/* * SuperH Ethernet device driver * * Copyright (C) 2006-2012 Nobuhiro Iwamatsu * Copyright (C) 2008-2012 Renesas Solutions Corp. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * * The full GNU General Public License is included in this distribution in * the file called "COPYING". */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sh_eth.h" #define SH_ETH_DEF_MSG_ENABLE \ (NETIF_MSG_LINK | \ NETIF_MSG_TIMER | \ NETIF_MSG_RX_ERR| \ NETIF_MSG_TX_ERR) /* There is CPU dependent code */ #if defined(CONFIG_CPU_SUBTYPE_SH7724) #define SH_ETH_RESET_DEFAULT 1 static void sh_eth_set_duplex(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); if (mdp->duplex) /* Full */ sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR); else /* Half */ sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR); } static void sh_eth_set_rate(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); switch (mdp->speed) { case 10: /* 10BASE */ sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR); break; case 100:/* 100BASE */ sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR); break; default: break; } } /* SH7724 */ static struct sh_eth_cpu_data sh_eth_my_cpu_data = { .set_duplex = sh_eth_set_duplex, .set_rate = sh_eth_set_rate, .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f, .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO, .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI, .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE, .apr = 1, .mpr = 1, .tpauser = 1, .hw_swap = 1, .rpadir = 1, .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */ }; #elif defined(CONFIG_CPU_SUBTYPE_SH7757) #define SH_ETH_HAS_BOTH_MODULES 1 #define SH_ETH_HAS_TSU 1 static void sh_eth_set_duplex(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); if (mdp->duplex) /* Full */ sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR); else /* Half */ sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR); } static void sh_eth_set_rate(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); switch (mdp->speed) { case 10: /* 10BASE */ sh_eth_write(ndev, 0, RTRATE); break; case 100:/* 100BASE */ sh_eth_write(ndev, 1, RTRATE); break; default: break; } } /* SH7757 */ static struct sh_eth_cpu_data sh_eth_my_cpu_data = { .set_duplex = sh_eth_set_duplex, .set_rate = sh_eth_set_rate, .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, .rmcr_value = 0x00000001, .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO, .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI, .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE, .apr = 1, .mpr = 1, .tpauser = 1, .hw_swap = 1, .no_ade = 1, .rpadir = 1, .rpadir_value = 2 << 16, }; #define SH_GIGA_ETH_BASE 0xfee00000 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8) #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0) static void sh_eth_chip_reset_giga(struct net_device *ndev) { int i; unsigned long mahr[2], malr[2]; /* save MAHR and MALR */ for (i = 0; i < 2; i++) { malr[i] = ioread32((void *)GIGA_MALR(i)); mahr[i] = ioread32((void *)GIGA_MAHR(i)); } /* reset device */ iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800)); mdelay(1); /* restore MAHR and MALR */ for (i = 0; i < 2; i++) { iowrite32(malr[i], (void *)GIGA_MALR(i)); iowrite32(mahr[i], (void *)GIGA_MAHR(i)); } } static int sh_eth_is_gether(struct sh_eth_private *mdp); static void sh_eth_reset(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int cnt = 100; if (sh_eth_is_gether(mdp)) { sh_eth_write(ndev, 0x03, EDSR); sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR); while (cnt > 0) { if (!(sh_eth_read(ndev, EDMR) & 0x3)) break; mdelay(1); cnt--; } if (cnt < 0) printk(KERN_ERR "Device reset fail\n"); /* Table Init */ sh_eth_write(ndev, 0x0, TDLAR); sh_eth_write(ndev, 0x0, TDFAR); sh_eth_write(ndev, 0x0, TDFXR); sh_eth_write(ndev, 0x0, TDFFR); sh_eth_write(ndev, 0x0, RDLAR); sh_eth_write(ndev, 0x0, RDFAR); sh_eth_write(ndev, 0x0, RDFXR); sh_eth_write(ndev, 0x0, RDFFR); } else { sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR); mdelay(3); sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR); } } static void sh_eth_set_duplex_giga(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); if (mdp->duplex) /* Full */ sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR); else /* Half */ sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR); } static void sh_eth_set_rate_giga(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); switch (mdp->speed) { case 10: /* 10BASE */ sh_eth_write(ndev, 0x00000000, GECMR); break; case 100:/* 100BASE */ sh_eth_write(ndev, 0x00000010, GECMR); break; case 1000: /* 1000BASE */ sh_eth_write(ndev, 0x00000020, GECMR); break; default: break; } } /* SH7757(GETHERC) */ static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = { .chip_reset = sh_eth_chip_reset_giga, .set_duplex = sh_eth_set_duplex_giga, .set_rate = sh_eth_set_rate_giga, .ecsr_value = ECSR_ICD | ECSR_MPD, .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, .tx_check = EESR_TC1 | EESR_FTC, .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI, .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \ EESR_TFE, .fdr_value = 0x0000072f, .rmcr_value = 0x00000001, .apr = 1, .mpr = 1, .tpauser = 1, .bculr = 1, .hw_swap = 1, .rpadir = 1, .rpadir_value = 2 << 16, .no_trimd = 1, .no_ade = 1, .tsu = 1, }; static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp) { if (sh_eth_is_gether(mdp)) return &sh_eth_my_cpu_data_giga; else return &sh_eth_my_cpu_data; } #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763) #define SH_ETH_HAS_TSU 1 static void sh_eth_reset_hw_crc(struct net_device *ndev); static void sh_eth_chip_reset(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); /* reset device */ sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR); mdelay(1); } static void sh_eth_reset(struct net_device *ndev) { int cnt = 100; sh_eth_write(ndev, EDSR_ENALL, EDSR); sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR); while (cnt > 0) { if (!(sh_eth_read(ndev, EDMR) & 0x3)) break; mdelay(1); cnt--; } if (cnt == 0) printk(KERN_ERR "Device reset fail\n"); /* Table Init */ sh_eth_write(ndev, 0x0, TDLAR); sh_eth_write(ndev, 0x0, TDFAR); sh_eth_write(ndev, 0x0, TDFXR); sh_eth_write(ndev, 0x0, TDFFR); sh_eth_write(ndev, 0x0, RDLAR); sh_eth_write(ndev, 0x0, RDFAR); sh_eth_write(ndev, 0x0, RDFXR); sh_eth_write(ndev, 0x0, RDFFR); /* Reset HW CRC register */ sh_eth_reset_hw_crc(ndev); } static void sh_eth_set_duplex(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); if (mdp->duplex) /* Full */ sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR); else /* Half */ sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR); } static void sh_eth_set_rate(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); switch (mdp->speed) { case 10: /* 10BASE */ sh_eth_write(ndev, GECMR_10, GECMR); break; case 100:/* 100BASE */ sh_eth_write(ndev, GECMR_100, GECMR); break; case 1000: /* 1000BASE */ sh_eth_write(ndev, GECMR_1000, GECMR); break; default: break; } } /* sh7763 */ static struct sh_eth_cpu_data sh_eth_my_cpu_data = { .chip_reset = sh_eth_chip_reset, .set_duplex = sh_eth_set_duplex, .set_rate = sh_eth_set_rate, .ecsr_value = ECSR_ICD | ECSR_MPD, .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, .tx_check = EESR_TC1 | EESR_FTC, .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI, .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \ EESR_TFE, .apr = 1, .mpr = 1, .tpauser = 1, .bculr = 1, .hw_swap = 1, .no_trimd = 1, .no_ade = 1, .tsu = 1, #if defined(CONFIG_CPU_SUBTYPE_SH7734) .hw_crc = 1, #endif }; static void sh_eth_reset_hw_crc(struct net_device *ndev) { if (sh_eth_my_cpu_data.hw_crc) sh_eth_write(ndev, 0x0, CSMR); } #elif defined(CONFIG_CPU_SUBTYPE_SH7619) #define SH_ETH_RESET_DEFAULT 1 static struct sh_eth_cpu_data sh_eth_my_cpu_data = { .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, .apr = 1, .mpr = 1, .tpauser = 1, .hw_swap = 1, }; #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712) #define SH_ETH_RESET_DEFAULT 1 #define SH_ETH_HAS_TSU 1 static struct sh_eth_cpu_data sh_eth_my_cpu_data = { .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, .tsu = 1, }; #endif static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd) { if (!cd->ecsr_value) cd->ecsr_value = DEFAULT_ECSR_INIT; if (!cd->ecsipr_value) cd->ecsipr_value = DEFAULT_ECSIPR_INIT; if (!cd->fcftr_value) cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \ DEFAULT_FIFO_F_D_RFD; if (!cd->fdr_value) cd->fdr_value = DEFAULT_FDR_INIT; if (!cd->rmcr_value) cd->rmcr_value = DEFAULT_RMCR_VALUE; if (!cd->tx_check) cd->tx_check = DEFAULT_TX_CHECK; if (!cd->eesr_err_check) cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK; if (!cd->tx_error_check) cd->tx_error_check = DEFAULT_TX_ERROR_CHECK; } #if defined(SH_ETH_RESET_DEFAULT) /* Chip Reset */ static void sh_eth_reset(struct net_device *ndev) { sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR); mdelay(3); sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR); } #endif #if defined(CONFIG_CPU_SH4) static void sh_eth_set_receive_align(struct sk_buff *skb) { int reserve; reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1)); if (reserve) skb_reserve(skb, reserve); } #else static void sh_eth_set_receive_align(struct sk_buff *skb) { skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN); } #endif /* CPU <-> EDMAC endian convert */ static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x) { switch (mdp->edmac_endian) { case EDMAC_LITTLE_ENDIAN: return cpu_to_le32(x); case EDMAC_BIG_ENDIAN: return cpu_to_be32(x); } return x; } static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x) { switch (mdp->edmac_endian) { case EDMAC_LITTLE_ENDIAN: return le32_to_cpu(x); case EDMAC_BIG_ENDIAN: return be32_to_cpu(x); } return x; } /* * Program the hardware MAC address from dev->dev_addr. */ static void update_mac_address(struct net_device *ndev) { sh_eth_write(ndev, (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) | (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR); sh_eth_write(ndev, (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR); } /* * Get MAC address from SuperH MAC address register * * SuperH's Ethernet device doesn't have 'ROM' to MAC address. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g). * When you want use this device, you must set MAC address in bootloader. * */ static void read_mac_address(struct net_device *ndev, unsigned char *mac) { if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) { memcpy(ndev->dev_addr, mac, 6); } else { ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24); ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF; ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF; ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF); ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF; ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF); } } static int sh_eth_is_gether(struct sh_eth_private *mdp) { if (mdp->reg_offset == sh_eth_offset_gigabit) return 1; else return 0; } static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp) { if (sh_eth_is_gether(mdp)) return EDTRR_TRNS_GETHER; else return EDTRR_TRNS_ETHER; } struct bb_info { void (*set_gate)(void *addr); struct mdiobb_ctrl ctrl; void *addr; u32 mmd_msk;/* MMD */ u32 mdo_msk; u32 mdi_msk; u32 mdc_msk; }; /* PHY bit set */ static void bb_set(void *addr, u32 msk) { iowrite32(ioread32(addr) | msk, addr); } /* PHY bit clear */ static void bb_clr(void *addr, u32 msk) { iowrite32((ioread32(addr) & ~msk), addr); } /* PHY bit read */ static int bb_read(void *addr, u32 msk) { return (ioread32(addr) & msk) != 0; } /* Data I/O pin control */ static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit) { struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); if (bitbang->set_gate) bitbang->set_gate(bitbang->addr); if (bit) bb_set(bitbang->addr, bitbang->mmd_msk); else bb_clr(bitbang->addr, bitbang->mmd_msk); } /* Set bit data*/ static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit) { struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); if (bitbang->set_gate) bitbang->set_gate(bitbang->addr); if (bit) bb_set(bitbang->addr, bitbang->mdo_msk); else bb_clr(bitbang->addr, bitbang->mdo_msk); } /* Get bit data*/ static int sh_get_mdio(struct mdiobb_ctrl *ctrl) { struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); if (bitbang->set_gate) bitbang->set_gate(bitbang->addr); return bb_read(bitbang->addr, bitbang->mdi_msk); } /* MDC pin control */ static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit) { struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); if (bitbang->set_gate) bitbang->set_gate(bitbang->addr); if (bit) bb_set(bitbang->addr, bitbang->mdc_msk); else bb_clr(bitbang->addr, bitbang->mdc_msk); } /* mdio bus control struct */ static struct mdiobb_ops bb_ops = { .owner = THIS_MODULE, .set_mdc = sh_mdc_ctrl, .set_mdio_dir = sh_mmd_ctrl, .set_mdio_data = sh_set_mdio, .get_mdio_data = sh_get_mdio, }; /* free skb and descriptor buffer */ static void sh_eth_ring_free(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int i; /* Free Rx skb ringbuffer */ if (mdp->rx_skbuff) { for (i = 0; i < RX_RING_SIZE; i++) { if (mdp->rx_skbuff[i]) dev_kfree_skb(mdp->rx_skbuff[i]); } } kfree(mdp->rx_skbuff); /* Free Tx skb ringbuffer */ if (mdp->tx_skbuff) { for (i = 0; i < TX_RING_SIZE; i++) { if (mdp->tx_skbuff[i]) dev_kfree_skb(mdp->tx_skbuff[i]); } } kfree(mdp->tx_skbuff); } /* format skb and descriptor buffer */ static void sh_eth_ring_format(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int i; struct sk_buff *skb; struct sh_eth_rxdesc *rxdesc = NULL; struct sh_eth_txdesc *txdesc = NULL; int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE; int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE; mdp->cur_rx = mdp->cur_tx = 0; mdp->dirty_rx = mdp->dirty_tx = 0; memset(mdp->rx_ring, 0, rx_ringsize); /* build Rx ring buffer */ for (i = 0; i < RX_RING_SIZE; i++) { /* skb */ mdp->rx_skbuff[i] = NULL; skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz); mdp->rx_skbuff[i] = skb; if (skb == NULL) break; dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz, DMA_FROM_DEVICE); sh_eth_set_receive_align(skb); /* RX descriptor */ rxdesc = &mdp->rx_ring[i]; rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4)); rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP); /* The size of the buffer is 16 byte boundary. */ rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16); /* Rx descriptor address set */ if (i == 0) { sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR); if (sh_eth_is_gether(mdp)) sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR); } } mdp->dirty_rx = (u32) (i - RX_RING_SIZE); /* Mark the last entry as wrapping the ring. */ rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL); memset(mdp->tx_ring, 0, tx_ringsize); /* build Tx ring buffer */ for (i = 0; i < TX_RING_SIZE; i++) { mdp->tx_skbuff[i] = NULL; txdesc = &mdp->tx_ring[i]; txdesc->status = cpu_to_edmac(mdp, TD_TFP); txdesc->buffer_length = 0; if (i == 0) { /* Tx descriptor address set */ sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR); if (sh_eth_is_gether(mdp)) sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR); } } txdesc->status |= cpu_to_edmac(mdp, TD_TDLE); } /* Get skb and descriptor buffer */ static int sh_eth_ring_init(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int rx_ringsize, tx_ringsize, ret = 0; /* * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the * card needs room to do 8 byte alignment, +2 so we can reserve * the first 2 bytes, and +16 gets room for the status word from the * card. */ mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : (((ndev->mtu + 26 + 7) & ~7) + 2 + 16)); if (mdp->cd->rpadir) mdp->rx_buf_sz += NET_IP_ALIGN; /* Allocate RX and TX skb rings */ mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE, GFP_KERNEL); if (!mdp->rx_skbuff) { dev_err(&ndev->dev, "Cannot allocate Rx skb\n"); ret = -ENOMEM; return ret; } mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE, GFP_KERNEL); if (!mdp->tx_skbuff) { dev_err(&ndev->dev, "Cannot allocate Tx skb\n"); ret = -ENOMEM; goto skb_ring_free; } /* Allocate all Rx descriptors. */ rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE; mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma, GFP_KERNEL); if (!mdp->rx_ring) { dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n", rx_ringsize); ret = -ENOMEM; goto desc_ring_free; } mdp->dirty_rx = 0; /* Allocate all Tx descriptors. */ tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE; mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma, GFP_KERNEL); if (!mdp->tx_ring) { dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n", tx_ringsize); ret = -ENOMEM; goto desc_ring_free; } return ret; desc_ring_free: /* free DMA buffer */ dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma); skb_ring_free: /* Free Rx and Tx skb ring buffer */ sh_eth_ring_free(ndev); return ret; } static int sh_eth_dev_init(struct net_device *ndev) { int ret = 0; struct sh_eth_private *mdp = netdev_priv(ndev); u_int32_t rx_int_var, tx_int_var; u32 val; /* Soft Reset */ sh_eth_reset(ndev); /* Descriptor format */ sh_eth_ring_format(ndev); if (mdp->cd->rpadir) sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR); /* all sh_eth int mask */ sh_eth_write(ndev, 0, EESIPR); #if defined(__LITTLE_ENDIAN) if (mdp->cd->hw_swap) sh_eth_write(ndev, EDMR_EL, EDMR); else #endif sh_eth_write(ndev, 0, EDMR); /* FIFO size set */ sh_eth_write(ndev, mdp->cd->fdr_value, FDR); sh_eth_write(ndev, 0, TFTR); /* Frame recv control */ sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR); rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5; tx_int_var = mdp->tx_int_var = DESC_I_TINT2; sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER); if (mdp->cd->bculr) sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */ sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR); if (!mdp->cd->no_trimd) sh_eth_write(ndev, 0, TRIMD); /* Recv frame limit set register */ sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR); sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR); sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); /* PAUSE Prohibition */ val = (sh_eth_read(ndev, ECMR) & ECMR_DM) | ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE; sh_eth_write(ndev, val, ECMR); if (mdp->cd->set_rate) mdp->cd->set_rate(ndev); /* E-MAC Status Register clear */ sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR); /* E-MAC Interrupt Enable register */ sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR); /* Set MAC address */ update_mac_address(ndev); /* mask reset */ if (mdp->cd->apr) sh_eth_write(ndev, APR_AP, APR); if (mdp->cd->mpr) sh_eth_write(ndev, MPR_MP, MPR); if (mdp->cd->tpauser) sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER); /* Setting the Rx mode will start the Rx process. */ sh_eth_write(ndev, EDRRR_R, EDRRR); netif_start_queue(ndev); return ret; } /* free Tx skb function */ static int sh_eth_txfree(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); struct sh_eth_txdesc *txdesc; int freeNum = 0; int entry = 0; for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) { entry = mdp->dirty_tx % TX_RING_SIZE; txdesc = &mdp->tx_ring[entry]; if (txdesc->status & cpu_to_edmac(mdp, TD_TACT)) break; /* Free the original skb. */ if (mdp->tx_skbuff[entry]) { dma_unmap_single(&ndev->dev, txdesc->addr, txdesc->buffer_length, DMA_TO_DEVICE); dev_kfree_skb_irq(mdp->tx_skbuff[entry]); mdp->tx_skbuff[entry] = NULL; freeNum++; } txdesc->status = cpu_to_edmac(mdp, TD_TFP); if (entry >= TX_RING_SIZE - 1) txdesc->status |= cpu_to_edmac(mdp, TD_TDLE); ndev->stats.tx_packets++; ndev->stats.tx_bytes += txdesc->buffer_length; } return freeNum; } /* Packet receive function */ static int sh_eth_rx(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); struct sh_eth_rxdesc *rxdesc; int entry = mdp->cur_rx % RX_RING_SIZE; int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx; struct sk_buff *skb; u16 pkt_len = 0; u32 desc_status; rxdesc = &mdp->rx_ring[entry]; while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) { desc_status = edmac_to_cpu(mdp, rxdesc->status); pkt_len = rxdesc->frame_length; if (--boguscnt < 0) break; if (!(desc_status & RDFEND)) ndev->stats.rx_length_errors++; if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 | RD_RFS5 | RD_RFS6 | RD_RFS10)) { ndev->stats.rx_errors++; if (desc_status & RD_RFS1) ndev->stats.rx_crc_errors++; if (desc_status & RD_RFS2) ndev->stats.rx_frame_errors++; if (desc_status & RD_RFS3) ndev->stats.rx_length_errors++; if (desc_status & RD_RFS4) ndev->stats.rx_length_errors++; if (desc_status & RD_RFS6) ndev->stats.rx_missed_errors++; if (desc_status & RD_RFS10) ndev->stats.rx_over_errors++; } else { if (!mdp->cd->hw_swap) sh_eth_soft_swap( phys_to_virt(ALIGN(rxdesc->addr, 4)), pkt_len + 2); skb = mdp->rx_skbuff[entry]; mdp->rx_skbuff[entry] = NULL; if (mdp->cd->rpadir) skb_reserve(skb, NET_IP_ALIGN); skb_put(skb, pkt_len); skb->protocol = eth_type_trans(skb, ndev); netif_rx(skb); ndev->stats.rx_packets++; ndev->stats.rx_bytes += pkt_len; } rxdesc->status |= cpu_to_edmac(mdp, RD_RACT); entry = (++mdp->cur_rx) % RX_RING_SIZE; rxdesc = &mdp->rx_ring[entry]; } /* Refill the Rx ring buffers. */ for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) { entry = mdp->dirty_rx % RX_RING_SIZE; rxdesc = &mdp->rx_ring[entry]; /* The size of the buffer is 16 byte boundary. */ rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16); if (mdp->rx_skbuff[entry] == NULL) { skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz); mdp->rx_skbuff[entry] = skb; if (skb == NULL) break; /* Better luck next round. */ dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz, DMA_FROM_DEVICE); sh_eth_set_receive_align(skb); skb_checksum_none_assert(skb); rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4)); } if (entry >= RX_RING_SIZE - 1) rxdesc->status |= cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL); else rxdesc->status |= cpu_to_edmac(mdp, RD_RACT | RD_RFP); } /* Restart Rx engine if stopped. */ /* If we don't need to check status, don't. -KDU */ if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) sh_eth_write(ndev, EDRRR_R, EDRRR); return 0; } static void sh_eth_rcv_snd_disable(struct net_device *ndev) { /* disable tx and rx */ sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~(ECMR_RE | ECMR_TE), ECMR); } static void sh_eth_rcv_snd_enable(struct net_device *ndev) { /* enable tx and rx */ sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | (ECMR_RE | ECMR_TE), ECMR); } /* error control function */ static void sh_eth_error(struct net_device *ndev, int intr_status) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 felic_stat; u32 link_stat; u32 mask; if (intr_status & EESR_ECI) { felic_stat = sh_eth_read(ndev, ECSR); sh_eth_write(ndev, felic_stat, ECSR); /* clear int */ if (felic_stat & ECSR_ICD) ndev->stats.tx_carrier_errors++; if (felic_stat & ECSR_LCHNG) { /* Link Changed */ if (mdp->cd->no_psr || mdp->no_ether_link) { if (mdp->link == PHY_DOWN) link_stat = 0; else link_stat = PHY_ST_LINK; } else { link_stat = (sh_eth_read(ndev, PSR)); if (mdp->ether_link_active_low) link_stat = ~link_stat; } if (!(link_stat & PHY_ST_LINK)) sh_eth_rcv_snd_disable(ndev); else { /* Link Up */ sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) & ~DMAC_M_ECI, EESIPR); /*clear int */ sh_eth_write(ndev, sh_eth_read(ndev, ECSR), ECSR); sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) | DMAC_M_ECI, EESIPR); /* enable tx and rx */ sh_eth_rcv_snd_enable(ndev); } } } if (intr_status & EESR_TWB) { /* Write buck end. unused write back interrupt */ if (intr_status & EESR_TABT) /* Transmit Abort int */ ndev->stats.tx_aborted_errors++; if (netif_msg_tx_err(mdp)) dev_err(&ndev->dev, "Transmit Abort\n"); } if (intr_status & EESR_RABT) { /* Receive Abort int */ if (intr_status & EESR_RFRMER) { /* Receive Frame Overflow int */ ndev->stats.rx_frame_errors++; if (netif_msg_rx_err(mdp)) dev_err(&ndev->dev, "Receive Abort\n"); } } if (intr_status & EESR_TDE) { /* Transmit Descriptor Empty int */ ndev->stats.tx_fifo_errors++; if (netif_msg_tx_err(mdp)) dev_err(&ndev->dev, "Transmit Descriptor Empty\n"); } if (intr_status & EESR_TFE) { /* FIFO under flow */ ndev->stats.tx_fifo_errors++; if (netif_msg_tx_err(mdp)) dev_err(&ndev->dev, "Transmit FIFO Under flow\n"); } if (intr_status & EESR_RDE) { /* Receive Descriptor Empty int */ ndev->stats.rx_over_errors++; if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R) sh_eth_write(ndev, EDRRR_R, EDRRR); if (netif_msg_rx_err(mdp)) dev_err(&ndev->dev, "Receive Descriptor Empty\n"); } if (intr_status & EESR_RFE) { /* Receive FIFO Overflow int */ ndev->stats.rx_fifo_errors++; if (netif_msg_rx_err(mdp)) dev_err(&ndev->dev, "Receive FIFO Overflow\n"); } if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) { /* Address Error */ ndev->stats.tx_fifo_errors++; if (netif_msg_tx_err(mdp)) dev_err(&ndev->dev, "Address Error\n"); } mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE; if (mdp->cd->no_ade) mask &= ~EESR_ADE; if (intr_status & mask) { /* Tx error */ u32 edtrr = sh_eth_read(ndev, EDTRR); /* dmesg */ dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ", intr_status, mdp->cur_tx); dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n", mdp->dirty_tx, (u32) ndev->state, edtrr); /* dirty buffer free */ sh_eth_txfree(ndev); /* SH7712 BUG */ if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) { /* tx dma start */ sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR); } /* wakeup */ netif_wake_queue(ndev); } } static irqreturn_t sh_eth_interrupt(int irq, void *netdev) { struct net_device *ndev = netdev; struct sh_eth_private *mdp = netdev_priv(ndev); struct sh_eth_cpu_data *cd = mdp->cd; irqreturn_t ret = IRQ_NONE; u32 intr_status = 0; spin_lock(&mdp->lock); /* Get interrpt stat */ intr_status = sh_eth_read(ndev, EESR); /* Clear interrupt */ if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF | EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF | cd->tx_check | cd->eesr_err_check)) { sh_eth_write(ndev, intr_status, EESR); ret = IRQ_HANDLED; } else goto other_irq; if (intr_status & (EESR_FRC | /* Frame recv*/ EESR_RMAF | /* Multi cast address recv*/ EESR_RRF | /* Bit frame recv */ EESR_RTLF | /* Long frame recv*/ EESR_RTSF | /* short frame recv */ EESR_PRE | /* PHY-LSI recv error */ EESR_CERF)){ /* recv frame CRC error */ sh_eth_rx(ndev); } /* Tx Check */ if (intr_status & cd->tx_check) { sh_eth_txfree(ndev); netif_wake_queue(ndev); } if (intr_status & cd->eesr_err_check) sh_eth_error(ndev, intr_status); other_irq: spin_unlock(&mdp->lock); return ret; } static void sh_eth_timer(unsigned long data) { struct net_device *ndev = (struct net_device *)data; struct sh_eth_private *mdp = netdev_priv(ndev); mod_timer(&mdp->timer, jiffies + (10 * HZ)); } /* PHY state control function */ static void sh_eth_adjust_link(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); struct phy_device *phydev = mdp->phydev; int new_state = 0; if (phydev->link != PHY_DOWN) { if (phydev->duplex != mdp->duplex) { new_state = 1; mdp->duplex = phydev->duplex; if (mdp->cd->set_duplex) mdp->cd->set_duplex(ndev); } if (phydev->speed != mdp->speed) { new_state = 1; mdp->speed = phydev->speed; if (mdp->cd->set_rate) mdp->cd->set_rate(ndev); } if (mdp->link == PHY_DOWN) { sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR); new_state = 1; mdp->link = phydev->link; } } else if (mdp->link) { new_state = 1; mdp->link = PHY_DOWN; mdp->speed = 0; mdp->duplex = -1; } if (new_state && netif_msg_link(mdp)) phy_print_status(phydev); } /* PHY init function */ static int sh_eth_phy_init(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); char phy_id[MII_BUS_ID_SIZE + 3]; struct phy_device *phydev = NULL; snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, mdp->mii_bus->id , mdp->phy_id); mdp->link = PHY_DOWN; mdp->speed = 0; mdp->duplex = -1; /* Try connect to PHY */ phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link, 0, mdp->phy_interface); if (IS_ERR(phydev)) { dev_err(&ndev->dev, "phy_connect failed\n"); return PTR_ERR(phydev); } dev_info(&ndev->dev, "attached phy %i to driver %s\n", phydev->addr, phydev->drv->name); mdp->phydev = phydev; return 0; } /* PHY control start function */ static int sh_eth_phy_start(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int ret; ret = sh_eth_phy_init(ndev); if (ret) return ret; /* reset phy - this also wakes it from PDOWN */ phy_write(mdp->phydev, MII_BMCR, BMCR_RESET); phy_start(mdp->phydev); return 0; } static int sh_eth_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) { struct sh_eth_private *mdp = netdev_priv(ndev); unsigned long flags; int ret; spin_lock_irqsave(&mdp->lock, flags); ret = phy_ethtool_gset(mdp->phydev, ecmd); spin_unlock_irqrestore(&mdp->lock, flags); return ret; } static int sh_eth_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) { struct sh_eth_private *mdp = netdev_priv(ndev); unsigned long flags; int ret; spin_lock_irqsave(&mdp->lock, flags); /* disable tx and rx */ sh_eth_rcv_snd_disable(ndev); ret = phy_ethtool_sset(mdp->phydev, ecmd); if (ret) goto error_exit; if (ecmd->duplex == DUPLEX_FULL) mdp->duplex = 1; else mdp->duplex = 0; if (mdp->cd->set_duplex) mdp->cd->set_duplex(ndev); error_exit: mdelay(1); /* enable tx and rx */ sh_eth_rcv_snd_enable(ndev); spin_unlock_irqrestore(&mdp->lock, flags); return ret; } static int sh_eth_nway_reset(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); unsigned long flags; int ret; spin_lock_irqsave(&mdp->lock, flags); ret = phy_start_aneg(mdp->phydev); spin_unlock_irqrestore(&mdp->lock, flags); return ret; } static u32 sh_eth_get_msglevel(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); return mdp->msg_enable; } static void sh_eth_set_msglevel(struct net_device *ndev, u32 value) { struct sh_eth_private *mdp = netdev_priv(ndev); mdp->msg_enable = value; } static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = { "rx_current", "tx_current", "rx_dirty", "tx_dirty", }; #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats) static int sh_eth_get_sset_count(struct net_device *netdev, int sset) { switch (sset) { case ETH_SS_STATS: return SH_ETH_STATS_LEN; default: return -EOPNOTSUPP; } } static void sh_eth_get_ethtool_stats(struct net_device *ndev, struct ethtool_stats *stats, u64 *data) { struct sh_eth_private *mdp = netdev_priv(ndev); int i = 0; /* device-specific stats */ data[i++] = mdp->cur_rx; data[i++] = mdp->cur_tx; data[i++] = mdp->dirty_rx; data[i++] = mdp->dirty_tx; } static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data) { switch (stringset) { case ETH_SS_STATS: memcpy(data, *sh_eth_gstrings_stats, sizeof(sh_eth_gstrings_stats)); break; } } static const struct ethtool_ops sh_eth_ethtool_ops = { .get_settings = sh_eth_get_settings, .set_settings = sh_eth_set_settings, .nway_reset = sh_eth_nway_reset, .get_msglevel = sh_eth_get_msglevel, .set_msglevel = sh_eth_set_msglevel, .get_link = ethtool_op_get_link, .get_strings = sh_eth_get_strings, .get_ethtool_stats = sh_eth_get_ethtool_stats, .get_sset_count = sh_eth_get_sset_count, }; /* network device open function */ static int sh_eth_open(struct net_device *ndev) { int ret = 0; struct sh_eth_private *mdp = netdev_priv(ndev); pm_runtime_get_sync(&mdp->pdev->dev); ret = request_irq(ndev->irq, sh_eth_interrupt, #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \ defined(CONFIG_CPU_SUBTYPE_SH7764) || \ defined(CONFIG_CPU_SUBTYPE_SH7757) IRQF_SHARED, #else 0, #endif ndev->name, ndev); if (ret) { dev_err(&ndev->dev, "Can not assign IRQ number\n"); return ret; } /* Descriptor set */ ret = sh_eth_ring_init(ndev); if (ret) goto out_free_irq; /* device init */ ret = sh_eth_dev_init(ndev); if (ret) goto out_free_irq; /* PHY control start*/ ret = sh_eth_phy_start(ndev); if (ret) goto out_free_irq; /* Set the timer to check for link beat. */ init_timer(&mdp->timer); mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */ setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev); return ret; out_free_irq: free_irq(ndev->irq, ndev); pm_runtime_put_sync(&mdp->pdev->dev); return ret; } /* Timeout function */ static void sh_eth_tx_timeout(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); struct sh_eth_rxdesc *rxdesc; int i; netif_stop_queue(ndev); if (netif_msg_timer(mdp)) dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x," " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR)); /* tx_errors count up */ ndev->stats.tx_errors++; /* timer off */ del_timer_sync(&mdp->timer); /* Free all the skbuffs in the Rx queue. */ for (i = 0; i < RX_RING_SIZE; i++) { rxdesc = &mdp->rx_ring[i]; rxdesc->status = 0; rxdesc->addr = 0xBADF00D0; if (mdp->rx_skbuff[i]) dev_kfree_skb(mdp->rx_skbuff[i]); mdp->rx_skbuff[i] = NULL; } for (i = 0; i < TX_RING_SIZE; i++) { if (mdp->tx_skbuff[i]) dev_kfree_skb(mdp->tx_skbuff[i]); mdp->tx_skbuff[i] = NULL; } /* device init */ sh_eth_dev_init(ndev); /* timer on */ mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */ add_timer(&mdp->timer); } /* Packet transmit function */ static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); struct sh_eth_txdesc *txdesc; u32 entry; unsigned long flags; spin_lock_irqsave(&mdp->lock, flags); if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) { if (!sh_eth_txfree(ndev)) { if (netif_msg_tx_queued(mdp)) dev_warn(&ndev->dev, "TxFD exhausted.\n"); netif_stop_queue(ndev); spin_unlock_irqrestore(&mdp->lock, flags); return NETDEV_TX_BUSY; } } spin_unlock_irqrestore(&mdp->lock, flags); entry = mdp->cur_tx % TX_RING_SIZE; mdp->tx_skbuff[entry] = skb; txdesc = &mdp->tx_ring[entry]; /* soft swap. */ if (!mdp->cd->hw_swap) sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)), skb->len + 2); txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len, DMA_TO_DEVICE); if (skb->len < ETHERSMALL) txdesc->buffer_length = ETHERSMALL; else txdesc->buffer_length = skb->len; if (entry >= TX_RING_SIZE - 1) txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE); else txdesc->status |= cpu_to_edmac(mdp, TD_TACT); mdp->cur_tx++; if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp))) sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR); return NETDEV_TX_OK; } /* device close function */ static int sh_eth_close(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int ringsize; netif_stop_queue(ndev); /* Disable interrupts by clearing the interrupt mask. */ sh_eth_write(ndev, 0x0000, EESIPR); /* Stop the chip's Tx and Rx processes. */ sh_eth_write(ndev, 0, EDTRR); sh_eth_write(ndev, 0, EDRRR); /* PHY Disconnect */ if (mdp->phydev) { phy_stop(mdp->phydev); phy_disconnect(mdp->phydev); } free_irq(ndev->irq, ndev); del_timer_sync(&mdp->timer); /* Free all the skbuffs in the Rx queue. */ sh_eth_ring_free(ndev); /* free DMA buffer */ ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE; dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma); /* free DMA buffer */ ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE; dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma); pm_runtime_put_sync(&mdp->pdev->dev); return 0; } static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); pm_runtime_get_sync(&mdp->pdev->dev); ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR); sh_eth_write(ndev, 0, TROCR); /* (write clear) */ ndev->stats.collisions += sh_eth_read(ndev, CDCR); sh_eth_write(ndev, 0, CDCR); /* (write clear) */ ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR); sh_eth_write(ndev, 0, LCCR); /* (write clear) */ if (sh_eth_is_gether(mdp)) { ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR); sh_eth_write(ndev, 0, CERCR); /* (write clear) */ ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR); sh_eth_write(ndev, 0, CEECR); /* (write clear) */ } else { ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR); sh_eth_write(ndev, 0, CNDCR); /* (write clear) */ } pm_runtime_put_sync(&mdp->pdev->dev); return &ndev->stats; } /* ioctl to device function */ static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) { struct sh_eth_private *mdp = netdev_priv(ndev); struct phy_device *phydev = mdp->phydev; if (!netif_running(ndev)) return -EINVAL; if (!phydev) return -ENODEV; return phy_mii_ioctl(phydev, rq, cmd); } #if defined(SH_ETH_HAS_TSU) /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */ static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp, int entry) { return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4); } static u32 sh_eth_tsu_get_post_mask(int entry) { return 0x0f << (28 - ((entry % 8) * 4)); } static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry) { return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4)); } static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev, int entry) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 tmp; void *reg_offset; reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry); tmp = ioread32(reg_offset); iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset); } static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev, int entry) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 post_mask, ref_mask, tmp; void *reg_offset; reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry); post_mask = sh_eth_tsu_get_post_mask(entry); ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask; tmp = ioread32(reg_offset); iowrite32(tmp & ~post_mask, reg_offset); /* If other port enables, the function returns "true" */ return tmp & ref_mask; } static int sh_eth_tsu_busy(struct net_device *ndev) { int timeout = SH_ETH_TSU_TIMEOUT_MS * 100; struct sh_eth_private *mdp = netdev_priv(ndev); while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) { udelay(10); timeout--; if (timeout <= 0) { dev_err(&ndev->dev, "%s: timeout\n", __func__); return -ETIMEDOUT; } } return 0; } static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg, const u8 *addr) { u32 val; val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3]; iowrite32(val, reg); if (sh_eth_tsu_busy(ndev) < 0) return -EBUSY; val = addr[4] << 8 | addr[5]; iowrite32(val, reg + 4); if (sh_eth_tsu_busy(ndev) < 0) return -EBUSY; return 0; } static void sh_eth_tsu_read_entry(void *reg, u8 *addr) { u32 val; val = ioread32(reg); addr[0] = (val >> 24) & 0xff; addr[1] = (val >> 16) & 0xff; addr[2] = (val >> 8) & 0xff; addr[3] = val & 0xff; val = ioread32(reg + 4); addr[4] = (val >> 8) & 0xff; addr[5] = val & 0xff; } static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr) { struct sh_eth_private *mdp = netdev_priv(ndev); void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); int i; u8 c_addr[ETH_ALEN]; for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) { sh_eth_tsu_read_entry(reg_offset, c_addr); if (memcmp(addr, c_addr, ETH_ALEN) == 0) return i; } return -ENOENT; } static int sh_eth_tsu_find_empty(struct net_device *ndev) { u8 blank[ETH_ALEN]; int entry; memset(blank, 0, sizeof(blank)); entry = sh_eth_tsu_find_entry(ndev, blank); return (entry < 0) ? -ENOMEM : entry; } static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev, int entry) { struct sh_eth_private *mdp = netdev_priv(ndev); void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); int ret; u8 blank[ETH_ALEN]; sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) & ~(1 << (31 - entry)), TSU_TEN); memset(blank, 0, sizeof(blank)); ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank); if (ret < 0) return ret; return 0; } static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr) { struct sh_eth_private *mdp = netdev_priv(ndev); void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); int i, ret; if (!mdp->cd->tsu) return 0; i = sh_eth_tsu_find_entry(ndev, addr); if (i < 0) { /* No entry found, create one */ i = sh_eth_tsu_find_empty(ndev); if (i < 0) return -ENOMEM; ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr); if (ret < 0) return ret; /* Enable the entry */ sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) | (1 << (31 - i)), TSU_TEN); } /* Entry found or created, enable POST */ sh_eth_tsu_enable_cam_entry_post(ndev, i); return 0; } static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr) { struct sh_eth_private *mdp = netdev_priv(ndev); int i, ret; if (!mdp->cd->tsu) return 0; i = sh_eth_tsu_find_entry(ndev, addr); if (i) { /* Entry found */ if (sh_eth_tsu_disable_cam_entry_post(ndev, i)) goto done; /* Disable the entry if both ports was disabled */ ret = sh_eth_tsu_disable_cam_entry_table(ndev, i); if (ret < 0) return ret; } done: return 0; } static int sh_eth_tsu_purge_all(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int i, ret; if (unlikely(!mdp->cd->tsu)) return 0; for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) { if (sh_eth_tsu_disable_cam_entry_post(ndev, i)) continue; /* Disable the entry if both ports was disabled */ ret = sh_eth_tsu_disable_cam_entry_table(ndev, i); if (ret < 0) return ret; } return 0; } static void sh_eth_tsu_purge_mcast(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); u8 addr[ETH_ALEN]; void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); int i; if (unlikely(!mdp->cd->tsu)) return; for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) { sh_eth_tsu_read_entry(reg_offset, addr); if (is_multicast_ether_addr(addr)) sh_eth_tsu_del_entry(ndev, addr); } } /* Multicast reception directions set */ static void sh_eth_set_multicast_list(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 ecmr_bits; int mcast_all = 0; unsigned long flags; spin_lock_irqsave(&mdp->lock, flags); /* * Initial condition is MCT = 1, PRM = 0. * Depending on ndev->flags, set PRM or clear MCT */ ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT; if (!(ndev->flags & IFF_MULTICAST)) { sh_eth_tsu_purge_mcast(ndev); mcast_all = 1; } if (ndev->flags & IFF_ALLMULTI) { sh_eth_tsu_purge_mcast(ndev); ecmr_bits &= ~ECMR_MCT; mcast_all = 1; } if (ndev->flags & IFF_PROMISC) { sh_eth_tsu_purge_all(ndev); ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM; } else if (mdp->cd->tsu) { struct netdev_hw_addr *ha; netdev_for_each_mc_addr(ha, ndev) { if (mcast_all && is_multicast_ether_addr(ha->addr)) continue; if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) { if (!mcast_all) { sh_eth_tsu_purge_mcast(ndev); ecmr_bits &= ~ECMR_MCT; mcast_all = 1; } } } } else { /* Normal, unicast/broadcast-only mode. */ ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT; } /* update the ethernet mode */ sh_eth_write(ndev, ecmr_bits, ECMR); spin_unlock_irqrestore(&mdp->lock, flags); } static int sh_eth_get_vtag_index(struct sh_eth_private *mdp) { if (!mdp->port) return TSU_VTAG0; else return TSU_VTAG1; } static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid) { struct sh_eth_private *mdp = netdev_priv(ndev); int vtag_reg_index = sh_eth_get_vtag_index(mdp); if (unlikely(!mdp->cd->tsu)) return -EPERM; /* No filtering if vid = 0 */ if (!vid) return 0; mdp->vlan_num_ids++; /* * The controller has one VLAN tag HW filter. So, if the filter is * already enabled, the driver disables it and the filte */ if (mdp->vlan_num_ids > 1) { /* disable VLAN filter */ sh_eth_tsu_write(mdp, 0, vtag_reg_index); return 0; } sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK), vtag_reg_index); return 0; } static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid) { struct sh_eth_private *mdp = netdev_priv(ndev); int vtag_reg_index = sh_eth_get_vtag_index(mdp); if (unlikely(!mdp->cd->tsu)) return -EPERM; /* No filtering if vid = 0 */ if (!vid) return 0; mdp->vlan_num_ids--; sh_eth_tsu_write(mdp, 0, vtag_reg_index); return 0; } #endif /* SH_ETH_HAS_TSU */ /* SuperH's TSU register init function */ static void sh_eth_tsu_init(struct sh_eth_private *mdp) { sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */ sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */ sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */ sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0); sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1); sh_eth_tsu_write(mdp, 0, TSU_PRISL0); sh_eth_tsu_write(mdp, 0, TSU_PRISL1); sh_eth_tsu_write(mdp, 0, TSU_FWSL0); sh_eth_tsu_write(mdp, 0, TSU_FWSL1); sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC); if (sh_eth_is_gether(mdp)) { sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */ sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */ } else { sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */ sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */ } sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */ sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */ sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */ sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */ sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */ sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */ sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */ } /* MDIO bus release function */ static int sh_mdio_release(struct net_device *ndev) { struct mii_bus *bus = dev_get_drvdata(&ndev->dev); /* unregister mdio bus */ mdiobus_unregister(bus); /* remove mdio bus info from net_device */ dev_set_drvdata(&ndev->dev, NULL); /* free interrupts memory */ kfree(bus->irq); /* free bitbang info */ free_mdio_bitbang(bus); return 0; } /* MDIO bus init function */ static int sh_mdio_init(struct net_device *ndev, int id, struct sh_eth_plat_data *pd) { int ret, i; struct bb_info *bitbang; struct sh_eth_private *mdp = netdev_priv(ndev); /* create bit control struct for PHY */ bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL); if (!bitbang) { ret = -ENOMEM; goto out; } /* bitbang init */ bitbang->addr = mdp->addr + mdp->reg_offset[PIR]; bitbang->set_gate = pd->set_mdio_gate; bitbang->mdi_msk = 0x08; bitbang->mdo_msk = 0x04; bitbang->mmd_msk = 0x02;/* MMD */ bitbang->mdc_msk = 0x01; bitbang->ctrl.ops = &bb_ops; /* MII controller setting */ mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl); if (!mdp->mii_bus) { ret = -ENOMEM; goto out_free_bitbang; } /* Hook up MII support for ethtool */ mdp->mii_bus->name = "sh_mii"; mdp->mii_bus->parent = &ndev->dev; snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", mdp->pdev->name, id); /* PHY IRQ */ mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL); if (!mdp->mii_bus->irq) { ret = -ENOMEM; goto out_free_bus; } for (i = 0; i < PHY_MAX_ADDR; i++) mdp->mii_bus->irq[i] = PHY_POLL; /* regist mdio bus */ ret = mdiobus_register(mdp->mii_bus); if (ret) goto out_free_irq; dev_set_drvdata(&ndev->dev, mdp->mii_bus); return 0; out_free_irq: kfree(mdp->mii_bus->irq); out_free_bus: free_mdio_bitbang(mdp->mii_bus); out_free_bitbang: kfree(bitbang); out: return ret; } static const u16 *sh_eth_get_register_offset(int register_type) { const u16 *reg_offset = NULL; switch (register_type) { case SH_ETH_REG_GIGABIT: reg_offset = sh_eth_offset_gigabit; break; case SH_ETH_REG_FAST_SH4: reg_offset = sh_eth_offset_fast_sh4; break; case SH_ETH_REG_FAST_SH3_SH2: reg_offset = sh_eth_offset_fast_sh3_sh2; break; default: printk(KERN_ERR "Unknown register type (%d)\n", register_type); break; } return reg_offset; } static const struct net_device_ops sh_eth_netdev_ops = { .ndo_open = sh_eth_open, .ndo_stop = sh_eth_close, .ndo_start_xmit = sh_eth_start_xmit, .ndo_get_stats = sh_eth_get_stats, #if defined(SH_ETH_HAS_TSU) .ndo_set_rx_mode = sh_eth_set_multicast_list, .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid, #endif .ndo_tx_timeout = sh_eth_tx_timeout, .ndo_do_ioctl = sh_eth_do_ioctl, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, .ndo_change_mtu = eth_change_mtu, }; static int sh_eth_drv_probe(struct platform_device *pdev) { int ret, devno = 0; struct resource *res; struct net_device *ndev = NULL; struct sh_eth_private *mdp = NULL; struct sh_eth_plat_data *pd; /* get base addr */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (unlikely(res == NULL)) { dev_err(&pdev->dev, "invalid resource\n"); ret = -EINVAL; goto out; } ndev = alloc_etherdev(sizeof(struct sh_eth_private)); if (!ndev) { ret = -ENOMEM; goto out; } /* The sh Ether-specific entries in the device structure. */ ndev->base_addr = res->start; devno = pdev->id; if (devno < 0) devno = 0; ndev->dma = -1; ret = platform_get_irq(pdev, 0); if (ret < 0) { ret = -ENODEV; goto out_release; } ndev->irq = ret; SET_NETDEV_DEV(ndev, &pdev->dev); /* Fill in the fields of the device structure with ethernet values. */ ether_setup(ndev); mdp = netdev_priv(ndev); mdp->addr = ioremap(res->start, resource_size(res)); if (mdp->addr == NULL) { ret = -ENOMEM; dev_err(&pdev->dev, "ioremap failed.\n"); goto out_release; } spin_lock_init(&mdp->lock); mdp->pdev = pdev; pm_runtime_enable(&pdev->dev); pm_runtime_resume(&pdev->dev); pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data); /* get PHY ID */ mdp->phy_id = pd->phy; mdp->phy_interface = pd->phy_interface; /* EDMAC endian */ mdp->edmac_endian = pd->edmac_endian; mdp->no_ether_link = pd->no_ether_link; mdp->ether_link_active_low = pd->ether_link_active_low; mdp->reg_offset = sh_eth_get_register_offset(pd->register_type); /* set cpu data */ #if defined(SH_ETH_HAS_BOTH_MODULES) mdp->cd = sh_eth_get_cpu_data(mdp); #else mdp->cd = &sh_eth_my_cpu_data; #endif sh_eth_set_default_cpu_data(mdp->cd); /* set function */ ndev->netdev_ops = &sh_eth_netdev_ops; SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops); ndev->watchdog_timeo = TX_TIMEOUT; /* debug message level */ mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE; mdp->post_rx = POST_RX >> (devno << 1); mdp->post_fw = POST_FW >> (devno << 1); /* read and set MAC address */ read_mac_address(ndev, pd->mac_addr); /* ioremap the TSU registers */ if (mdp->cd->tsu) { struct resource *rtsu; rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!rtsu) { dev_err(&pdev->dev, "Not found TSU resource\n"); goto out_release; } mdp->tsu_addr = ioremap(rtsu->start, resource_size(rtsu)); mdp->port = devno % 2; ndev->features = NETIF_F_HW_VLAN_FILTER; } /* initialize first or needed device */ if (!devno || pd->needs_init) { if (mdp->cd->chip_reset) mdp->cd->chip_reset(ndev); if (mdp->cd->tsu) { /* TSU init (Init only)*/ sh_eth_tsu_init(mdp); } } /* network device register */ ret = register_netdev(ndev); if (ret) goto out_release; /* mdio bus init */ ret = sh_mdio_init(ndev, pdev->id, pd); if (ret) goto out_unregister; /* print device information */ pr_info("Base address at 0x%x, %pM, IRQ %d.\n", (u32)ndev->base_addr, ndev->dev_addr, ndev->irq); platform_set_drvdata(pdev, ndev); return ret; out_unregister: unregister_netdev(ndev); out_release: /* net_dev free */ if (mdp && mdp->addr) iounmap(mdp->addr); if (mdp && mdp->tsu_addr) iounmap(mdp->tsu_addr); if (ndev) free_netdev(ndev); out: return ret; } static int sh_eth_drv_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct sh_eth_private *mdp = netdev_priv(ndev); if (mdp->cd->tsu) iounmap(mdp->tsu_addr); sh_mdio_release(ndev); unregister_netdev(ndev); pm_runtime_disable(&pdev->dev); iounmap(mdp->addr); free_netdev(ndev); platform_set_drvdata(pdev, NULL); return 0; } static int sh_eth_runtime_nop(struct device *dev) { /* * Runtime PM callback shared between ->runtime_suspend() * and ->runtime_resume(). Simply returns success. * * This driver re-initializes all registers after * pm_runtime_get_sync() anyway so there is no need * to save and restore registers here. */ return 0; } static struct dev_pm_ops sh_eth_dev_pm_ops = { .runtime_suspend = sh_eth_runtime_nop, .runtime_resume = sh_eth_runtime_nop, }; static struct platform_driver sh_eth_driver = { .probe = sh_eth_drv_probe, .remove = sh_eth_drv_remove, .driver = { .name = CARDNAME, .pm = &sh_eth_dev_pm_ops, }, }; module_platform_driver(sh_eth_driver); MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda"); MODULE_DESCRIPTION("Renesas SuperH Ethernet driver"); MODULE_LICENSE("GPL v2");