD_FIRST (FLEXCAN_TX_MB_OFF_TIMESTAMP_FD + 1) #define FLEXCAN_RX_MB_OFF_TIMESTAMP_FD_LAST 13 #define FLEXCAN_IFLAG_MB(x) BIT(x) #define FLEXCAN_IFLAG_RX_FIFO_OVERFLOW BIT(7) #define FLEXCAN_IFLAG_RX_FIFO_WARN BIT(6) #define FLEXCAN_IFLAG_RX_FIFO_AVAILABLE BIT(5) /* FLEXCAN message buffers */ #define FLEXCAN_MB_CNT_EDL BIT(31) #define FLEXCAN_MB_CNT_BRS BIT(30) #define FLEXCAN_MB_CNT_ESI BIT(29) #define FLEXCAN_MB_CODE_MASK (0xf << 24) #define FLEXCAN_MB_CODE_RX_BUSY_BIT (0x1 << 24) #define FLEXCAN_MB_CODE_RX_INACTIVE (0x0 << 24) #define FLEXCAN_MB_CODE_RX_EMPTY (0x4 << 24) #define FLEXCAN_MB_CODE_RX_FULL (0x2 << 24) #define FLEXCAN_MB_CODE_RX_OVERRUN (0x6 << 24) #define FLEXCAN_MB_CODE_RX_RANSWER (0xa << 24) #define FLEXCAN_MB_CODE_TX_INACTIVE (0x8 << 24) #define FLEXCAN_MB_CODE_TX_ABORT (0x9 << 24) #define FLEXCAN_MB_CODE_TX_DATA (0xc << 24) #define FLEXCAN_MB_CODE_TX_TANSWER (0xe << 24) #define FLEXCAN_MB_CNT_SRR BIT(22) #define FLEXCAN_MB_CNT_IDE BIT(21) #define FLEXCAN_MB_CNT_RTR BIT(20) #define FLEXCAN_MB_CNT_LENGTH(x) (((x) & 0xf) << 16) #define FLEXCAN_MB_CNT_TIMESTAMP(x) ((x) & 0xffff) #define FLEXCAN_FDCTRL_FDRATE BIT(31) #define FLEXCAN_TIMEOUT_US (50) /* FLEXCAN hardware feature flags * * Below is some version info we got: * SOC Version IP-Version Glitch- [TR]WRN_INT IRQ Err Memory err RTR re- * Filter? connected? Passive detection ception in MB * MX25 FlexCAN2 03.00.00.00 no no ? no no * MX28 FlexCAN2 03.00.04.00 yes yes no no no * MX35 FlexCAN2 03.00.00.00 no no ? no no * MX53 FlexCAN2 03.00.00.00 yes no no no no * MX6s FlexCAN3 10.00.12.00 yes yes no no yes * VF610 FlexCAN3 ? no yes no yes yes? * * Some SOCs do not have the RX_WARN & TX_WARN interrupt line connected. */ #define FLEXCAN_QUIRK_BROKEN_WERR_STATE BIT(1) /* [TR]WRN_INT not connected */ #define FLEXCAN_QUIRK_DISABLE_RXFG BIT(2) /* Disable RX FIFO Global mask */ #define FLEXCAN_QUIRK_ENABLE_EACEN_RRS BIT(3) /* Enable EACEN and RRS bit in ctrl2 */ #define FLEXCAN_QUIRK_DISABLE_MECR BIT(4) /* Disable Memory error detection */ #define FLEXCAN_QUIRK_USE_OFF_TIMESTAMP BIT(5) /* Use timestamp based offloading */ #define FLEXCAN_QUIRK_BROKEN_PERR_STATE BIT(6) /* No interrupt for error passive */ #define FLEXCAN_QUIRK_TIMESTAMP_SUPPORT_FD BIT(7) /* Use timestamp then support can fd mode */ /* Message Buffer */ #define FLEXCAN_MB_CTRL 0x0 #define FLEXCAN_MB_ID 0x4 #define FLEXCAN_MB_DATA(n) (0x8 + ((n) << 2)) #define FLEXCAN_MB 0x80 #define FLEXCAN_MB_NUM 64 #define FLEXCAN_MB_FD_NUM 14 #define FLEXCAN_MB_SIZE 16 #define FLEXCAN_MB_FD_SIZE 72 /* CAN FD Memory Partition * * When CAN FD is enabled, the FlexCAN RAM can be partitioned in * blocks of 512 bytes. Each block can accommodate a number of * Message Buffers which depends on the configuration provided * by CAN_FDCTRL[MBDSRn] bit fields where we all set to 64 bytes * per Message Buffer and 7 MBs per Block by default. * * There're two RAM blocks: RAM block 0,1 */ #define FLEXCAN_CANFD_MB_OFFSET(n) (((n) / 7) * 512 + ((n) % 7) * \ FLEXCAN_MB_FD_SIZE) #define FLEXCAN_CANFD_MBDSR_MASK 0x6db0000 #define FLEXCAN_CANFD_MBDSR_SHIFT 16 #define FLEXCAN_CANFD_MBDSR_DEFAULT 0x6db /* * NOTE: * To minimize errors when processing FD frames, use the same value * for FPRESDIV and PRESDIV (in CAN_CBT or CAN_CTRL1). * For more details refer to the first NOTE in section CAN FD frames. * * CAN FD supported rates combinations * * Combination 1: * Bitrate: 225000 375000 400000 425000 500000 875000 * Data rate: 1000000 * * Combination 2: * Bitrate: 550000 600000 625000 650000 675000 750000 775000 * 800000 850000 925000 950000 975000 1000000 * Data rate: 1500000 2000000 2500000 3000000 3500000 4000000 * 5000000 */ /* Structure of the hardware registers */ struct flexcan_regs { u32 mcr; /* 0x00 */ u32 ctrl; /* 0x04 */ u32 timer; /* 0x08 */ u32 _reserved1; /* 0x0c */ u32 rxgmask; /* 0x10 */ u32 rx14mask; /* 0x14 */ u32 rx15mask; /* 0x18 */ u32 ecr; /* 0x1c */ u32 esr; /* 0x20 */ u32 imask2; /* 0x24 */ u32 imask1; /* 0x28 */ u32 iflag2; /* 0x2c */ u32 iflag1; /* 0x30 */ union { /* 0x34 */ u32 gfwr_mx28; /* MX28, MX53 */ u32 ctrl2; /* MX6, VF610 */ }; u32 esr2; /* 0x38 */ u32 imeur; /* 0x3c */ u32 lrfr; /* 0x40 */ u32 crcr; /* 0x44 */ u32 rxfgmask; /* 0x48 */ u32 rxfir; /* 0x4c */ u32 cbt; /* 0x50 */ u32 _reserved3[11]; /* 0x54 */ u32 _reserved8[64*4]; /* 0x80 */ /* 64 mailbox */ u32 _reserved4[256]; /* 0x480 */ u32 rximr[64]; /* 0x880 */ u32 _reserved5[24]; /* 0x980 */ u32 gfwr_mx6; /* 0x9e0 - MX6 */ u32 _reserved6[63]; /* 0x9e4 */ u32 mecr; /* 0xae0 */ u32 erriar; /* 0xae4 */ u32 erridpr; /* 0xae8 */ u32 errippr; /* 0xaec */ u32 rerrar; /* 0xaf0 */ u32 rerrdr; /* 0xaf4 */ u32 rerrsynr; /* 0xaf8 */ u32 errsr; /* 0xafc */ u32 _reserved7[64]; /* 0xb00 */ u32 fdctrl; /* 0xc00 */ u32 fdcbt; /* 0xc04 */ u32 fdcrc; /* 0xc08 */ }; struct flexcan_devtype_data { u32 quirks; /* quirks needed for different IP cores */ }; struct flexcan_stop_mode { struct regmap *gpr; u8 req_gpr; u8 req_bit; u8 ack_gpr; u8 ack_bit; }; struct flexcan_priv { struct can_priv can; struct can_rx_offload offload; struct flexcan_regs __iomem *regs; void __iomem *base; u8 tx_mb_reserved_idx; u8 tx_mb_idx; u32 reg_ctrl_default; u32 reg_imask1_default; u32 reg_imask2_default; struct device *dev; struct clk *clk_ipg; struct clk *clk_per; struct flexcan_platform_data *pdata; const struct flexcan_devtype_data *devtype_data; struct regulator *reg_xceiver; int id; struct flexcan_stop_mode stm; #ifdef CONFIG_ARCH_MXC_ARM64 sc_ipc_t ipc_handle; #endif bool wakeup; u32 mb_size; u32 mb_num; /* Selects the clock source to CAN Protocol Engine (PE), 1 by default*/ u32 clk_src; }; static const struct flexcan_devtype_data fsl_p1010_devtype_data = { .quirks = FLEXCAN_QUIRK_BROKEN_WERR_STATE | FLEXCAN_QUIRK_BROKEN_PERR_STATE, }; static const struct flexcan_devtype_data fsl_imx28_devtype_data = { .quirks = FLEXCAN_QUIRK_BROKEN_PERR_STATE, }; static const struct flexcan_devtype_data fsl_imx6q_devtype_data = { .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_BROKEN_PERR_STATE, }; static struct flexcan_devtype_data fsl_imx8qm_devtype_data = { .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_TIMESTAMP_SUPPORT_FD, }; static const struct flexcan_devtype_data fsl_vf610_devtype_data = { .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS | FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_BROKEN_PERR_STATE, }; static const struct can_bittiming_const flexcan_bittiming_const = { .name = DRV_NAME, .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 256, .brp_inc = 1, }; static const struct can_bittiming_const flexcan_fd_bittiming_const = { .name = DRV_NAME, .tseg1_min = 2, .tseg1_max = 64, .tseg2_min = 1, .tseg2_max = 32, .sjw_max = 32, .brp_min = 1, .brp_max = 1024, .brp_inc = 1, }; static const struct can_bittiming_const flexcan_fd_data_bittiming_const = { .name = DRV_NAME, .tseg1_min = 1, .tseg1_max = 39, .tseg2_min = 1, .tseg2_max = 8, .sjw_max = 8, .brp_min = 1, .brp_max = 1024, .brp_inc = 1, }; /* Abstract off the read/write for arm versus ppc. This * assumes that PPC uses big-endian registers and everything * else uses little-endian registers, independent of CPU * endianness. */ #if defined(CONFIG_PPC) static inline u32 flexcan_read(void __iomem *addr) { return in_be32(addr); } static inline void flexcan_write(u32 val, void __iomem *addr) { out_be32(addr, val); } static inline u32 flexcan_mb_read(const struct flexcan_priv *priv, u32 index, unsigned int offset) { if (priv->can.ctrlmode & CAN_CTRLMODE_FD) return in_be32(priv->base + FLEXCAN_MB + FLEXCAN_CANFD_MB_OFFSET(index) + offset); else return in_be32(priv->base + FLEXCAN_MB + priv->mb_size * index + offset); } static inline void flexcan_mb_write(const struct flexcan_priv *priv, u32 index, unsigned int offset, u32 val) { if (priv->can.ctrlmode & CAN_CTRLMODE_FD) out_be32(val, priv->base + FLEXCAN_MB + FLEXCAN_CANFD_MB_OFFSET(index) + offset); else out_be32(val, priv->base + FLEXCAN_MB + priv->mb_size * index + offset); } #else static inline u32 flexcan_read(void __iomem *addr) { return readl(addr); } static inline void flexcan_write(u32 val, void __iomem *addr) { writel(val, addr); } static inline u32 flexcan_mb_read(const struct flexcan_priv *priv, u32 index, unsigned int offset) { if (priv->can.ctrlmode & CAN_CTRLMODE_FD) return readl(priv->base + FLEXCAN_MB + FLEXCAN_CANFD_MB_OFFSET(index) + offset); else return readl(priv->base + FLEXCAN_MB + priv->mb_size * index + offset); } static inline void flexcan_mb_write(const struct flexcan_priv *priv, u32 index, unsigned int offset, u32 val) { if (priv->can.ctrlmode & CAN_CTRLMODE_FD) writel(val, priv->base + FLEXCAN_MB + FLEXCAN_CANFD_MB_OFFSET(index) + offset); else writel(val, priv->base + FLEXCAN_MB + priv->mb_size * index + offset); } #endif static inline void flexcan_error_irq_enable(const struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; u32 reg_ctrl = (priv->reg_ctrl_default | FLEXCAN_CTRL_ERR_MSK); flexcan_write(reg_ctrl, ®s->ctrl); } static inline void flexcan_error_irq_disable(const struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; u32 reg_ctrl = (priv->reg_ctrl_default & ~FLEXCAN_CTRL_ERR_MSK); flexcan_write(reg_ctrl, ®s->ctrl); } static int flexcan_clks_enable(const struct flexcan_priv *priv) { int err; err = clk_prepare_enable(priv->clk_ipg); if (err) return err; err = clk_prepare_enable(priv->clk_per); if (err) clk_disable_unprepare(priv->clk_ipg); return err; } static void flexcan_clks_disable(const struct flexcan_priv *priv) { clk_disable_unprepare(priv->clk_ipg); clk_disable_unprepare(priv->clk_per); } static void flexcan_wake_mask_enable(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; u32 reg_mcr; reg_mcr = flexcan_read(®s->mcr); reg_mcr |= FLEXCAN_MCR_WAK_MSK; flexcan_write(reg_mcr, ®s->mcr); } static void flexcan_wake_mask_disable(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; u32 reg_mcr; reg_mcr = flexcan_read(®s->mcr); reg_mcr &= ~FLEXCAN_MCR_WAK_MSK; flexcan_write(reg_mcr, ®s->mcr); } #ifdef CONFIG_ARCH_MXC_ARM64 static void imx8_ipg_stop_enable(struct flexcan_priv *priv, bool enabled) { struct device_node *np = priv->dev->of_node; u32 rsrc_id, val; int idx; idx = of_alias_get_id(np, "can"); if (idx == 0) rsrc_id = SC_R_CAN_0; else if (idx == 1) rsrc_id = SC_R_CAN_1; else rsrc_id = SC_R_CAN_2; val = enabled ? 1 : 0; sc_misc_set_control(priv->ipc_handle, rsrc_id, SC_C_IPG_STOP, val); } #else static void imx8_ipg_stop_enable(struct flexcan_priv *priv, bool enabled) {} #endif static inline void flexcan_enter_stop_mode(struct flexcan_priv *priv) { /* enable stop request */ if (priv->stm.gpr) { if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_RXFG) regmap_update_bits(priv->stm.gpr, priv->stm.req_gpr, 1 << priv->stm.req_bit, 1 << priv->stm.req_bit); } else { if (priv->devtype_data->quirks & FLEXCAN_QUIRK_TIMESTAMP_SUPPORT_FD) imx8_ipg_stop_enable(priv, true); } } static inline void flexcan_exit_stop_mode(struct flexcan_priv *priv) { /* remove stop request */ if (priv->stm.gpr) { if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_RXFG) regmap_update_bits(priv->stm.gpr, priv->stm.req_gpr, 1 << priv->stm.req_bit, 0); } else { if (priv->devtype_data->quirks & FLEXCAN_QUIRK_TIMESTAMP_SUPPORT_FD) imx8_ipg_stop_enable(priv, false); } } static inline int flexcan_transceiver_enable(const struct flexcan_priv *priv) { if (priv->pdata && priv->pdata->transceiver_switch) { priv->pdata->transceiver_switch(1); return 0; } if (!priv->reg_xceiver) return 0; return regulator_enable(priv->reg_xceiver); } static inline int flexcan_transceiver_disable(const struct flexcan_priv *priv) { if (priv->pdata && priv->pdata->transceiver_switch) { priv->pdata->transceiver_switch(0); return 0; } if (!priv->reg_xceiver) return 0; return regulator_disable(priv->reg_xceiver); } static int flexcan_chip_enable(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; unsigned int timeout = FLEXCAN_TIMEOUT_US / 10; u32 reg; reg = flexcan_read(®s->mcr); reg &= ~FLEXCAN_MCR_MDIS; flexcan_write(reg, ®s->mcr); while (timeout-- && (flexcan_read(®s->mcr) & FLEXCAN_MCR_LPM_ACK)) udelay(10); if (flexcan_read(®s->mcr) & FLEXCAN_MCR_LPM_ACK) return -ETIMEDOUT; return 0; } static int flexcan_chip_disable(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; unsigned int timeout = FLEXCAN_TIMEOUT_US / 10; u32 reg; reg = flexcan_read(®s->mcr); reg |= FLEXCAN_MCR_MDIS; flexcan_write(reg, ®s->mcr); while (timeout-- && !(flexcan_read(®s->mcr) & FLEXCAN_MCR_LPM_ACK)) udelay(10); if (!(flexcan_read(®s->mcr) & FLEXCAN_MCR_LPM_ACK)) return -ETIMEDOUT; return 0; } static int flexcan_chip_freeze(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; unsigned int timeout = 1000 * 1000 * 10 / priv->can.bittiming.bitrate; u32 reg; reg = flexcan_read(®s->mcr); reg |= FLEXCAN_MCR_HALT; flexcan_write(reg, ®s->mcr); while (timeout-- && !(flexcan_read(®s->mcr) & FLEXCAN_MCR_FRZ_ACK)) udelay(100); if (!(flexcan_read(®s->mcr) & FLEXCAN_MCR_FRZ_ACK)) return -ETIMEDOUT; return 0; } static int flexcan_chip_unfreeze(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; unsigned int timeout = FLEXCAN_TIMEOUT_US / 10; u32 reg; reg = flexcan_read(®s->mcr); reg &= ~FLEXCAN_MCR_HALT; flexcan_write(reg, ®s->mcr); while (timeout-- && (flexcan_read(®s->mcr) & FLEXCAN_MCR_FRZ_ACK)) udelay(20); if (flexcan_read(®s->mcr) & FLEXCAN_MCR_FRZ_ACK) return -ETIMEDOUT; return 0; } static int flexcan_chip_softreset(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; unsigned int timeout = FLEXCAN_TIMEOUT_US / 10; flexcan_write(FLEXCAN_MCR_SOFTRST, ®s->mcr); while (timeout-- && (flexcan_read(®s->mcr) & FLEXCAN_MCR_SOFTRST)) udelay(10); if (flexcan_read(®s->mcr) & FLEXCAN_MCR_SOFTRST) return -ETIMEDOUT; return 0; } static int __flexcan_get_berr_counter(const struct net_device *dev, struct can_berr_counter *bec) { const struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_regs __iomem *regs = priv->regs; u32 reg = flexcan_read(®s->ecr); bec->txerr = (reg >> 0) & 0xff; bec->rxerr = (reg >> 8) & 0xff; return 0; } static int flexcan_get_berr_counter(const struct net_device *dev, struct can_berr_counter *bec) { const struct flexcan_priv *priv = netdev_priv(dev); int err; pm_runtime_get_sync(priv->dev); err = __flexcan_get_berr_counter(dev, bec); pm_runtime_put(priv->dev); return err; } static int flexcan_start_xmit(struct sk_buff *skb, struct net_device *dev) { const struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_regs __iomem *regs = priv->regs; struct canfd_frame *cf = (struct canfd_frame *)skb->data; u32 can_id, reg_fdctrl; u32 data; u32 ctrl = FLEXCAN_MB_CODE_TX_DATA | (can_len2dlc(cf->len) << 16); u32 i; if (can_dropped_invalid_skb(dev, skb)) return NETDEV_TX_OK; netif_stop_queue(dev); if (cf->can_id & CAN_EFF_FLAG) { can_id = cf->can_id & CAN_EFF_MASK; ctrl |= FLEXCAN_MB_CNT_IDE | FLEXCAN_MB_CNT_SRR; } else { can_id = (cf->can_id & CAN_SFF_MASK) << 18; } if (cf->can_id & CAN_RTR_FLAG) ctrl |= FLEXCAN_MB_CNT_RTR; for (i = 0; i < cf->len; i += 4) { data = be32_to_cpup((__be32 *)&cf->data[i]); flexcan_mb_write(priv, priv->tx_mb_idx, FLEXCAN_MB_DATA(i / 4), data); } can_put_echo_skb(skb, dev, 0); if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { reg_fdctrl = flexcan_read(®s->fdctrl) & ~FLEXCAN_FDCTRL_FDRATE; if (cf->flags & CANFD_BRS) { reg_fdctrl |= FLEXCAN_FDCTRL_FDRATE; ctrl |= FLEXCAN_MB_CNT_BRS; } flexcan_write(reg_fdctrl, ®s->fdctrl); ctrl |= FLEXCAN_MB_CNT_EDL; } flexcan_mb_write(priv, priv->tx_mb_idx, FLEXCAN_MB_ID, can_id); flexcan_mb_write(priv, priv->tx_mb_idx, FLEXCAN_MB_CTRL, ctrl); /* Errata ERR005829 step8: * Write twice INACTIVE(0x8) code to first MB. */ flexcan_mb_write(priv, priv->tx_mb_reserved_idx, FLEXCAN_MB_CTRL, FLEXCAN_MB_CODE_TX_INACTIVE); flexcan_mb_write(priv, priv->tx_mb_reserved_idx, FLEXCAN_MB_CTRL, FLEXCAN_MB_CODE_TX_INACTIVE); return NETDEV_TX_OK; } static void flexcan_irq_bus_err(struct net_device *dev, u32 reg_esr) { struct flexcan_priv *priv = netdev_priv(dev); struct sk_buff *skb; struct can_frame *cf; bool rx_errors = false, tx_errors = false; skb = alloc_can_err_skb(dev, &cf); if (unlikely(!skb)) return; cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; if (reg_esr & FLEXCAN_ESR_BIT1_ERR) { netdev_dbg(dev, "BIT1_ERR irq\n"); cf->data[2] |= CAN_ERR_PROT_BIT1; tx_errors = true; } if (reg_esr & FLEXCAN_ESR_BIT0_ERR) { netdev_dbg(dev, "BIT0_ERR irq\n"); cf->data[2] |= CAN_ERR_PROT_BIT0; tx_errors = true; } if (reg_esr & FLEXCAN_ESR_ACK_ERR) { netdev_dbg(dev, "ACK_ERR irq\n"); cf->can_id |= CAN_ERR_ACK; cf->data[3] = CAN_ERR_PROT_LOC_ACK; tx_errors = true; } if (reg_esr & FLEXCAN_ESR_CRC_ERR) { netdev_dbg(dev, "CRC_ERR irq\n"); cf->data[2] |= CAN_ERR_PROT_BIT; cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; rx_errors = true; } if (reg_esr & FLEXCAN_ESR_FRM_ERR) { netdev_dbg(dev, "FRM_ERR irq\n"); cf->data[2] |= CAN_ERR_PROT_FORM; rx_errors = true; } if (reg_esr & FLEXCAN_ESR_STF_ERR) { netdev_dbg(dev, "STF_ERR irq\n"); cf->data[2] |= CAN_ERR_PROT_STUFF; rx_errors = true; } priv->can.can_stats.bus_error++; if (rx_errors) dev->stats.rx_errors++; if (tx_errors) dev->stats.tx_errors++; can_rx_offload_queue_tail(&priv->offload, skb); } static void flexcan_irq_state(struct net_device *dev, u32 reg_esr) { struct flexcan_priv *priv = netdev_priv(dev); struct sk_buff *skb; struct can_frame *cf; enum can_state new_state, rx_state, tx_state; int flt; struct can_berr_counter bec; flt = reg_esr & FLEXCAN_ESR_FLT_CONF_MASK; if (likely(flt == FLEXCAN_ESR_FLT_CONF_ACTIVE)) { tx_state = unlikely(reg_esr & FLEXCAN_ESR_TX_WRN) ? CAN_STATE_ERROR_WARNING : CAN_STATE_ERROR_ACTIVE; rx_state = unlikely(reg_esr & FLEXCAN_ESR_RX_WRN) ? CAN_STATE_ERROR_WARNING : CAN_STATE_ERROR_ACTIVE; new_state = max(tx_state, rx_state); } else { __flexcan_get_berr_counter(dev, &bec); new_state = flt == FLEXCAN_ESR_FLT_CONF_PASSIVE ? CAN_STATE_ERROR_PASSIVE : CAN_STATE_BUS_OFF; rx_state = bec.rxerr >= bec.txerr ? new_state : 0; tx_state = bec.rxerr <= bec.txerr ? new_state : 0; } /* state hasn't changed */ if (likely(new_state == priv->can.state)) return; skb = alloc_can_err_skb(dev, &cf); if (unlikely(!skb)) return; can_change_state(dev, cf, tx_state, rx_state); if (unlikely(new_state == CAN_STATE_BUS_OFF)) can_bus_off(dev); can_rx_offload_queue_tail(&priv->offload, skb); } static inline struct flexcan_priv *rx_offload_to_priv(struct can_rx_offload *offload) { return container_of(offload, struct flexcan_priv, offload); } static unsigned int flexcan_mailbox_read(struct can_rx_offload *offload, struct canfd_frame *cf, u32 *timestamp, unsigned int n) { struct flexcan_priv *priv = rx_offload_to_priv(offload); struct flexcan_regs __iomem *regs = priv->regs; u32 reg_ctrl, reg_id, reg_iflag1; u32 i; if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) { u32 code; do { reg_ctrl = flexcan_mb_read(priv, n, FLEXCAN_MB_CTRL); } while (reg_ctrl & FLEXCAN_MB_CODE_RX_BUSY_BIT); /* is this MB empty? */ code = reg_ctrl & FLEXCAN_MB_CODE_MASK; if ((code != FLEXCAN_MB_CODE_RX_FULL) && (code != FLEXCAN_MB_CODE_RX_OVERRUN)) return 0; if (code == FLEXCAN_MB_CODE_RX_OVERRUN) { /* This MB was overrun, we lost data */ offload->dev->stats.rx_over_errors++; offload->dev->stats.rx_errors++; } } else { reg_iflag1 = flexcan_read(®s->iflag1); if (!(reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE)) return 0; reg_ctrl = flexcan_mb_read(priv, n, FLEXCAN_MB_CTRL); } /* increase timstamp to full 32 bit */ *timestamp = reg_ctrl << 16; reg_id = flexcan_mb_read(priv, n, FLEXCAN_MB_ID); if (reg_ctrl & FLEXCAN_MB_CNT_IDE) cf->can_id = ((reg_id >> 0) & CAN_EFF_MASK) | CAN_EFF_FLAG; else cf->can_id = (reg_id >> 18) & CAN_SFF_MASK; if (reg_ctrl & FLEXCAN_MB_CNT_EDL) cf->len = can_dlc2len((reg_ctrl >> 16) & 0x0F); else cf->len = get_can_dlc((reg_ctrl >> 16) & 0x0F); if (reg_ctrl & FLEXCAN_MB_CNT_ESI) { cf->flags |= CANFD_ESI; netdev_warn(priv->can.dev, "ESI Error\n"); } if (!(reg_ctrl & FLEXCAN_MB_CNT_EDL) && reg_ctrl & FLEXCAN_MB_CNT_RTR) { cf->can_id |= CAN_RTR_FLAG; } else { if (reg_ctrl & FLEXCAN_MB_CNT_BRS) cf->flags |= CANFD_BRS; for (i = 0; i < cf->len; i += 4) *(__be32 *)(cf->data + i) = cpu_to_be32(flexcan_mb_read(priv, n, FLEXCAN_MB_DATA(i / 4))); } /* mark as read */ if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) { /* Clear IRQ */ if (n < 32) flexcan_write(BIT(n), ®s->iflag1); else flexcan_write(BIT(n - 32), ®s->iflag2); } else { flexcan_write(FLEXCAN_IFLAG_RX_FIFO_AVAILABLE, ®s->iflag1); flexcan_read(®s->timer); } return 1; } static inline u64 flexcan_read_reg_iflag_rx(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; u32 iflag1, iflag2; iflag2 = flexcan_read(®s->iflag2) & priv->reg_imask2_default; iflag1 = flexcan_read(®s->iflag1) & priv->reg_imask1_default & ~FLEXCAN_IFLAG_MB(priv->tx_mb_idx); return (u64)iflag2 << 32 | iflag1; } static irqreturn_t flexcan_irq(int irq, void *dev_id) { struct net_device *dev = dev_id; struct net_device_stats *stats = &dev->stats; struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_regs __iomem *regs = priv->regs; irqreturn_t handled = IRQ_NONE; u32 reg_iflag1, reg_esr; enum can_state last_state = priv->can.state; reg_iflag1 = flexcan_read(®s->iflag1); /* reception interrupt */ if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) { u64 reg_iflag; int ret; while ((reg_iflag = flexcan_read_reg_iflag_rx(priv))) { handled = IRQ_HANDLED; ret = can_rx_offload_irq_offload_timestamp(&priv->offload, reg_iflag); if (!ret) break; } } else { if (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE) { handled = IRQ_HANDLED; can_rx_offload_irq_offload_fifo(&priv->offload); } /* FIFO overflow interrupt */ if (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_OVERFLOW) { handled = IRQ_HANDLED; flexcan_write(FLEXCAN_IFLAG_RX_FIFO_OVERFLOW, ®s->iflag1); dev->stats.rx_over_errors++; dev->stats.rx_errors++; } } /* transmission complete interrupt */ if (reg_iflag1 & FLEXCAN_IFLAG_MB(priv->tx_mb_idx)) { handled = IRQ_HANDLED; stats->tx_bytes += can_get_echo_skb(dev, 0); stats->tx_packets++; can_led_event(dev, CAN_LED_EVENT_TX); /* after sending a RTR frame MB is in RX mode */ flexcan_mb_write(priv, priv->tx_mb_idx, FLEXCAN_MB_CTRL, FLEXCAN_MB_CODE_TX_INACTIVE); flexcan_write(FLEXCAN_IFLAG_MB(priv->tx_mb_idx), ®s->iflag1); netif_wake_queue(dev); } reg_esr = flexcan_read(®s->esr); /* ACK all bus error and state change IRQ sources */ if (reg_esr & FLEXCAN_ESR_ALL_INT) { handled = IRQ_HANDLED; flexcan_write(reg_esr & FLEXCAN_ESR_ALL_INT, ®s->esr); } /* state change interrupt or broken error state quirk fix is enabled */ if ((reg_esr & FLEXCAN_ESR_ERR_STATE) || (priv->devtype_data->quirks & (FLEXCAN_QUIRK_BROKEN_WERR_STATE | FLEXCAN_QUIRK_BROKEN_PERR_STATE))) flexcan_irq_state(dev, reg_esr); /* bus error IRQ - handle if bus error reporting is activated */ if ((reg_esr & FLEXCAN_ESR_ERR_BUS) && (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) flexcan_irq_bus_err(dev, reg_esr); /* availability of error interrupt among state transitions in case * bus error reporting is de-activated and * FLEXCAN_QUIRK_BROKEN_PERR_STATE is enabled: * +--------------------------------------------------------------+ * | +----------------------------------------------+ [stopped / | * | | | sleeping] -+ * +-+-> active <-> warning <-> passive -> bus off -+ * ___________^^^^^^^^^^^^_______________________________ * disabled(1) enabled disabled * * (1): enabled if FLEXCAN_QUIRK_BROKEN_WERR_STATE is enabled */ if ((last_state != priv->can.state) && (priv->devtype_data->quirks & FLEXCAN_QUIRK_BROKEN_PERR_STATE) && !(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) { switch (priv->can.state) { case CAN_STATE_ERROR_ACTIVE: if (priv->devtype_data->quirks & FLEXCAN_QUIRK_BROKEN_WERR_STATE) flexcan_error_irq_enable(priv); else flexcan_error_irq_disable(priv); break; case CAN_STATE_ERROR_WARNING: flexcan_error_irq_enable(priv); break; case CAN_STATE_ERROR_PASSIVE: case CAN_STATE_BUS_OFF: flexcan_error_irq_disable(priv); break; default: break; } } return handled; } static void flexcan_set_bittiming(struct net_device *dev) { const struct flexcan_priv *priv = netdev_priv(dev); const struct can_bittiming *bt = &priv->can.bittiming; const struct can_bittiming *dbt = &priv->can.data_bittiming; struct flexcan_regs __iomem *regs = priv->regs; u32 reg; reg = flexcan_read(®s->ctrl); reg &= ~(FLEXCAN_CTRL_LPB | FLEXCAN_CTRL_SMP | FLEXCAN_CTRL_LOM); if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) reg |= FLEXCAN_CTRL_LPB; if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) reg |= FLEXCAN_CTRL_LOM; if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES) reg |= FLEXCAN_CTRL_SMP; flexcan_write(reg, ®s->ctrl); if (priv->can.ctrlmode_supported & CAN_CTRLMODE_FD) { reg = FLEXCAN_CBT_EPRESDIV(bt->brp - 1) | FLEXCAN_CBT_EPSEG1(bt->phase_seg1 - 1) | FLEXCAN_CBT_EPSEG2(bt->phase_seg2 - 1) | FLEXCAN_CBT_ERJW(bt->sjw - 1) | FLEXCAN_CBT_EPROPSEG(bt->prop_seg - 1) | FLEXCAN_CBT_BTF; flexcan_write(reg, ®s->cbt); netdev_dbg(dev, "bt: prediv %d seg1 %d seg2 %d rjw %d propseg %d\n", bt->brp - 1, bt->phase_seg1 - 1, bt->phase_seg2 - 1, bt->sjw - 1, bt->prop_seg - 1); if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { reg = FLEXCAN_FDCBT_FPRESDIV(dbt->brp - 1) | FLEXCAN_FDCBT_FPSEG1(dbt->phase_seg1 - 1) | FLEXCAN_FDCBT_FPSEG2(dbt->phase_seg2 - 1) | FLEXCAN_FDCBT_FRJW(dbt->sjw - 1) | FLEXCAN_FDCBT_FPROPSEG(dbt->prop_seg); flexcan_write(reg, ®s->fdcbt); if (bt->brp != dbt->brp) netdev_warn(dev, "PRESDIV not the same, may risk transfer errors\n"); netdev_dbg(dev, "fdbt: prediv %d seg1 %d seg2 %d rjw %d propseg %d\n", dbt->brp - 1, dbt->phase_seg1 - 1, dbt->phase_seg2 - 1, dbt->sjw - 1, dbt->prop_seg); netdev_dbg(dev, "%s: mcr=0x%08x ctrl=0x%08x cbt=0x%08x fdcbt=0x%08x\n", __func__, flexcan_read(®s->mcr), flexcan_read(®s->ctrl), flexcan_read(®s->cbt), flexcan_read(®s->fdcbt)); } } else { reg = flexcan_read(®s->ctrl); reg &= ~(FLEXCAN_CTRL_PRESDIV(0xff) | FLEXCAN_CTRL_RJW(0x3) | FLEXCAN_CTRL_PSEG1(0x7) | FLEXCAN_CTRL_PSEG2(0x7) | FLEXCAN_CTRL_PROPSEG(0x7)); reg |= FLEXCAN_CTRL_PRESDIV(bt->brp - 1) | FLEXCAN_CTRL_PSEG1(bt->phase_seg1 - 1) | FLEXCAN_CTRL_PSEG2(bt->phase_seg2 - 1) | FLEXCAN_CTRL_RJW(bt->sjw - 1) | FLEXCAN_CTRL_PROPSEG(bt->prop_seg - 1); flexcan_write(reg, ®s->ctrl); netdev_dbg(dev, "bt: prediv %d seg1 %d seg2 %d rjw %d propseg %d\n", bt->brp - 1, bt->phase_seg1 - 1, bt->phase_seg2 - 1, bt->sjw - 1, bt->prop_seg - 1); /* print chip status */ netdev_dbg(dev, "%s: mcr=0x%08x ctrl=0x%08x\n", __func__, flexcan_read(®s->mcr), flexcan_read(®s->ctrl)); } } /* flexcan_chip_start * * this functions is entered with clocks enabled * */ static int flexcan_chip_start(struct net_device *dev) { struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_regs __iomem *regs = priv->regs; u32 reg_mcr, reg_ctrl, reg_ctrl2, reg_mecr, reg_fdctrl; int err, i; /* enable module */ err = flexcan_chip_enable(priv); if (err) return err; /* soft reset */ err = flexcan_chip_softreset(priv); if (err) goto out_chip_disable; flexcan_set_bittiming(dev); /* MCR * * enable freeze * enable fifo * halt now * only supervisor access * enable warning int * disable local echo * enable individual RX masking * choose format C * set max mailbox number */ reg_mcr = flexcan_read(®s->mcr); reg_mcr &= ~FLEXCAN_MCR_MAXMB(0xff); reg_mcr |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_HALT | FLEXCAN_MCR_SUPV | FLEXCAN_MCR_WRN_EN | FLEXCAN_MCR_SRX_DIS | FLEXCAN_MCR_IRMQ | FLEXCAN_MCR_IDAM_C; if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) { reg_mcr &= ~FLEXCAN_MCR_FEN; reg_mcr |= FLEXCAN_MCR_MAXMB(priv->offload.mb_last); } else { reg_mcr |= FLEXCAN_MCR_FEN | FLEXCAN_MCR_MAXMB(priv->tx_mb_idx); } /* enable self wakeup */ reg_mcr |= FLEXCAN_MCR_SLF_WAK; netdev_dbg(dev, "%s: writing mcr=0x%08x", __func__, reg_mcr); flexcan_write(reg_mcr, ®s->mcr); /* CTRL * * disable timer sync feature * * disable auto busoff recovery * transmit lowest buffer first * * enable tx and rx warning interrupt * enable bus off interrupt * (== FLEXCAN_CTRL_ERR_STATE) */ reg_ctrl = flexcan_read(®s->ctrl); reg_ctrl &= ~FLEXCAN_CTRL_TSYN; reg_ctrl |= FLEXCAN_CTRL_BOFF_REC | FLEXCAN_CTRL_LBUF | FLEXCAN_CTRL_ERR_STATE; /* enable the "error interrupt" (FLEXCAN_CTRL_ERR_MSK), * on most Flexcan cores, too. Otherwise we don't get * any error warning or passive interrupts. */ if (priv->devtype_data->quirks & FLEXCAN_QUIRK_BROKEN_WERR_STATE || priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) reg_ctrl |= FLEXCAN_CTRL_ERR_MSK; else reg_ctrl &= ~FLEXCAN_CTRL_ERR_MSK; /* save for later use */ priv->reg_ctrl_default = reg_ctrl; /* leave interrupts disabled for now */ reg_ctrl &= ~FLEXCAN_CTRL_ERR_ALL; netdev_dbg(dev, "%s: writing ctrl=0x%08x", __func__, reg_ctrl); flexcan_write(reg_ctrl, ®s->ctrl); if ((priv->devtype_data->quirks & FLEXCAN_QUIRK_ENABLE_EACEN_RRS)) { reg_ctrl2 = flexcan_read(®s->ctrl2); reg_ctrl2 |= FLEXCAN_CTRL2_EACEN | FLEXCAN_CTRL2_RRS; flexcan_write(reg_ctrl2, ®s->ctrl2); } /* CAN FD initialization * * disable BRS by default * Message Buffer Data Size 64 bytes per MB * disable Transceiver Delay Compensation * Configure Message Buffer according to CAN FD mode enabled or not */ if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { reg_fdctrl = flexcan_read(®s->fdctrl) & ~FLEXCAN_CANFD_MBDSR_MASK; reg_fdctrl |= FLEXCAN_CANFD_MBDSR_DEFAULT << FLEXCAN_CANFD_MBDSR_SHIFT; flexcan_write(reg_fdctrl, ®s->fdctrl); reg_mcr = flexcan_read(®s->mcr); flexcan_write(reg_mcr | FLEXCAN_MCR_FDEN, ®s->mcr); if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)) { reg_ctrl2 = flexcan_read(®s->ctrl2); flexcan_write(reg_ctrl2 | FLEXCAN_CTRL2_ISOCANFDEN, ®s->ctrl2); } priv->offload.is_canfd = true; priv->mb_size = FLEXCAN_MB_FD_SIZE; priv->mb_num = FLEXCAN_MB_FD_NUM; } else { priv->offload.is_canfd = false; priv->mb_size = FLEXCAN_MB_SIZE; priv->mb_num = FLEXCAN_MB_NUM; } /* clear and invalidate all mailboxes first */ for (i = priv->tx_mb_idx; i < priv->mb_num ; i++) { flexcan_mb_write(priv, i, FLEXCAN_MB_CTRL, FLEXCAN_MB_CODE_RX_INACTIVE); } if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) { for (i = priv->offload.mb_first; i <= priv->offload.mb_last; i++) flexcan_mb_write(priv, i, FLEXCAN_MB_CTRL, FLEXCAN_MB_CODE_RX_EMPTY); } /* Errata ERR005829: mark first TX mailbox as INACTIVE */ flexcan_mb_write(priv, priv->tx_mb_reserved_idx, FLEXCAN_MB_CTRL, FLEXCAN_MB_CODE_TX_INACTIVE); /* mark TX mailbox as INACTIVE */ flexcan_mb_write(priv, priv->tx_mb_idx, FLEXCAN_MB_CTRL, FLEXCAN_MB_CODE_TX_INACTIVE); /* acceptance mask/acceptance code (accept everything) */ flexcan_write(0x0, ®s->rxgmask); flexcan_write(0x0, ®s->rx14mask); flexcan_write(0x0, ®s->rx15mask); if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_RXFG) flexcan_write(0x0, ®s->rxfgmask); /* clear acceptance filters */ for (i = priv->tx_mb_idx; i < priv->mb_num ; i++) flexcan_write(0, ®s->rximr[i]); /* On Vybrid, disable memory error detection interrupts * and freeze mode. * This also works around errata e5295 which generates * false positive memory errors and put the device in * freeze mode. */ if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_MECR) { /* Follow the protocol as described in "Detection * and Correction of Memory Errors" to write to * MECR register */ reg_ctrl2 = flexcan_read(®s->ctrl2); reg_ctrl2 |= FLEXCAN_CTRL2_ECRWRE; flexcan_write(reg_ctrl2, ®s->ctrl2); reg_mecr = flexcan_read(®s->mecr); reg_mecr &= ~FLEXCAN_MECR_ECRWRDIS; flexcan_write(reg_mecr, ®s->mecr); reg_mecr &= ~(FLEXCAN_MECR_NCEFAFRZ | FLEXCAN_MECR_HANCEI_MSK | FLEXCAN_MECR_FANCEI_MSK); flexcan_write(reg_mecr, ®s->mecr); } err = flexcan_transceiver_enable(priv); if (err) goto out_chip_disable; /* synchronize with the can bus */ err = flexcan_chip_unfreeze(priv); if (err) goto out_transceiver_disable; priv->can.state = CAN_STATE_ERROR_ACTIVE; /* enable interrupts atomically */ disable_irq(dev->irq); flexcan_write(priv->reg_ctrl_default, ®s->ctrl); flexcan_write(priv->reg_imask1_default, ®s->imask1); flexcan_write(priv->reg_imask2_default, ®s->imask2); enable_irq(dev->irq); /* print chip status */ netdev_dbg(dev, "%s: reading mcr=0x%08x ctrl=0x%08x\n", __func__, flexcan_read(®s->mcr), flexcan_read(®s->ctrl)); return 0; out_transceiver_disable: flexcan_transceiver_disable(priv); out_chip_disable: flexcan_chip_disable(priv); return err; } /* flexcan_chip_stop * * this functions is entered with clocks enabled */ static void flexcan_chip_stop(struct net_device *dev) { struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_regs __iomem *regs = priv->regs; /* freeze + disable module */ flexcan_chip_freeze(priv); flexcan_chip_disable(priv); /* Disable all interrupts */ flexcan_write(0, ®s->imask2); flexcan_write(0, ®s->imask1); flexcan_write(priv->reg_ctrl_default & ~FLEXCAN_CTRL_ERR_ALL, ®s->ctrl); flexcan_transceiver_disable(priv); priv->can.state = CAN_STATE_STOPPED; } static int flexcan_open(struct net_device *dev) { struct flexcan_priv *priv = netdev_priv(dev); int err; err = pm_runtime_get_sync(priv->dev); if (err) return err; err = open_candev(dev); if (err) goto out_pm_runtime; err = request_irq(dev->irq, flexcan_irq, IRQF_SHARED, dev->name, dev); if (err) goto out_close; /* start chip and queuing */ err = flexcan_chip_start(dev); if (err) goto out_free_irq; device_set_wakeup_capable(priv->dev, priv->wakeup); can_led_event(dev, CAN_LED_EVENT_OPEN); can_rx_offload_enable(&priv->offload); netif_start_queue(dev); return 0; out_free_irq: free_irq(dev->irq, dev); out_close: close_candev(dev); out_pm_runtime: pm_runtime_put(priv->dev); return err; } static int flexcan_close(struct net_device *dev) { struct flexcan_priv *priv = netdev_priv(dev); netif_stop_queue(dev); can_rx_offload_disable(&priv->offload); flexcan_chip_stop(dev); free_irq(dev->irq, dev); close_candev(dev); device_set_wakeup_capable(priv->dev, false); can_led_event(dev, CAN_LED_EVENT_STOP); pm_runtime_put(priv->dev); return 0; } static int flexcan_set_mode(struct net_device *dev, enum can_mode mode) { int err; switch (mode) { case CAN_MODE_START: err = flexcan_chip_start(dev); if (err) return err; netif_wake_queue(dev); break; default: return -EOPNOTSUPP; } return 0; } static const struct net_device_ops flexcan_netdev_ops = { .ndo_open = flexcan_open, .ndo_stop = flexcan_close, .ndo_start_xmit = flexcan_start_xmit, .ndo_change_mtu = can_change_mtu, }; static int register_flexcandev(struct net_device *dev) { struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_regs __iomem *regs = priv->regs; u32 reg, err; /* select "bus clock", chip must be disabled */ err = flexcan_chip_disable(priv); if (err) return err; if (priv->clk_src) { reg = flexcan_read(®s->ctrl); reg |= FLEXCAN_CTRL_CLK_SRC; flexcan_write(reg, ®s->ctrl); } err = flexcan_chip_enable(priv); if (err) goto out_chip_disable; /* set freeze, halt and activate FIFO, restrict register access */ reg = flexcan_read(®s->mcr); reg |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_HALT | FLEXCAN_MCR_FEN | FLEXCAN_MCR_SUPV; flexcan_write(reg, ®s->mcr); /* Currently we only support newer versions of this core * featuring a RX hardware FIFO (although this driver doesn't * make use of it on some cores). Older cores, found on some * Coldfire derivates are not tested. */ reg = flexcan_read(®s->mcr); if (!(reg & FLEXCAN_MCR_FEN)) { netdev_err(dev, "Could not enable RX FIFO, unsupported core\n"); err = -ENODEV; goto out_chip_disable; } err = register_candev(dev); /* disable core and turn off clocks */ out_chip_disable: flexcan_chip_disable(priv); return err; } static void unregister_flexcandev(struct net_device *dev) { unregister_candev(dev); } #ifdef CONFIG_ARCH_MXC_ARM64 static int imx8_sc_ipc_fetch(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct flexcan_priv *priv; sc_err_t sc_err = SC_ERR_NONE; u32 mu_id; priv = netdev_priv(dev); sc_err = sc_ipc_getMuID(&mu_id); if (sc_err != SC_ERR_NONE) { pr_err("FLEXCAN ipg stop: Get MU ID failed\n"); return sc_err; } sc_err = sc_ipc_open(&priv->ipc_handle, mu_id); if (sc_err != SC_ERR_NONE) { pr_err("FLEXCAN ipg stop: Open MU channel failed\n"); return sc_err; } return sc_err; } #else static int imx8_sc_ipc_fetch(struct platform_device *pdev) { return 0; } #endif static int flexcan_of_parse_stop_mode(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct device_node *np = pdev->dev.of_node; struct device_node *node; struct flexcan_priv *priv; phandle phandle; u32 out_val[5]; int ret; if (!np) return -EINVAL; /* * stop mode property format is: * <&gpr req_gpr req_bit ack_gpr ack_bit>. */ ret = of_property_read_u32_array(np, "stop-mode", out_val, 5); if (ret) { dev_dbg(&pdev->dev, "no stop-mode property\n"); return ret; } phandle = *out_val; node = of_find_node_by_phandle(phandle); if (!node) { dev_dbg(&pdev->dev, "could not find gpr node by phandle\n"); return PTR_ERR(node); } priv = netdev_priv(dev); priv->stm.gpr = syscon_node_to_regmap(node); if (IS_ERR(priv->stm.gpr)) { dev_dbg(&pdev->dev, "could not find gpr regmap\n"); return PTR_ERR(priv->stm.gpr); } of_node_put(node); priv->stm.req_gpr = out_val[1]; priv->stm.req_bit = out_val[2]; priv->stm.ack_gpr = out_val[3]; priv->stm.ack_bit = out_val[4]; dev_dbg(&pdev->dev, "gpr %s req_gpr 0x%x req_bit %u ack_gpr 0x%x ack_bit %u\n", node->full_name, priv->stm.req_gpr, priv->stm.req_bit, priv->stm.ack_gpr, priv->stm.ack_bit); return 0; } static const struct of_device_id flexcan_of_match[] = { { .compatible = "fsl,imx8qm-flexcan", .data = &fsl_imx8qm_devtype_data, }, { .compatible = "fsl,imx6q-flexcan", .data = &fsl_imx6q_devtype_data, }, { .compatible = "fsl,imx28-flexcan", .data = &fsl_imx28_devtype_data, }, { .compatible = "fsl,p1010-flexcan", .data = &fsl_p1010_devtype_data, }, { .compatible = "fsl,vf610-flexcan", .data = &fsl_vf610_devtype_data, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, flexcan_of_match); static const struct platform_device_id flexcan_id_table[] = { { .name = "flexcan", .driver_data = (kernel_ulong_t)&fsl_p1010_devtype_data, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(platform, flexcan_id_table); static int flexcan_probe(struct platform_device *pdev) { const struct of_device_id *of_id; const struct flexcan_devtype_data *devtype_data; struct net_device *dev; struct flexcan_priv *priv; struct regulator *reg_xceiver; struct resource *mem; struct clk *clk_ipg = NULL, *clk_per = NULL; struct flexcan_regs __iomem *regs; int err, irq; u32 clock_freq = 0; u32 clk_src = 1; reg_xceiver = devm_regulator_get(&pdev->dev, "xceiver"); if (PTR_ERR(reg_xceiver) == -EPROBE_DEFER) return -EPROBE_DEFER; else if (IS_ERR(reg_xceiver)) reg_xceiver = NULL; if (pdev->dev.of_node) { of_property_read_u32(pdev->dev.of_node, "clock-frequency", &clock_freq); of_property_read_u32(pdev->dev.of_node, "clk-src", &clk_src); } if (!clock_freq) { clk_ipg = devm_clk_get(&pdev->dev, "ipg"); if (IS_ERR(clk_ipg)) { dev_err(&pdev->dev, "no ipg clock defined\n"); return PTR_ERR(clk_ipg); } clk_per = devm_clk_get(&pdev->dev, "per"); if (IS_ERR(clk_per)) { dev_err(&pdev->dev, "no per clock defined\n"); return PTR_ERR(clk_per); } clock_freq = clk_get_rate(clk_per); } mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (irq <= 0) return -ENODEV; regs = devm_ioremap_resource(&pdev->dev, mem); if (IS_ERR(regs)) return PTR_ERR(regs); of_id = of_match_device(flexcan_of_match, &pdev->dev); if (of_id) { devtype_data = of_id->data; } else if (platform_get_device_id(pdev)->driver_data) { devtype_data = (struct flexcan_devtype_data *) platform_get_device_id(pdev)->driver_data; } else { return -ENODEV; } dev = alloc_candev(sizeof(struct flexcan_priv), 1); if (!dev) return -ENOMEM; platform_set_drvdata(pdev, dev); SET_NETDEV_DEV(dev, &pdev->dev); dev->netdev_ops = &flexcan_netdev_ops; dev->irq = irq; dev->flags |= IFF_ECHO; priv = netdev_priv(dev); priv->dev = &pdev->dev; priv->clk_src = clk_src; priv->can.clock.freq = clock_freq; priv->can.bittiming_const = &flexcan_bittiming_const; priv->can.data_bittiming_const = &flexcan_fd_data_bittiming_const; priv->can.do_set_mode = flexcan_set_mode; priv->can.do_get_berr_counter = flexcan_get_berr_counter; priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_3_SAMPLES | CAN_CTRLMODE_BERR_REPORTING; priv->regs = regs; priv->base = regs; priv->clk_ipg = clk_ipg; priv->clk_per = clk_per; priv->pdata = dev_get_platdata(&pdev->dev); priv->devtype_data = devtype_data; priv->reg_xceiver = reg_xceiver; priv->offload.is_canfd = false; if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) { if (priv->devtype_data->quirks & FLEXCAN_QUIRK_TIMESTAMP_SUPPORT_FD) { priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD | CAN_CTRLMODE_FD_NON_ISO; priv->can.bittiming_const = &flexcan_fd_bittiming_const; priv->tx_mb_reserved_idx = FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP_FD; priv->tx_mb_idx = FLEXCAN_TX_MB_OFF_TIMESTAMP_FD; } else { priv->tx_mb_reserved_idx = FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP; priv->tx_mb_idx = FLEXCAN_TX_MB_OFF_TIMESTAMP; } } else { if (priv->devtype_data->quirks & FLEXCAN_QUIRK_TIMESTAMP_SUPPORT_FD) { dev_err(&pdev->dev, "canfd mode can't work on fifo mode\n"); err = -EINVAL; goto failed_offload; } priv->tx_mb_reserved_idx = FLEXCAN_TX_MB_RESERVED_OFF_FIFO; priv->tx_mb_idx = FLEXCAN_TX_MB_OFF_FIFO; } priv->reg_imask1_default = FLEXCAN_IFLAG_MB(priv->tx_mb_idx); priv->reg_imask2_default = 0; priv->offload.mailbox_read = flexcan_mailbox_read; if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) { u64 imask; if (priv->devtype_data->quirks & FLEXCAN_QUIRK_TIMESTAMP_SUPPORT_FD) { priv->offload.mb_first = FLEXCAN_RX_MB_OFF_TIMESTAMP_FD_FIRST; priv->offload.mb_last = FLEXCAN_RX_MB_OFF_TIMESTAMP_FD_LAST; } else { priv->offload.mb_first = FLEXCAN_RX_MB_OFF_TIMESTAMP_FIRST; priv->offload.mb_last = FLEXCAN_RX_MB_OFF_TIMESTAMP_LAST; } imask = GENMASK_ULL(priv->offload.mb_last, priv->offload.mb_first); priv->reg_imask1_default |= imask; priv->reg_imask2_default |= imask >> 32; err = can_rx_offload_add_timestamp(dev, &priv->offload); } else { priv->reg_imask1_default |= FLEXCAN_IFLAG_RX_FIFO_OVERFLOW | FLEXCAN_IFLAG_RX_FIFO_AVAILABLE; err = can_rx_offload_add_fifo(dev, &priv->offload, FLEXCAN_NAPI_WEIGHT); } if (err) goto failed_offload; pm_runtime_enable(&pdev->dev); err = pm_runtime_get_sync(&pdev->dev); if (err < 0) { dev_err(&pdev->dev, "pm_runtime_get failed(%d)\n", err); goto failed_rpm_disable; } err = register_flexcandev(dev); if (err) { dev_err(&pdev->dev, "registering netdev failed\n"); goto failed_rpm_put; } devm_can_led_init(dev); priv->wakeup = true; if (priv->devtype_data->quirks & FLEXCAN_QUIRK_TIMESTAMP_SUPPORT_FD) { err = imx8_sc_ipc_fetch(pdev); if (err) { priv->wakeup = false; dev_dbg(&pdev->dev, "failed to fetch scu ipc\n"); } } else if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_RXFG) { err = flexcan_of_parse_stop_mode(pdev); if (err) { priv->wakeup = false;; dev_dbg(&pdev->dev, "failed to parse stop-mode\n"); } } pm_runtime_put(&pdev->dev); dev_info(&pdev->dev, "device registered (reg_base=%p, irq=%d)\n", priv->regs, dev->irq); return 0; failed_rpm_put: pm_runtime_put(priv->dev); failed_rpm_disable: pm_runtime_disable(&pdev->dev); failed_offload: free_candev(dev); return err; } static int flexcan_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct flexcan_priv *priv = netdev_priv(dev); #ifdef CONFIG_ARCH_MXC_ARM64 sc_ipc_close(priv->ipc_handle); #endif unregister_flexcandev(dev); pm_runtime_disable(&pdev->dev); can_rx_offload_del(&priv->offload); free_candev(dev); return 0; } static int __maybe_unused flexcan_suspend(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct flexcan_priv *priv = netdev_priv(dev); int ret = 0; int err = 0; if (netif_running(dev)) { netif_stop_queue(dev); netif_device_detach(dev); /* * if wakeup is enabled, enter stop mode * else enter disabled mode. */ if (device_may_wakeup(device)) { enable_irq_wake(dev->irq); flexcan_enter_stop_mode(priv); } else { err = flexcan_chip_disable(priv); if (err) { netif_device_attach(dev); netif_start_queue(dev); return err; } ret = pm_runtime_force_suspend(device); pinctrl_pm_select_sleep_state(device); } } priv->can.state = CAN_STATE_SLEEPING; return ret; } static int __maybe_unused flexcan_resume(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct flexcan_priv *priv = netdev_priv(dev); int err = 0; priv->can.state = CAN_STATE_ERROR_ACTIVE; if (netif_running(dev)) { netif_device_attach(dev); netif_start_queue(dev); if (device_may_wakeup(device)) { flexcan_wake_mask_disable(priv); } else { pinctrl_pm_select_default_state(device); err = pm_runtime_force_resume(device); if (err) return err; err = flexcan_chip_start(dev); } } return err; } static int __maybe_unused flexcan_runtime_suspend(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct flexcan_priv *priv = netdev_priv(dev); flexcan_clks_disable(priv); pinctrl_pm_select_sleep_state(priv->dev); return 0; } static int __maybe_unused flexcan_runtime_resume(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct flexcan_priv *priv = netdev_priv(dev); pinctrl_pm_select_default_state(priv->dev); flexcan_clks_enable(priv); return 0; } static int __maybe_unused flexcan_noirq_suspend(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct flexcan_priv *priv = netdev_priv(dev); if (netif_running(dev) && device_may_wakeup(device)) { flexcan_wake_mask_enable(priv); } return 0; } static int __maybe_unused flexcan_noirq_resume(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct flexcan_priv *priv = netdev_priv(dev); if (netif_running(dev) && device_may_wakeup(device)) { disable_irq_wake(dev->irq); flexcan_exit_stop_mode(priv); } return 0; } static const struct dev_pm_ops flexcan_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(flexcan_suspend, flexcan_resume) SET_RUNTIME_PM_OPS(flexcan_runtime_suspend, flexcan_runtime_resume, NULL) SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(flexcan_noirq_suspend, flexcan_noirq_resume) }; static struct platform_driver flexcan_driver = { .driver = { .name = DRV_NAME, .pm = &flexcan_pm_ops, .of_match_table = flexcan_of_match, }, .probe = flexcan_probe, .remove = flexcan_remove, .id_table = flexcan_id_table, }; module_platform_driver(flexcan_driver); MODULE_AUTHOR("Sascha Hauer , " "Marc Kleine-Budde "); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("CAN port driver for flexcan based chip");