/* * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) * * Right now, I am very wasteful with the buffers. I allocate memory * pages and then divide them into 2K frame buffers. This way I know I * have buffers large enough to hold one frame within one buffer descriptor. * Once I get this working, I will use 64 or 128 byte CPM buffers, which * will be much more memory efficient and will easily handle lots of * small packets. * * Much better multiple PHY support by Magnus Damm. * Copyright (c) 2000 Ericsson Radio Systems AB. * * Support for FEC controller of ColdFire processors. * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) * * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) * Copyright (c) 2004-2006 Macq Electronique SA. * * Support for FEC IEEE 1588. * Copyright (C) 2010-2013 Freescale Semiconductor, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CONFIG_ARM #include #include #endif #include "fec.h" #include "fec_1588.h" #if defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28) #define FEC_ALIGNMENT 0xf #define FEC_RX_FIFO_BR 0x480 #else #define FEC_ALIGNMENT 0x3 #endif #define DRIVER_NAME "fec" /* Controller is ENET-MAC */ #define FEC_QUIRK_ENET_MAC (1 << 0) /* Controller needs driver to swap frame */ #define FEC_QUIRK_SWAP_FRAME (1 << 1) /* ENET IP errata ticket TKT168103 */ #define FEC_QUIRK_BUG_TKT168103 (1 << 2) static struct platform_device_id fec_devtype[] = { { .name = "enet", .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_BUG_TKT168103, }, { .name = "fec", .driver_data = 0, }, { .name = "imx28-fec", .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | FEC_QUIRK_BUG_TKT168103, }, { } }; static unsigned char macaddr[ETH_ALEN]; module_param_array(macaddr, byte, NULL, 0); MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); #if defined(CONFIG_M5272) /* * Some hardware gets it MAC address out of local flash memory. * if this is non-zero then assume it is the address to get MAC from. */ #if defined(CONFIG_NETtel) #define FEC_FLASHMAC 0xf0006006 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) #define FEC_FLASHMAC 0xf0006000 #elif defined(CONFIG_CANCam) #define FEC_FLASHMAC 0xf0020000 #elif defined (CONFIG_M5272C3) #define FEC_FLASHMAC (0xffe04000 + 4) #elif defined(CONFIG_MOD5272) #define FEC_FLASHMAC 0xffc0406b #else #define FEC_FLASHMAC 0 #endif #endif /* CONFIG_M5272 */ /* The number of Tx and Rx buffers. These are allocated from the page * pool. The code may assume these are power of two, so it it best * to keep them that size. * We don't need to allocate pages for the transmitter. We just use * the skbuffer directly. */ #define FEC_ENET_RX_PAGES 192 #define FEC_ENET_RX_FRSIZE 2048 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE) #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) #define FEC_ENET_TX_FRSIZE 2048 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE) #define TX_RING_SIZE 128 /* Must be power of two */ #define TX_RING_MOD_MASK 127 /* for this to work */ #define BUFDES_SIZE ((RX_RING_SIZE + TX_RING_SIZE) * sizeof(struct bufdesc)) /* Interrupt events/masks. */ #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */ #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */ #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */ #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */ #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */ #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */ #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */ #define FEC_ENET_TS_AVAIL ((uint)0x00010000) #define FEC_ENET_TS_TIMER ((uint)0x00008000) #define FEC_ENET_MII_CLK ((uint)2500000) #define FEC_ENET_HOLD_TIME ((uint)0x100) /* 2 internal clock cycle*/ #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII) #if defined(CONFIG_FEC_1588) #define FEC_1588_IMASK (FEC_ENET_TS_AVAIL | FEC_ENET_TS_TIMER) #else #define FEC_1588_IMASK 0 #endif /* The FEC stores dest/src/type, data, and checksum for receive packets. */ #define PKT_MAXBUF_SIZE 1518 #define PKT_MINBUF_SIZE 64 #define PKT_MAXBLR_SIZE 1520 /* Pause frame feild and FIFO threshold */ #define FEC_ENET_FCE (1 << 5) #define FEC_ENET_RSEM_V 0x84 #define FEC_ENET_RSFL_V 16 #define FEC_ENET_RAEM_V 0x8 #define FEC_ENET_RAFL_V 0x8 #define FEC_ENET_OPD_V 0xFFF0 /* * The 5270/5271/5280/5282/532x RX control register also contains maximum frame * size bits. Other FEC hardware does not, so we need to take that into * account when setting it. */ #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ defined(CONFIG_M520x) || defined(CONFIG_M532x) || \ defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28) #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) #else #define OPT_FRAME_SIZE 0 #endif /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and * tx_bd_base always point to the base of the buffer descriptors. The * cur_rx and cur_tx point to the currently available buffer. * The dirty_tx tracks the current buffer that is being sent by the * controller. The cur_tx and dirty_tx are equal under both completely * empty and completely full conditions. The empty/ready indicator in * the buffer descriptor determines the actual condition. */ struct fec_enet_private { /* Hardware registers of the FEC device */ void __iomem *hwp; struct net_device *netdev; struct clk *clk; /* The saved address of a sent-in-place packet/buffer, for skfree(). */ unsigned char *tx_bounce[TX_RING_SIZE]; struct sk_buff* tx_skbuff[TX_RING_SIZE]; struct sk_buff* rx_skbuff[RX_RING_SIZE]; ushort skb_cur; ushort skb_dirty; /* CPM dual port RAM relative addresses */ dma_addr_t bd_dma; /* Address of Rx and Tx buffers */ struct bufdesc *rx_bd_base; struct bufdesc *tx_bd_base; /* The next free ring entry */ struct bufdesc *cur_rx, *cur_tx; /* The ring entries to be free()ed */ struct bufdesc *dirty_tx; uint tx_full; /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */ spinlock_t hw_lock; struct platform_device *pdev; int opened; /* Phylib and MDIO interface */ struct mii_bus *mii_bus; struct phy_device *phy_dev; int mii_timeout; uint phy_speed; phy_interface_t phy_interface; int index; int link; int full_duplex; struct completion mdio_done; struct delayed_work fixup_trigger_tx; struct fec_ptp_private *ptp_priv; uint ptimer_present; struct napi_struct napi; int napi_weight; bool use_napi; }; #define FEC_NAPI_WEIGHT 64 #ifdef CONFIG_FEC_NAPI #define FEC_NAPI_ENABLE TRUE #else #define FEC_NAPI_ENABLE FALSE #endif static irqreturn_t fec_enet_interrupt(int irq, void * dev_id); static void fec_enet_tx(struct net_device *dev); static int fec_rx_poll(struct napi_struct *napi, int budget); static void fec_enet_rx(struct net_device *dev); static int fec_enet_close(struct net_device *dev); static void fec_restart(struct net_device *dev, int duplex); static void fec_stop(struct net_device *dev); /* FEC MII MMFR bits definition */ #define FEC_MMFR_ST (1 << 30) #define FEC_MMFR_OP_READ (2 << 28) #define FEC_MMFR_OP_WRITE (1 << 28) #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) #define FEC_MMFR_TA (2 << 16) #define FEC_MMFR_DATA(v) (v & 0xffff) #define FEC_MII_TIMEOUT 30 /* ms */ /* Transmitter timeout */ #define TX_TIMEOUT (2 * HZ) static void *swap_buffer(void *bufaddr, int len) { int i; unsigned int *buf = bufaddr; for (i = 0; i < (len + 3) / 4; i++, buf++) *buf = cpu_to_be32(*buf); return bufaddr; } static inline void *fec_enet_get_pre_txbd(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct bufdesc *bdp = fep->cur_tx; if (bdp == fep->tx_bd_base) return bdp + TX_RING_SIZE; else return bdp - 1; } /* MTIP enet IP have one IC issue recorded at PDM ticket:TKT168103 * The TDAR bit after being set by software is not acted upon by the * ENET module due to the timing of when the ENET state machine * clearing the TDAR bit occurring coincident or momentarily after * the software sets the bit. * This forces ENET module to check the Transmit buffer descriptor * and take action if the “ready” flag is set. Otherwise the ENET * returns to idle mode. */ static void fixup_trigger_tx_func(struct work_struct *work) { struct fec_enet_private *fep = container_of(work, struct fec_enet_private, fixup_trigger_tx.work); writel(0, fep->hwp + FEC_X_DES_ACTIVE); } static netdev_tx_t fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); const struct platform_device_id *id_entry = platform_get_device_id(fep->pdev); struct bufdesc *bdp, *bdp_pre; void *bufaddr; unsigned short status; unsigned long estatus; unsigned long flags; spin_lock_irqsave(&fep->hw_lock, flags); if (!fep->link) { /* Link is down or autonegotiation is in progress. */ netif_stop_queue(ndev); spin_unlock_irqrestore(&fep->hw_lock, flags); return NETDEV_TX_BUSY; } /* Fill in a Tx ring entry */ bdp = fep->cur_tx; status = bdp->cbd_sc; if (status & BD_ENET_TX_READY) { /* Ooops. All transmit buffers are full. Bail out. * This should not happen, since ndev->tbusy should be set. */ printk("%s: tx queue full!.\n", ndev->name); netif_stop_queue(ndev); spin_unlock_irqrestore(&fep->hw_lock, flags); return NETDEV_TX_BUSY; } /* Clear all of the status flags */ status &= ~BD_ENET_TX_STATS; /* Set buffer length and buffer pointer */ bufaddr = skb->data; bdp->cbd_datlen = skb->len; /* * On some FEC implementations data must be aligned on * 4-byte boundaries. Use bounce buffers to copy data * and get it aligned. Ugh. */ if (((unsigned long) bufaddr) & FEC_ALIGNMENT) { unsigned int index; index = bdp - fep->tx_bd_base; bufaddr = PTR_ALIGN(fep->tx_bounce[index], FEC_ALIGNMENT + 1); memcpy(bufaddr, (void *)skb->data, skb->len); } if (fep->ptimer_present) { if (fec_ptp_do_txstamp(skb)) { estatus = BD_ENET_TX_TS; status |= BD_ENET_TX_PTP; } else estatus = 0; #ifdef CONFIG_ENHANCED_BD bdp->cbd_esc = (estatus | BD_ENET_TX_INT); bdp->cbd_bdu = 0; #endif } /* * Some design made an incorrect assumption on endian mode of * the system that it's running on. As the result, driver has to * swap every frame going to and coming from the controller. */ if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) swap_buffer(bufaddr, skb->len); /* Save skb pointer */ fep->tx_skbuff[fep->skb_cur] = skb; ndev->stats.tx_bytes += skb->len; fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; /* Push the data cache so the CPM does not get stale memory * data. */ bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE); /* Send it on its way. Tell FEC it's ready, interrupt when done, * it's the last BD of the frame, and to put the CRC on the end. */ status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC); bdp->cbd_sc = status; /* Trigger transmission start */ writel(0, fep->hwp + FEC_X_DES_ACTIVE); bdp_pre = fec_enet_get_pre_txbd(ndev); if ((id_entry->driver_data & FEC_QUIRK_BUG_TKT168103) && !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) schedule_delayed_work(&fep->fixup_trigger_tx, msecs_to_jiffies(1)); /* If this was the last BD in the ring, start at the beginning again. */ if (status & BD_ENET_TX_WRAP) bdp = fep->tx_bd_base; else bdp++; if (bdp == fep->dirty_tx) { fep->tx_full = 1; netif_stop_queue(ndev); } fep->cur_tx = bdp; spin_unlock_irqrestore(&fep->hw_lock, flags); return NETDEV_TX_OK; } static void fec_timeout(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); ndev->stats.tx_errors++; netif_device_detach(ndev); fec_stop(ndev); fec_restart(ndev, fep->full_duplex); netif_device_attach(ndev); ndev->trans_start = jiffies; /* prevent tx timeout */ if (fep->link && !fep->tx_full) netif_wake_queue(ndev); } static void fec_rx_int_is_enabled(struct net_device *ndev, bool enabled) { struct fec_enet_private *fep = netdev_priv(ndev); uint int_events; int_events = readl(fep->hwp + FEC_IMASK); if (enabled) int_events |= FEC_ENET_RXF; else int_events &= ~FEC_ENET_RXF; writel(int_events, fep->hwp + FEC_IMASK); } #ifdef CONFIG_NET_POLL_CONTROLLER static void fec_enet_netpoll(struct net_device *ndev) { disable_irq(ndev->irq); fec_enet_interrupt(ndev->irq, ndev); enable_irq(ndev->irq); } #endif static void fec_enet_tx(struct net_device *ndev) { struct fec_enet_private *fep; struct fec_ptp_private *fpp; struct bufdesc *bdp; unsigned short status; struct sk_buff *skb; fep = netdev_priv(ndev); fpp = fep->ptp_priv; spin_lock(&fep->hw_lock); bdp = fep->dirty_tx; while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) { if (bdp == fep->cur_tx && fep->tx_full == 0) break; if (bdp->cbd_bufaddr) dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE); bdp->cbd_bufaddr = 0; skb = fep->tx_skbuff[fep->skb_dirty]; if (!skb) break; /* Check for errors. */ if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) { ndev->stats.tx_errors++; if (status & BD_ENET_TX_HB) /* No heartbeat */ ndev->stats.tx_heartbeat_errors++; if (status & BD_ENET_TX_LC) /* Late collision */ ndev->stats.tx_window_errors++; if (status & BD_ENET_TX_RL) /* Retrans limit */ ndev->stats.tx_aborted_errors++; if (status & BD_ENET_TX_UN) /* Underrun */ ndev->stats.tx_fifo_errors++; if (status & BD_ENET_TX_CSL) /* Carrier lost */ ndev->stats.tx_carrier_errors++; } else { ndev->stats.tx_packets++; } if (status & BD_ENET_TX_READY) printk("HEY! Enet xmit interrupt and TX_READY.\n"); /* Deferred means some collisions occurred during transmit, * but we eventually sent the packet OK. */ if (status & BD_ENET_TX_DEF) ndev->stats.collisions++; #if defined(CONFIG_ENHANCED_BD) if (fep->ptimer_present) { if (bdp->cbd_esc & BD_ENET_TX_TS) fec_ptp_store_txstamp(fpp, skb, bdp); } #elif defined(CONFIG_IN_BAND) if (fep->ptimer_present) { if (status & BD_ENET_TX_PTP) fec_ptp_store_txstamp(fpp, skb, bdp); } #endif /* Free the sk buffer associated with this last transmit */ dev_kfree_skb_any(skb); fep->tx_skbuff[fep->skb_dirty] = NULL; fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; /* Update pointer to next buffer descriptor to be transmitted */ if (status & BD_ENET_TX_WRAP) bdp = fep->tx_bd_base; else bdp++; /* Since we have freed up a buffer, the ring is no longer full */ if (fep->tx_full) { fep->tx_full = 0; if (netif_queue_stopped(ndev)) netif_wake_queue(ndev); } } fep->dirty_tx = bdp; spin_unlock(&fep->hw_lock); } /*NAPI polling Receive packets */ static int fec_rx_poll(struct napi_struct *napi, int budget) { struct fec_enet_private *fep = container_of(napi, struct fec_enet_private, napi); struct net_device *ndev = napi->dev; struct fec_ptp_private *fpp = fep->ptp_priv; const struct platform_device_id *id_entry = platform_get_device_id(fep->pdev); int pkt_received = 0; struct bufdesc *bdp; unsigned short status; struct sk_buff *skb; ushort pkt_len; __u8 *data; if (fep->use_napi) WARN_ON(!budget); #ifdef CONFIG_M532x flush_cache_all(); #endif /* First, grab all of the stats for the incoming packet. * These get messed up if we get called due to a busy condition. */ bdp = fep->cur_rx; while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) { if (pkt_received >= budget) break; pkt_received++; /* Since we have allocated space to hold a complete frame, * the last indicator should be set. */ if ((status & BD_ENET_RX_LAST) == 0) dev_err(&ndev->dev, "FEC ENET: rcv is not +last\n"); if (!fep->opened) goto rx_processing_done; /* Check for errors. */ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { ndev->stats.rx_errors++; if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { /* Frame too long or too short. */ ndev->stats.rx_length_errors++; } if (status & BD_ENET_RX_NO) /* Frame alignment */ ndev->stats.rx_frame_errors++; if (status & BD_ENET_RX_CR) /* CRC Error */ ndev->stats.rx_crc_errors++; if (status & BD_ENET_RX_OV) /* FIFO overrun */ ndev->stats.rx_fifo_errors++; } /* Report late collisions as a frame error. * On this error, the BD is closed, but we don't know what we * have in the buffer. So, just drop this frame on the floor. */ if (status & BD_ENET_RX_CL) { ndev->stats.rx_errors++; ndev->stats.rx_frame_errors++; goto rx_processing_done; } /* Process the incoming frame. */ ndev->stats.rx_packets++; pkt_len = bdp->cbd_datlen; ndev->stats.rx_bytes += pkt_len; data = (__u8 *)__va(bdp->cbd_bufaddr); if (bdp->cbd_bufaddr) dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) swap_buffer(data, pkt_len); /* This does 16 byte alignment, exactly what we need. * The packet length includes FCS, but we don't want to * include that when passing upstream as it messes up * bridging applications. */ skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN); if (unlikely(!skb)) { dev_err(&ndev->dev, "%s: Memory squeeze, dropping packet.\n", ndev->name); ndev->stats.rx_dropped++; } else { skb_reserve(skb, NET_IP_ALIGN); skb_put(skb, pkt_len - 4); /* Make room */ skb_copy_to_linear_data(skb, data, pkt_len - 4); /* 1588 messeage TS handle */ if (fep->ptimer_present) fec_ptp_store_rxstamp(fpp, skb, bdp); skb->protocol = eth_type_trans(skb, ndev); netif_receive_skb(skb); } bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data, FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); rx_processing_done: /* Clear the status flags for this buffer */ status &= ~BD_ENET_RX_STATS; /* Mark the buffer empty */ status |= BD_ENET_RX_EMPTY; bdp->cbd_sc = status; #ifdef CONFIG_ENHANCED_BD bdp->cbd_esc = BD_ENET_RX_INT; bdp->cbd_prot = 0; bdp->cbd_bdu = 0; #endif /* Update BD pointer to next entry */ if (status & BD_ENET_RX_WRAP) bdp = fep->rx_bd_base; else bdp++; /* Doing this here will keep the FEC running while we process * incoming frames. On a heavily loaded network, we should be * able to keep up at the expense of system resources. */ writel(0, fep->hwp + FEC_R_DES_ACTIVE); } fep->cur_rx = bdp; if (pkt_received < budget) { napi_complete(napi); fec_rx_int_is_enabled(ndev, true); } return pkt_received; } /* During a receive, the cur_rx points to the current incoming buffer. * When we update through the ring, if the next incoming buffer has * not been given to the system, we just set the empty indicator, * effectively tossing the packet. */ static void fec_enet_rx(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct fec_ptp_private *fpp = fep->ptp_priv; const struct platform_device_id *id_entry = platform_get_device_id(fep->pdev); struct bufdesc *bdp; unsigned short status; struct sk_buff *skb; ushort pkt_len; __u8 *data; #ifdef CONFIG_M532x flush_cache_all(); #endif /* First, grab all of the stats for the incoming packet. * These get messed up if we get called due to a busy condition. */ bdp = fep->cur_rx; while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) { /* Since we have allocated space to hold a complete frame, * the last indicator should be set. */ if ((status & BD_ENET_RX_LAST) == 0) printk("FEC ENET: rcv is not +last\n"); if (!fep->opened) goto rx_processing_done; /* Check for errors. */ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { ndev->stats.rx_errors++; if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { /* Frame too long or too short. */ ndev->stats.rx_length_errors++; } if (status & BD_ENET_RX_NO) /* Frame alignment */ ndev->stats.rx_frame_errors++; if (status & BD_ENET_RX_CR) /* CRC Error */ ndev->stats.rx_crc_errors++; if (status & BD_ENET_RX_OV) /* FIFO overrun */ ndev->stats.rx_fifo_errors++; } /* Report late collisions as a frame error. * On this error, the BD is closed, but we don't know what we * have in the buffer. So, just drop this frame on the floor. */ if (status & BD_ENET_RX_CL) { ndev->stats.rx_errors++; ndev->stats.rx_frame_errors++; goto rx_processing_done; } /* Process the incoming frame. */ ndev->stats.rx_packets++; pkt_len = bdp->cbd_datlen; ndev->stats.rx_bytes += pkt_len; data = (__u8*)__va(bdp->cbd_bufaddr); if (bdp->cbd_bufaddr) dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE); if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) swap_buffer(data, pkt_len); /* This does 16 byte alignment, exactly what we need. * The packet length includes FCS, but we don't want to * include that when passing upstream as it messes up * bridging applications. */ skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN); if (unlikely(!skb)) { printk("%s: Memory squeeze, dropping packet.\n", ndev->name); ndev->stats.rx_dropped++; } else { skb_reserve(skb, NET_IP_ALIGN); skb_put(skb, pkt_len - 4); /* Make room */ skb_copy_to_linear_data(skb, data, pkt_len - 4); /* 1588 messeage TS handle */ if (fep->ptimer_present) fec_ptp_store_rxstamp(fpp, skb, bdp); skb->protocol = eth_type_trans(skb, ndev); netif_rx(skb); } bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data, FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE); rx_processing_done: /* Clear the status flags for this buffer */ status &= ~BD_ENET_RX_STATS; /* Mark the buffer empty */ status |= BD_ENET_RX_EMPTY; bdp->cbd_sc = status; #ifdef CONFIG_ENHANCED_BD bdp->cbd_esc = BD_ENET_RX_INT; bdp->cbd_prot = 0; bdp->cbd_bdu = 0; #endif /* Update BD pointer to next entry */ if (status & BD_ENET_RX_WRAP) bdp = fep->rx_bd_base; else bdp++; /* Doing this here will keep the FEC running while we process * incoming frames. On a heavily loaded network, we should be * able to keep up at the expense of system resources. */ writel(0, fep->hwp + FEC_R_DES_ACTIVE); } fep->cur_rx = bdp; } static irqreturn_t fec_enet_interrupt(int irq, void *dev_id) { struct net_device *ndev = dev_id; struct fec_enet_private *fep = netdev_priv(ndev); struct fec_ptp_private *fpp = fep->ptp_priv; uint int_events; ulong flags; irqreturn_t ret = IRQ_NONE; do { int_events = readl(fep->hwp + FEC_IEVENT); writel(int_events, fep->hwp + FEC_IEVENT); if (int_events & FEC_ENET_RXF) { ret = IRQ_HANDLED; spin_lock_irqsave(&fep->hw_lock, flags); if (fep->use_napi) { /* Disable the RX interrupt */ if (napi_schedule_prep(&fep->napi)) { fec_rx_int_is_enabled(ndev, false); __napi_schedule(&fep->napi); } } else fec_enet_rx(ndev); spin_unlock_irqrestore(&fep->hw_lock, flags); } /* Transmit OK, or non-fatal error. Update the buffer * descriptors. FEC handles all errors, we just discover * them as part of the transmit process. */ if (int_events & FEC_ENET_TXF) { ret = IRQ_HANDLED; fec_enet_tx(ndev); } if (int_events & FEC_ENET_TS_TIMER) { ret = IRQ_HANDLED; if (fep->ptimer_present && fpp) fpp->prtc++; } if (int_events & FEC_ENET_MII) { ret = IRQ_HANDLED; complete(&fep->mdio_done); } } while (int_events); return ret; } /* ------------------------------------------------------------------------- */ static void __inline__ fec_get_mac(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct fec_platform_data *pdata = fep->pdev->dev.platform_data; unsigned char *iap, tmpaddr[ETH_ALEN]; /* * try to get mac address in following order: * * 1) module parameter via kernel command line in form * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 */ iap = macaddr; /* * 2) from flash or fuse (via platform data) */ if (!is_valid_ether_addr(iap)) { #ifdef CONFIG_M5272 if (FEC_FLASHMAC) iap = (unsigned char *)FEC_FLASHMAC; #else if (pdata) memcpy(iap, pdata->mac, ETH_ALEN); #endif } /* * 3) FEC mac registers set by bootloader */ if (!is_valid_ether_addr(iap)) { *((unsigned long *) &tmpaddr[0]) = be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW)); *((unsigned short *) &tmpaddr[4]) = be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); iap = &tmpaddr[0]; } memcpy(ndev->dev_addr, iap, ETH_ALEN); /* Adjust MAC if using macaddr */ if (iap == macaddr) ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->pdev->id; } /* ------------------------------------------------------------------------- */ /* * Phy section */ static void fec_enet_adjust_link(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct phy_device *phy_dev = fep->phy_dev; struct fec_platform_data *pdata = fep->pdev->dev.platform_data; unsigned long flags; int status_change = 0; spin_lock_irqsave(&fep->hw_lock, flags); /* Prevent a state halted on mii error */ if (fep->mii_timeout && phy_dev->state == PHY_HALTED) { phy_dev->state = PHY_RESUMING; goto spin_unlock; } /* Duplex link change */ if (phy_dev->link) { if (fep->full_duplex != phy_dev->duplex) { fec_restart(ndev, phy_dev->duplex); status_change = 1; } } /* Link on or off change */ if (phy_dev->link != fep->link) { fep->link = phy_dev->link; if (phy_dev->link) { fec_restart(ndev, phy_dev->duplex); if (!fep->tx_full) netif_wake_queue(ndev); } else fec_stop(ndev); status_change = 1; } spin_unlock: spin_unlock_irqrestore(&fep->hw_lock, flags); if (status_change) { if (!phy_dev->link && phy_dev && pdata && pdata->power_hibernate) pdata->power_hibernate(phy_dev); phy_print_status(phy_dev); } } static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) { struct fec_enet_private *fep = bus->priv; unsigned long time_left; fep->mii_timeout = 0; init_completion(&fep->mdio_done); /* start a read op */ writel(FEC_MMFR_ST | FEC_MMFR_OP_READ | FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); /* wait for end of transfer */ time_left = wait_for_completion_timeout(&fep->mdio_done, msecs_to_jiffies(FEC_MII_TIMEOUT)); if (time_left == 0) { fep->mii_timeout = 1; printk(KERN_ERR "FEC: MDIO read timeout, mii_id=%d\n", mii_id); return -ETIMEDOUT; } /* return value */ return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); } static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 value) { struct fec_enet_private *fep = bus->priv; unsigned long time_left; fep->mii_timeout = 0; init_completion(&fep->mdio_done); /* start a write op */ writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE | FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | FEC_MMFR_TA | FEC_MMFR_DATA(value), fep->hwp + FEC_MII_DATA); /* wait for end of transfer */ time_left = wait_for_completion_timeout(&fep->mdio_done, msecs_to_jiffies(FEC_MII_TIMEOUT)); if (time_left == 0) { fep->mii_timeout = 1; printk(KERN_ERR "FEC: MDIO write timeout, mii_id=%d\n", mii_id); return -ETIMEDOUT; } return 0; } static int fec_enet_mdio_reset(struct mii_bus *bus) { return 0; } static int fec_enet_mii_probe(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct phy_device *phy_dev = NULL; char mdio_bus_id[MII_BUS_ID_SIZE]; char phy_name[MII_BUS_ID_SIZE + 3]; int phy_id; int dev_id = fep->pdev->id; fep->phy_dev = NULL; /* check for attached phy */ for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { if ((fep->mii_bus->phy_mask & (1 << phy_id))) continue; if (fep->mii_bus->phy_map[phy_id] == NULL) continue; if (fep->mii_bus->phy_map[phy_id]->phy_id == 0) continue; if (dev_id--) continue; strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); break; } if (phy_id >= PHY_MAX_ADDR) { printk(KERN_INFO "%s: no PHY, assuming direct connection " "to switch\n", ndev->name); strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE); phy_id = 0; } snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id); phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0, fep->phy_interface); if (IS_ERR(phy_dev)) { printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name); return PTR_ERR(phy_dev); } /* mask with MAC supported features */ if (cpu_is_mx6q() || cpu_is_mx6dl()) phy_dev->supported &= PHY_GBIT_FEATURES; else phy_dev->supported &= PHY_BASIC_FEATURES; /* enable phy pause frame for any platform */ phy_dev->supported |= ADVERTISED_Pause; phy_dev->advertising = phy_dev->supported; fep->phy_dev = phy_dev; fep->link = 0; fep->full_duplex = 0; printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] " "(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name, fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev), fep->phy_dev->irq); return 0; } static int fec_enet_mii_init(struct platform_device *pdev) { static struct mii_bus *fec0_mii_bus; struct net_device *ndev = platform_get_drvdata(pdev); struct fec_enet_private *fep = netdev_priv(ndev); const struct platform_device_id *id_entry = platform_get_device_id(fep->pdev); int err = -ENXIO, i; /* * The dual fec interfaces are not equivalent with enet-mac. * Here are the differences: * * - fec0 supports MII & RMII modes while fec1 only supports RMII * - fec0 acts as the 1588 time master while fec1 is slave * - external phys can only be configured by fec0 * * That is to say fec1 can not work independently. It only works * when fec0 is working. The reason behind this design is that the * second interface is added primarily for Switch mode. * * Because of the last point above, both phys are attached on fec0 * mdio interface in board design, and need to be configured by * fec0 mii_bus. */ if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && pdev->id) { /* fec1 uses fec0 mii_bus */ fep->mii_bus = fec0_mii_bus; return 0; } fep->mii_timeout = 0; /* * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed) */ fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), (FEC_ENET_MII_CLK << 2)) << 1; /* set hold time to 2 internal clock cycle */ if (cpu_is_mx6q() || cpu_is_mx6dl()) fep->phy_speed |= FEC_ENET_HOLD_TIME; writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); fep->mii_bus = mdiobus_alloc(); if (fep->mii_bus == NULL) { err = -ENOMEM; goto err_out; } fep->mii_bus->name = "fec_enet_mii_bus"; fep->mii_bus->read = fec_enet_mdio_read; fep->mii_bus->write = fec_enet_mdio_write; fep->mii_bus->reset = fec_enet_mdio_reset; snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1); fep->mii_bus->priv = fep; fep->mii_bus->parent = &pdev->dev; fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); if (!fep->mii_bus->irq) { err = -ENOMEM; goto err_out_free_mdiobus; } for (i = 0; i < PHY_MAX_ADDR; i++) fep->mii_bus->irq[i] = PHY_POLL; if (mdiobus_register(fep->mii_bus)) goto err_out_free_mdio_irq; /* save fec0 mii_bus */ if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) fec0_mii_bus = fep->mii_bus; return 0; err_out_free_mdio_irq: kfree(fep->mii_bus->irq); err_out_free_mdiobus: mdiobus_free(fep->mii_bus); err_out: return err; } static void fec_enet_mii_remove(struct fec_enet_private *fep) { if (fep->phy_dev) phy_disconnect(fep->phy_dev); mdiobus_unregister(fep->mii_bus); kfree(fep->mii_bus->irq); mdiobus_free(fep->mii_bus); } static int fec_enet_get_settings(struct net_device *ndev, struct ethtool_cmd *cmd) { struct fec_enet_private *fep = netdev_priv(ndev); struct phy_device *phydev = fep->phy_dev; if (!phydev) return -ENODEV; return phy_ethtool_gset(phydev, cmd); } static int fec_enet_set_settings(struct net_device *ndev, struct ethtool_cmd *cmd) { struct fec_enet_private *fep = netdev_priv(ndev); struct phy_device *phydev = fep->phy_dev; if (!phydev) return -ENODEV; return phy_ethtool_sset(phydev, cmd); } static void fec_enet_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info) { struct fec_enet_private *fep = netdev_priv(ndev); strcpy(info->driver, fep->pdev->dev.driver->name); strcpy(info->version, "Revision: 1.0"); strcpy(info->bus_info, dev_name(&ndev->dev)); } static struct ethtool_ops fec_enet_ethtool_ops = { .get_settings = fec_enet_get_settings, .set_settings = fec_enet_set_settings, .get_drvinfo = fec_enet_get_drvinfo, .get_link = ethtool_op_get_link, }; static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) { struct fec_enet_private *fep = netdev_priv(ndev); struct fec_ptp_private *priv = fep->ptp_priv; struct phy_device *phydev = fep->phy_dev; int retVal = 0; if (!netif_running(ndev)) return -EINVAL; if (!phydev) return -ENODEV; if ((cmd >= PTP_ENBL_TXTS_IOCTL) && (cmd <= PTP_FLUSH_TIMESTAMP)) { if (fep->ptimer_present) retVal = fec_ptp_ioctl(priv, rq, cmd); else retVal = -ENODEV; } else retVal = phy_mii_ioctl(phydev, rq, cmd); return retVal; } static void fec_enet_free_buffers(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); int i; struct sk_buff *skb; struct bufdesc *bdp; bdp = fep->rx_bd_base; for (i = 0; i < RX_RING_SIZE; i++) { skb = fep->rx_skbuff[i]; if (bdp->cbd_bufaddr) dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); if (skb) dev_kfree_skb(skb); bdp++; } bdp = fep->tx_bd_base; for (i = 0; i < TX_RING_SIZE; i++) kfree(fep->tx_bounce[i]); } static int fec_enet_alloc_buffers(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); int i; struct sk_buff *skb; struct bufdesc *bdp; bdp = fep->rx_bd_base; for (i = 0; i < RX_RING_SIZE; i++) { skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE); if (!skb) { fec_enet_free_buffers(ndev); return -ENOMEM; } fep->rx_skbuff[i] = skb; bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); bdp->cbd_sc = BD_ENET_RX_EMPTY; #ifdef CONFIG_ENHANCED_BD bdp->cbd_esc = BD_ENET_RX_INT; #endif bdp++; } /* Set the last buffer to wrap. */ bdp--; bdp->cbd_sc |= BD_SC_WRAP; bdp = fep->tx_bd_base; for (i = 0; i < TX_RING_SIZE; i++) { fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); if (!fep->tx_bounce[i]) { fec_enet_free_buffers(ndev); return -ENOMEM; } bdp->cbd_sc = 0; bdp->cbd_bufaddr = 0; #ifdef CONFIG_ENHANCED_BD bdp->cbd_esc = BD_ENET_TX_INT; #endif bdp++; } /* Set the last buffer to wrap. */ bdp--; bdp->cbd_sc |= BD_SC_WRAP; return 0; } static int fec_enet_open(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct fec_platform_data *pdata = fep->pdev->dev.platform_data; int ret; if (fep->use_napi) napi_enable(&fep->napi); /* I should reset the ring buffers here, but I don't yet know * a simple way to do that. */ clk_enable(fep->clk); ret = fec_enet_alloc_buffers(ndev); if (ret) return ret; /* Probe and connect to PHY when open the interface */ ret = fec_enet_mii_probe(ndev); if (ret) { fec_enet_free_buffers(ndev); return ret; } phy_start(fep->phy_dev); netif_start_queue(ndev); fep->opened = 1; ret = -EINVAL; if (pdata->init && pdata->init(fep->phy_dev)) return ret; return 0; } static int fec_enet_close(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); fep->opened = 0; if (fep->use_napi) napi_disable(&fep->napi); fec_stop(ndev); if (fep->phy_dev) { phy_stop(fep->phy_dev); phy_disconnect(fep->phy_dev); } fec_enet_free_buffers(ndev); /* Clock gate close for saving power */ clk_disable(fep->clk); return 0; } /* Set or clear the multicast filter for this adaptor. * Skeleton taken from sunlance driver. * The CPM Ethernet implementation allows Multicast as well as individual * MAC address filtering. Some of the drivers check to make sure it is * a group multicast address, and discard those that are not. I guess I * will do the same for now, but just remove the test if you want * individual filtering as well (do the upper net layers want or support * this kind of feature?). */ #define HASH_BITS 6 /* #bits in hash */ #define CRC32_POLY 0xEDB88320 static void set_multicast_list(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct netdev_hw_addr *ha; unsigned int i, bit, data, crc, tmp; unsigned char hash; if (ndev->flags & IFF_PROMISC) { tmp = readl(fep->hwp + FEC_R_CNTRL); tmp |= 0x8; writel(tmp, fep->hwp + FEC_R_CNTRL); return; } tmp = readl(fep->hwp + FEC_R_CNTRL); tmp &= ~0x8; writel(tmp, fep->hwp + FEC_R_CNTRL); if (ndev->flags & IFF_ALLMULTI) { /* Catch all multicast addresses, so set the * filter to all 1's */ writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); return; } /* Clear filter and add the addresses in hash register */ writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); netdev_for_each_mc_addr(ha, ndev) { /* Only support group multicast for now */ if (!(ha->addr[0] & 1)) continue; /* calculate crc32 value of mac address */ crc = 0xffffffff; for (i = 0; i < ndev->addr_len; i++) { data = ha->addr[i]; for (bit = 0; bit < 8; bit++, data >>= 1) { crc = (crc >> 1) ^ (((crc ^ data) & 1) ? CRC32_POLY : 0); } } /* only upper 6 bits (HASH_BITS) are used * which point to specific bit in he hash registers */ hash = (crc >> (32 - HASH_BITS)) & 0x3f; if (hash > 31) { tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH); tmp |= 1 << (hash - 32); writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); } else { tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW); tmp |= 1 << hash; writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW); } } } /* Set a MAC change in hardware. */ static int fec_set_mac_address(struct net_device *ndev, void *p) { struct fec_enet_private *fep = netdev_priv(ndev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), fep->hwp + FEC_ADDR_LOW); writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), fep->hwp + FEC_ADDR_HIGH); return 0; } static const struct net_device_ops fec_netdev_ops = { .ndo_open = fec_enet_open, .ndo_stop = fec_enet_close, .ndo_start_xmit = fec_enet_start_xmit, .ndo_set_multicast_list = set_multicast_list, .ndo_change_mtu = eth_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_tx_timeout = fec_timeout, .ndo_set_mac_address = fec_set_mac_address, .ndo_do_ioctl = fec_enet_ioctl, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = fec_enet_netpoll, #endif }; /* Init TX buffer descriptors */ static void fec_enet_txbd_init(struct net_device *dev) { struct fec_enet_private *fep = netdev_priv(dev); struct bufdesc *bdp; int i; /* ...and the same for transmit */ bdp = fep->tx_bd_base; for (i = 0; i < TX_RING_SIZE; i++) { /* Initialize the BD for every fragment in the page. */ bdp->cbd_sc = 0; bdp++; } /* Set the last buffer to wrap */ bdp--; bdp->cbd_sc |= BD_SC_WRAP; } /* * XXX: We need to clean up on failure exits here. * */ static int fec_enet_init(struct net_device *ndev) { struct fec_enet_private *fep = netdev_priv(ndev); struct bufdesc *cbd_base; struct bufdesc *bdp; int i; /* Allocate memory for buffer descriptors. */ cbd_base = dma_alloc_noncacheable(NULL, BUFDES_SIZE, &fep->bd_dma, GFP_KERNEL); if (!cbd_base) { printk("FEC: allocate descriptor memory failed?\n"); return -ENOMEM; } spin_lock_init(&fep->hw_lock); fep->netdev = ndev; /* Get the Ethernet address */ fec_get_mac(ndev); /* Set receive and transmit descriptor base. */ fep->rx_bd_base = cbd_base; fep->tx_bd_base = cbd_base + RX_RING_SIZE; /* The FEC Ethernet specific entries in the device structure */ ndev->watchdog_timeo = TX_TIMEOUT; ndev->netdev_ops = &fec_netdev_ops; ndev->ethtool_ops = &fec_enet_ethtool_ops; fep->use_napi = FEC_NAPI_ENABLE; fep->napi_weight = FEC_NAPI_WEIGHT; if (fep->use_napi) { fec_rx_int_is_enabled(ndev, false); netif_napi_add(ndev, &fep->napi, fec_rx_poll, fep->napi_weight); } /* Initialize the receive buffer descriptors. */ bdp = fep->rx_bd_base; for (i = 0; i < RX_RING_SIZE; i++) { /* Initialize the BD for every fragment in the page. */ bdp->cbd_sc = 0; bdp->cbd_bufaddr = 0; bdp++; } /* Set the last buffer to wrap */ bdp--; bdp->cbd_sc |= BD_SC_WRAP; /* Init transmit descriptors */ fec_enet_txbd_init(ndev); fec_restart(ndev, 0); return 0; } /* This function is called to start or restart the FEC during a link * change. This only happens when switching between half and full * duplex. */ static void fec_restart(struct net_device *dev, int duplex) { struct fec_enet_private *fep = netdev_priv(dev); const struct platform_device_id *id_entry = platform_get_device_id(fep->pdev); int i, ret; u32 val, temp_mac[2], reg = 0; /* Whack a reset. We should wait for this. */ writel(1, fep->hwp + FEC_ECNTRL); udelay(10); /* if uboot don't set MAC address, get MAC address * from command line; if command line don't set MAC * address, get from OCOTP; otherwise, allocate random * address. */ memcpy(&temp_mac, dev->dev_addr, ETH_ALEN); writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW); writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH); /* Clear any outstanding interrupt. */ writel(0xffc00000, fep->hwp + FEC_IEVENT); /* Reset all multicast. */ writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); #ifndef CONFIG_M5272 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); writel(0, fep->hwp + FEC_HASH_TABLE_LOW); #endif /* FIXME: adjust RX FIFO size for performance*/ #ifdef CONFIG_ARCH_MX53 writel(FEC_RX_FIFO_BR, fep->hwp + FEC_R_FSTART); #endif /* Set maximum receive buffer size. */ writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE); /* Set receive and transmit descriptor base. */ writel(fep->bd_dma, fep->hwp + FEC_R_DES_START); writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE, fep->hwp + FEC_X_DES_START); /* Reinit transmit descriptors */ fec_enet_txbd_init(dev); fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; fep->cur_rx = fep->rx_bd_base; /* Reset SKB transmit buffers. */ fep->skb_cur = fep->skb_dirty = 0; for (i = 0; i <= TX_RING_MOD_MASK; i++) { if (fep->tx_skbuff[i]) { dev_kfree_skb_any(fep->tx_skbuff[i]); fep->tx_skbuff[i] = NULL; } } /* Enable MII mode */ if (duplex) { /* MII enable / FD enable */ writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL); writel(0x04, fep->hwp + FEC_X_CNTRL); } else { /* MII enable / No Rcv on Xmit */ writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL); writel(0x0, fep->hwp + FEC_X_CNTRL); } fep->full_duplex = duplex; /* Set MII speed */ writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); /* * The phy interface and speed need to get configured * differently on enet-mac. */ if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) { val = readl(fep->hwp + FEC_R_CNTRL); /* MII or RMII */ if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII) val |= (1 << 6); else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) val |= (1 << 8); else val &= ~(1 << 8); /* 10M or 100M */ if (fep->phy_dev && fep->phy_dev->speed == SPEED_100) val &= ~(1 << 9); else val |= (1 << 9); /* Enable pause frame * ENET pause frame has two issues as ticket TKT116501 * The issues have been fixed on Rigel TO1.1 and Arik TO1.2 */ if ((cpu_is_mx6q() && (mx6q_revision() >= IMX_CHIP_REVISION_1_2)) || (cpu_is_mx6dl() && (mx6dl_revision() >= IMX_CHIP_REVISION_1_1))) val |= FEC_ENET_FCE; writel(val, fep->hwp + FEC_R_CNTRL); } if (fep->ptimer_present) { /* Set Timer count */ ret = fec_ptp_start(fep->ptp_priv); if (ret) { fep->ptimer_present = 0; reg = 0x0; } else #if defined(CONFIG_SOC_IMX28) || defined(CONFIG_ARCH_MX6) reg = 0x00000010; #else reg = 0x0; #endif } else reg = 0x0; if (cpu_is_mx25() || cpu_is_mx53() || cpu_is_mx6sl()) { if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) { /* disable the gasket and wait */ writel(0, fep->hwp + FEC_MIIGSK_ENR); while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) udelay(1); /* * configure the gasket: * RMII, 50 MHz, no loopback, no echo */ writel(1, fep->hwp + FEC_MIIGSK_CFGR); /* re-enable the gasket */ writel(2, fep->hwp + FEC_MIIGSK_ENR); udelay(10); if (!(readl(fep->hwp + FEC_MIIGSK_ENR) & 4)) { udelay(100); if (!(readl(fep->hwp + FEC_MIIGSK_ENR) & 4)) dev_err(&fep->pdev->dev, "switch to RMII failed!\n"); } } } /* ENET enable */ val = reg | (0x1 << 1); /* if phy work at 1G mode, set ENET RGMII speed to 1G */ if (fep->phy_dev && (fep->phy_dev->supported & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)) && fep->phy_interface == PHY_INTERFACE_MODE_RGMII && fep->phy_dev->speed == SPEED_1000) val |= (0x1 << 5); /* RX FIFO threshold setting for ENET pause frame feature * Only set the parameters after ticket TKT116501 fixed. * The issue has been fixed on Rigel TO1.1 and Arik TO1.2 */ if ((cpu_is_mx6q() && (mx6q_revision() >= IMX_CHIP_REVISION_1_2)) || (cpu_is_mx6dl() && (mx6dl_revision() >= IMX_CHIP_REVISION_1_1))) { writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); /* OPD */ writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); } if (cpu_is_mx6q() || cpu_is_mx6dl()) { /* enable endian swap */ val |= (0x1 << 8); /* enable ENET store and forward mode */ writel(0x1 << 8, fep->hwp + FEC_X_WMRK); } writel(val, fep->hwp + FEC_ECNTRL); writel(0, fep->hwp + FEC_R_DES_ACTIVE); /* Enable interrupts we wish to service */ if (cpu_is_mx6q() || cpu_is_mx6dl() || cpu_is_mx2() || cpu_is_mx3()) val = (FEC_1588_IMASK | FEC_DEFAULT_IMASK); else val = FEC_DEFAULT_IMASK; writel(val, fep->hwp + FEC_IMASK); } static void fec_stop(struct net_device *dev) { struct fec_enet_private *fep = netdev_priv(dev); /* We cannot expect a graceful transmit stop without link !!! */ if (fep->link) { writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ udelay(10); if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) printk("fec_stop : Graceful transmit stop did not complete !\n"); } /* Whack a reset. We should wait for this. */ writel(1, fep->hwp + FEC_ECNTRL); udelay(10); if (cpu_is_mx6q() || cpu_is_mx6dl()) /* FIXME: we have to enable enet to keep mii interrupt works. */ writel(2, fep->hwp + FEC_ECNTRL); writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); if (fep->ptimer_present) fec_ptp_stop(fep->ptp_priv); writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); if (netif_running(dev)) netif_stop_queue(dev); netif_carrier_off(dev); /* prevent tx timeout */ fep->link = 0; } static int __devinit fec_probe(struct platform_device *pdev) { struct fec_enet_private *fep; struct fec_platform_data *pdata; struct net_device *ndev; int i, irq, ret = 0; struct resource *r; r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) return -ENXIO; r = request_mem_region(r->start, resource_size(r), pdev->name); if (!r) return -EBUSY; /* Init network device */ ndev = alloc_etherdev(sizeof(struct fec_enet_private)); if (!ndev) { ret = -ENOMEM; goto failed_alloc_etherdev; } SET_NETDEV_DEV(ndev, &pdev->dev); /* setup board info structure */ fep = netdev_priv(ndev); fep->hwp = ioremap(r->start, resource_size(r)); fep->pdev = pdev; if (!fep->hwp) { ret = -ENOMEM; goto failed_ioremap; } platform_set_drvdata(pdev, ndev); pdata = pdev->dev.platform_data; if (pdata) fep->phy_interface = pdata->phy; if (pdata->gpio_irq < 0) { gpio_request(pdata->gpio_irq, "gpio_enet_irq"); gpio_direction_input(pdata->gpio_irq); irq = gpio_to_irq(pdata->gpio_irq); ret = request_irq(irq, fec_enet_interrupt, IRQF_TRIGGER_RISING, pdev->name, ndev); if (ret) goto failed_irq; } else { /* This device has up to three irqs on some platforms */ for (i = 0; i < 3; i++) { irq = platform_get_irq(pdev, i); if (i && irq < 0) break; ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev); if (ret) { while (--i >= 0) { irq = platform_get_irq(pdev, i); free_irq(irq, ndev); } goto failed_irq; } } } fep->clk = clk_get(&pdev->dev, "fec_clk"); if (IS_ERR(fep->clk)) { ret = PTR_ERR(fep->clk); goto failed_clk; } clk_enable(fep->clk); ret = fec_enet_init(ndev); if (ret) goto failed_init; ret = fec_enet_mii_init(pdev); if (ret) goto failed_mii_init; if (fec_ptp_malloc_priv(&(fep->ptp_priv))) { if (fep->ptp_priv) { fep->ptp_priv->hwp = fep->hwp; ret = fec_ptp_init(fep->ptp_priv, pdev->id); if (ret) printk(KERN_WARNING "IEEE1588: ptp-timer is unavailable\n"); else fep->ptimer_present = 1; } else printk(KERN_ERR "IEEE1588: failed to malloc memory\n"); } /* Carrier starts down, phylib will bring it up */ netif_carrier_off(ndev); clk_disable(fep->clk); INIT_DELAYED_WORK(&fep->fixup_trigger_tx, fixup_trigger_tx_func); ret = register_netdev(ndev); if (ret) goto failed_register; return 0; failed_register: fec_enet_mii_remove(fep); if (fep->ptimer_present) fec_ptp_cleanup(fep->ptp_priv); kfree(fep->ptp_priv); failed_mii_init: failed_init: clk_disable(fep->clk); clk_put(fep->clk); failed_clk: if (pdata->gpio_irq < 0) free_irq(irq, ndev); else { for (i = 0; i < 3; i++) { irq = platform_get_irq(pdev, i); if (irq > 0) free_irq(irq, ndev); } } failed_irq: iounmap(fep->hwp); failed_ioremap: free_netdev(ndev); failed_alloc_etherdev: release_mem_region(r->start, resource_size(r)); return ret; } static int __devexit fec_drv_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct fec_enet_private *fep = netdev_priv(ndev); struct resource *r; cancel_delayed_work_sync(&fep->fixup_trigger_tx); fec_stop(ndev); fec_enet_mii_remove(fep); clk_disable(fep->clk); clk_put(fep->clk); iounmap((void __iomem *)ndev->base_addr); if (fep->ptimer_present) fec_ptp_cleanup(fep->ptp_priv); kfree(fep->ptp_priv); unregister_netdev(ndev); free_netdev(ndev); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); BUG_ON(!r); release_mem_region(r->start, resource_size(r)); platform_set_drvdata(pdev, NULL); return 0; } #ifdef CONFIG_PM static int fec_suspend(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct fec_enet_private *fep = netdev_priv(ndev); if (netif_running(ndev)) { netif_device_detach(ndev); fec_stop(ndev); clk_disable(fep->clk); } return 0; } static int fec_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct fec_enet_private *fep = netdev_priv(ndev); if (netif_running(ndev)) { clk_enable(fep->clk); fec_restart(ndev, fep->full_duplex); netif_device_attach(ndev); } return 0; } static const struct dev_pm_ops fec_pm_ops = { .suspend = fec_suspend, .resume = fec_resume, .freeze = fec_suspend, .thaw = fec_resume, .poweroff = fec_suspend, .restore = fec_resume, }; #endif static struct platform_driver fec_driver = { .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, #ifdef CONFIG_PM .pm = &fec_pm_ops, #endif }, .id_table = fec_devtype, .probe = fec_probe, .remove = __devexit_p(fec_drv_remove), }; static int fec_mac_addr_setup(char *mac_addr) { char *ptr, *p = mac_addr; unsigned long tmp; int i = 0, ret = 0; while (p && (*p) && i < 6) { ptr = strchr(p, ':'); if (ptr) *ptr++ = '\0'; if (strlen(p)) { ret = strict_strtoul(p, 16, &tmp); if (ret < 0 || tmp > 0xff) break; macaddr[i++] = tmp; } p = ptr; } return 0; } __setup("fec_mac=", fec_mac_addr_setup); static int __init fec_enet_module_init(void) { printk(KERN_INFO "FEC Ethernet Driver\n"); return platform_driver_register(&fec_driver); } static void __exit fec_enet_cleanup(void) { platform_driver_unregister(&fec_driver); } module_exit(fec_enet_cleanup); module_init(fec_enet_module_init); MODULE_LICENSE("GPL");