/* $Id: sunlance.c,v 1.112 2002/01/15 06:48:55 davem Exp $ * lance.c: Linux/Sparc/Lance driver * * Written 1995, 1996 by Miguel de Icaza * Sources: * The Linux depca driver * The Linux lance driver. * The Linux skeleton driver. * The NetBSD Sparc/Lance driver. * Theo de Raadt (deraadt@openbsd.org) * NCR92C990 Lan Controller manual * * 1.4: * Added support to run with a ledma on the Sun4m * * 1.5: * Added multiple card detection. * * 4/17/96: Burst sizes and tpe selection on sun4m by Eddie C. Dost * (ecd@skynet.be) * * 5/15/96: auto carrier detection on sun4m by Eddie C. Dost * (ecd@skynet.be) * * 5/17/96: lebuffer on scsi/ether cards now work David S. Miller * (davem@caip.rutgers.edu) * * 5/29/96: override option 'tpe-link-test?', if it is 'false', as * this disables auto carrier detection on sun4m. Eddie C. Dost * (ecd@skynet.be) * * 1.7: * 6/26/96: Bug fix for multiple ledmas, miguel. * * 1.8: * Stole multicast code from depca.c, fixed lance_tx. * * 1.9: * 8/21/96: Fixed the multicast code (Pedro Roque) * * 8/28/96: Send fake packet in lance_open() if auto_select is true, * so we can detect the carrier loss condition in time. * Eddie C. Dost (ecd@skynet.be) * * 9/15/96: Align rx_buf so that eth_copy_and_sum() won't cause an * MNA trap during chksum_partial_copy(). (ecd@skynet.be) * * 11/17/96: Handle LE_C0_MERR in lance_interrupt(). (ecd@skynet.be) * * 12/22/96: Don't loop forever in lance_rx() on incomplete packets. * This was the sun4c killer. Shit, stupid bug. * (ecd@skynet.be) * * 1.10: * 1/26/97: Modularize driver. (ecd@skynet.be) * * 1.11: * 12/27/97: Added sun4d support. (jj@sunsite.mff.cuni.cz) * * 1.12: * 11/3/99: Fixed SMP race in lance_start_xmit found by davem. * Anton Blanchard (anton@progsoc.uts.edu.au) * 2.00: 11/9/99: Massive overhaul and port to new SBUS driver interfaces. * David S. Miller (davem@redhat.com) * 2.01: * 11/08/01: Use library crc32 functions (Matt_Domsch@dell.com) * */ #undef DEBUG_DRIVER static char lancestr[] = "LANCE"; #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/in.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/crc32.h> #include <linux/errno.h> #include <linux/socket.h> /* Used for the temporal inet entries and routing */ #include <linux/route.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/ethtool.h> #include <linux/bitops.h> #include <linux/dma-mapping.h> #include <linux/of.h> #include <linux/of_device.h> #include <asm/system.h> #include <asm/io.h> #include <asm/dma.h> #include <asm/pgtable.h> #include <asm/byteorder.h> /* Used by the checksum routines */ #include <asm/idprom.h> #include <asm/prom.h> #include <asm/auxio.h> /* For tpe-link-test? setting */ #include <asm/irq.h> #define DRV_NAME "sunlance" #define DRV_VERSION "2.02" #define DRV_RELDATE "8/24/03" #define DRV_AUTHOR "Miguel de Icaza (miguel@nuclecu.unam.mx)" static char version[] = DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n"; MODULE_VERSION(DRV_VERSION); MODULE_AUTHOR(DRV_AUTHOR); MODULE_DESCRIPTION("Sun Lance ethernet driver"); MODULE_LICENSE("GPL"); /* Define: 2^4 Tx buffers and 2^4 Rx buffers */ #ifndef LANCE_LOG_TX_BUFFERS #define LANCE_LOG_TX_BUFFERS 4 #define LANCE_LOG_RX_BUFFERS 4 #endif #define LE_CSR0 0 #define LE_CSR1 1 #define LE_CSR2 2 #define LE_CSR3 3 #define LE_MO_PROM 0x8000 /* Enable promiscuous mode */ #define LE_C0_ERR 0x8000 /* Error: set if BAB, SQE, MISS or ME is set */ #define LE_C0_BABL 0x4000 /* BAB: Babble: tx timeout. */ #define LE_C0_CERR 0x2000 /* SQE: Signal quality error */ #define LE_C0_MISS 0x1000 /* MISS: Missed a packet */ #define LE_C0_MERR 0x0800 /* ME: Memory error */ #define LE_C0_RINT 0x0400 /* Received interrupt */ #define LE_C0_TINT 0x0200 /* Transmitter Interrupt */ #define LE_C0_IDON 0x0100 /* IFIN: Init finished. */ #define LE_C0_INTR 0x0080 /* Interrupt or error */ #define LE_C0_INEA 0x0040 /* Interrupt enable */ #define LE_C0_RXON 0x0020 /* Receiver on */ #define LE_C0_TXON 0x0010 /* Transmitter on */ #define LE_C0_TDMD 0x0008 /* Transmitter demand */ #define LE_C0_STOP 0x0004 /* Stop the card */ #define LE_C0_STRT 0x0002 /* Start the card */ #define LE_C0_INIT 0x0001 /* Init the card */ #define LE_C3_BSWP 0x4 /* SWAP */ #define LE_C3_ACON 0x2 /* ALE Control */ #define LE_C3_BCON 0x1 /* Byte control */ /* Receive message descriptor 1 */ #define LE_R1_OWN 0x80 /* Who owns the entry */ #define LE_R1_ERR 0x40 /* Error: if FRA, OFL, CRC or BUF is set */ #define LE_R1_FRA 0x20 /* FRA: Frame error */ #define LE_R1_OFL 0x10 /* OFL: Frame overflow */ #define LE_R1_CRC 0x08 /* CRC error */ #define LE_R1_BUF 0x04 /* BUF: Buffer error */ #define LE_R1_SOP 0x02 /* Start of packet */ #define LE_R1_EOP 0x01 /* End of packet */ #define LE_R1_POK 0x03 /* Packet is complete: SOP + EOP */ #define LE_T1_OWN 0x80 /* Lance owns the packet */ #define LE_T1_ERR 0x40 /* Error summary */ #define LE_T1_EMORE 0x10 /* Error: more than one retry needed */ #define LE_T1_EONE 0x08 /* Error: one retry needed */ #define LE_T1_EDEF 0x04 /* Error: deferred */ #define LE_T1_SOP 0x02 /* Start of packet */ #define LE_T1_EOP 0x01 /* End of packet */ #define LE_T1_POK 0x03 /* Packet is complete: SOP + EOP */ #define LE_T3_BUF 0x8000 /* Buffer error */ #define LE_T3_UFL 0x4000 /* Error underflow */ #define LE_T3_LCOL 0x1000 /* Error late collision */ #define LE_T3_CLOS 0x0800 /* Error carrier loss */ #define LE_T3_RTY 0x0400 /* Error retry */ #define LE_T3_TDR 0x03ff /* Time Domain Reflectometry counter */ #define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS)) #define TX_RING_MOD_MASK (TX_RING_SIZE - 1) #define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29) #define TX_NEXT(__x) (((__x)+1) & TX_RING_MOD_MASK) #define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS)) #define RX_RING_MOD_MASK (RX_RING_SIZE - 1) #define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29) #define RX_NEXT(__x) (((__x)+1) & RX_RING_MOD_MASK) #define PKT_BUF_SZ 1544 #define RX_BUFF_SIZE PKT_BUF_SZ #define TX_BUFF_SIZE PKT_BUF_SZ struct lance_rx_desc { u16 rmd0; /* low address of packet */ u8 rmd1_bits; /* descriptor bits */ u8 rmd1_hadr; /* high address of packet */ s16 length; /* This length is 2s complement (negative)! * Buffer length */ u16 mblength; /* This is the actual number of bytes received */ }; struct lance_tx_desc { u16 tmd0; /* low address of packet */ u8 tmd1_bits; /* descriptor bits */ u8 tmd1_hadr; /* high address of packet */ s16 length; /* Length is 2s complement (negative)! */ u16 misc; }; /* The LANCE initialization block, described in databook. */ /* On the Sparc, this block should be on a DMA region */ struct lance_init_block { u16 mode; /* Pre-set mode (reg. 15) */ u8 phys_addr[6]; /* Physical ethernet address */ u32 filter[2]; /* Multicast filter. */ /* Receive and transmit ring base, along with extra bits. */ u16 rx_ptr; /* receive descriptor addr */ u16 rx_len; /* receive len and high addr */ u16 tx_ptr; /* transmit descriptor addr */ u16 tx_len; /* transmit len and high addr */ /* The Tx and Rx ring entries must aligned on 8-byte boundaries. */ struct lance_rx_desc brx_ring[RX_RING_SIZE]; struct lance_tx_desc btx_ring[TX_RING_SIZE]; u8 tx_buf [TX_RING_SIZE][TX_BUFF_SIZE]; u8 pad[2]; /* align rx_buf for copy_and_sum(). */ u8 rx_buf [RX_RING_SIZE][RX_BUFF_SIZE]; }; #define libdesc_offset(rt, elem) \ ((__u32)(((unsigned long)(&(((struct lance_init_block *)0)->rt[elem]))))) #define libbuff_offset(rt, elem) \ ((__u32)(((unsigned long)(&(((struct lance_init_block *)0)->rt[elem][0]))))) struct lance_private { void __iomem *lregs; /* Lance RAP/RDP regs. */ void __iomem *dregs; /* DMA controller regs. */ struct lance_init_block __iomem *init_block_iomem; struct lance_init_block *init_block_mem; spinlock_t lock; int rx_new, tx_new; int rx_old, tx_old; struct of_device *ledma; /* If set this points to ledma */ char tpe; /* cable-selection is TPE */ char auto_select; /* cable-selection by carrier */ char burst_sizes; /* ledma SBus burst sizes */ char pio_buffer; /* init block in PIO space? */ unsigned short busmaster_regval; void (*init_ring)(struct net_device *); void (*rx)(struct net_device *); void (*tx)(struct net_device *); char *name; dma_addr_t init_block_dvma; struct net_device *dev; /* Backpointer */ struct of_device *op; struct of_device *lebuffer; struct timer_list multicast_timer; }; #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\ lp->tx_old+TX_RING_MOD_MASK-lp->tx_new:\ lp->tx_old - lp->tx_new-1) /* Lance registers. */ #define RDP 0x00UL /* register data port */ #define RAP 0x02UL /* register address port */ #define LANCE_REG_SIZE 0x04UL #define STOP_LANCE(__lp) \ do { void __iomem *__base = (__lp)->lregs; \ sbus_writew(LE_CSR0, __base + RAP); \ sbus_writew(LE_C0_STOP, __base + RDP); \ } while (0) int sparc_lance_debug = 2; /* The Lance uses 24 bit addresses */ /* On the Sun4c the DVMA will provide the remaining bytes for us */ /* On the Sun4m we have to instruct the ledma to provide them */ /* Even worse, on scsi/ether SBUS cards, the init block and the * transmit/receive buffers are addresses as offsets from absolute * zero on the lebuffer PIO area. -DaveM */ #define LANCE_ADDR(x) ((long)(x) & ~0xff000000) /* Load the CSR registers */ static void load_csrs(struct lance_private *lp) { u32 leptr; if (lp->pio_buffer) leptr = 0; else leptr = LANCE_ADDR(lp->init_block_dvma); sbus_writew(LE_CSR1, lp->lregs + RAP); sbus_writew(leptr & 0xffff, lp->lregs + RDP); sbus_writew(LE_CSR2, lp->lregs + RAP); sbus_writew(leptr >> 16, lp->lregs + RDP); sbus_writew(LE_CSR3, lp->lregs + RAP); sbus_writew(lp->busmaster_regval, lp->lregs + RDP); /* Point back to csr0 */ sbus_writew(LE_CSR0, lp->lregs + RAP); } /* Setup the Lance Rx and Tx rings */ static void lance_init_ring_dvma(struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); struct lance_init_block *ib = lp->init_block_mem; dma_addr_t aib = lp->init_block_dvma; __u32 leptr; int i; /* Lock out other processes while setting up hardware */ netif_stop_queue(dev); lp->rx_new = lp->tx_new = 0; lp->rx_old = lp->tx_old = 0; /* Copy the ethernet address to the lance init block * Note that on the sparc you need to swap the ethernet address. */ ib->phys_addr [0] = dev->dev_addr [1]; ib->phys_addr [1] = dev->dev_addr [0]; ib->phys_addr [2] = dev->dev_addr [3]; ib->phys_addr [3] = dev->dev_addr [2]; ib->phys_addr [4] = dev->dev_addr [5]; ib->phys_addr [5] = dev->dev_addr [4]; /* Setup the Tx ring entries */ for (i = 0; i <= TX_RING_SIZE; i++) { leptr = LANCE_ADDR(aib + libbuff_offset(tx_buf, i)); ib->btx_ring [i].tmd0 = leptr; ib->btx_ring [i].tmd1_hadr = leptr >> 16; ib->btx_ring [i].tmd1_bits = 0; ib->btx_ring [i].length = 0xf000; /* The ones required by tmd2 */ ib->btx_ring [i].misc = 0; } /* Setup the Rx ring entries */ for (i = 0; i < RX_RING_SIZE; i++) { leptr = LANCE_ADDR(aib + libbuff_offset(rx_buf, i)); ib->brx_ring [i].rmd0 = leptr; ib->brx_ring [i].rmd1_hadr = leptr >> 16; ib->brx_ring [i].rmd1_bits = LE_R1_OWN; ib->brx_ring [i].length = -RX_BUFF_SIZE | 0xf000; ib->brx_ring [i].mblength = 0; } /* Setup the initialization block */ /* Setup rx descriptor pointer */ leptr = LANCE_ADDR(aib + libdesc_offset(brx_ring, 0)); ib->rx_len = (LANCE_LOG_RX_BUFFERS << 13) | (leptr >> 16); ib->rx_ptr = leptr; /* Setup tx descriptor pointer */ leptr = LANCE_ADDR(aib + libdesc_offset(btx_ring, 0)); ib->tx_len = (LANCE_LOG_TX_BUFFERS << 13) | (leptr >> 16); ib->tx_ptr = leptr; } static void lance_init_ring_pio(struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); struct lance_init_block __iomem *ib = lp->init_block_iomem; u32 leptr; int i; /* Lock out other processes while setting up hardware */ netif_stop_queue(dev); lp->rx_new = lp->tx_new = 0; lp->rx_old = lp->tx_old = 0; /* Copy the ethernet address to the lance init block * Note that on the sparc you need to swap the ethernet address. */ sbus_writeb(dev->dev_addr[1], &ib->phys_addr[0]); sbus_writeb(dev->dev_addr[0], &ib->phys_addr[1]); sbus_writeb(dev->dev_addr[3], &ib->phys_addr[2]); sbus_writeb(dev->dev_addr[2], &ib->phys_addr[3]); sbus_writeb(dev->dev_addr[5], &ib->phys_addr[4]); sbus_writeb(dev->dev_addr[4], &ib->phys_addr[5]); /* Setup the Tx ring entries */ for (i = 0; i <= TX_RING_SIZE; i++) { leptr = libbuff_offset(tx_buf, i); sbus_writew(leptr, &ib->btx_ring [i].tmd0); sbus_writeb(leptr >> 16,&ib->btx_ring [i].tmd1_hadr); sbus_writeb(0, &ib->btx_ring [i].tmd1_bits); /* The ones required by tmd2 */ sbus_writew(0xf000, &ib->btx_ring [i].length); sbus_writew(0, &ib->btx_ring [i].misc); } /* Setup the Rx ring entries */ for (i = 0; i < RX_RING_SIZE; i++) { leptr = libbuff_offset(rx_buf, i); sbus_writew(leptr, &ib->brx_ring [i].rmd0); sbus_writeb(leptr >> 16,&ib->brx_ring [i].rmd1_hadr); sbus_writeb(LE_R1_OWN, &ib->brx_ring [i].rmd1_bits); sbus_writew(-RX_BUFF_SIZE|0xf000, &ib->brx_ring [i].length); sbus_writew(0, &ib->brx_ring [i].mblength); } /* Setup the initialization block */ /* Setup rx descriptor pointer */ leptr = libdesc_offset(brx_ring, 0); sbus_writew((LANCE_LOG_RX_BUFFERS << 13) | (leptr >> 16), &ib->rx_len); sbus_writew(leptr, &ib->rx_ptr); /* Setup tx descriptor pointer */ leptr = libdesc_offset(btx_ring, 0); sbus_writew((LANCE_LOG_TX_BUFFERS << 13) | (leptr >> 16), &ib->tx_len); sbus_writew(leptr, &ib->tx_ptr); } static void init_restart_ledma(struct lance_private *lp) { u32 csr = sbus_readl(lp->dregs + DMA_CSR); if (!(csr & DMA_HNDL_ERROR)) { /* E-Cache draining */ while (sbus_readl(lp->dregs + DMA_CSR) & DMA_FIFO_ISDRAIN) barrier(); } csr = sbus_readl(lp->dregs + DMA_CSR); csr &= ~DMA_E_BURSTS; if (lp->burst_sizes & DMA_BURST32) csr |= DMA_E_BURST32; else csr |= DMA_E_BURST16; csr |= (DMA_DSBL_RD_DRN | DMA_DSBL_WR_INV | DMA_FIFO_INV); if (lp->tpe) csr |= DMA_EN_ENETAUI; else csr &= ~DMA_EN_ENETAUI; udelay(20); sbus_writel(csr, lp->dregs + DMA_CSR); udelay(200); } static int init_restart_lance(struct lance_private *lp) { u16 regval = 0; int i; if (lp->dregs) init_restart_ledma(lp); sbus_writew(LE_CSR0, lp->lregs + RAP); sbus_writew(LE_C0_INIT, lp->lregs + RDP); /* Wait for the lance to complete initialization */ for (i = 0; i < 100; i++) { regval = sbus_readw(lp->lregs + RDP); if (regval & (LE_C0_ERR | LE_C0_IDON)) break; barrier(); } if (i == 100 || (regval & LE_C0_ERR)) { printk(KERN_ERR "LANCE unopened after %d ticks, csr0=%4.4x.\n", i, regval); if (lp->dregs) printk("dcsr=%8.8x\n", sbus_readl(lp->dregs + DMA_CSR)); return -1; } /* Clear IDON by writing a "1", enable interrupts and start lance */ sbus_writew(LE_C0_IDON, lp->lregs + RDP); sbus_writew(LE_C0_INEA | LE_C0_STRT, lp->lregs + RDP); if (lp->dregs) { u32 csr = sbus_readl(lp->dregs + DMA_CSR); csr |= DMA_INT_ENAB; sbus_writel(csr, lp->dregs + DMA_CSR); } return 0; } static void lance_rx_dvma(struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); struct lance_init_block *ib = lp->init_block_mem; struct lance_rx_desc *rd; u8 bits; int len, entry = lp->rx_new; struct sk_buff *skb; for (rd = &ib->brx_ring [entry]; !((bits = rd->rmd1_bits) & LE_R1_OWN); rd = &ib->brx_ring [entry]) { /* We got an incomplete frame? */ if ((bits & LE_R1_POK) != LE_R1_POK) { dev->stats.rx_over_errors++; dev->stats.rx_errors++; } else if (bits & LE_R1_ERR) { /* Count only the end frame as a rx error, * not the beginning */ if (bits & LE_R1_BUF) dev->stats.rx_fifo_errors++; if (bits & LE_R1_CRC) dev->stats.rx_crc_errors++; if (bits & LE_R1_OFL) dev->stats.rx_over_errors++; if (bits & LE_R1_FRA) dev->stats.rx_frame_errors++; if (bits & LE_R1_EOP) dev->stats.rx_errors++; } else { len = (rd->mblength & 0xfff) - 4; skb = dev_alloc_skb(len + 2); if (skb == NULL) { printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", dev->name); dev->stats.rx_dropped++; rd->mblength = 0; rd->rmd1_bits = LE_R1_OWN; lp->rx_new = RX_NEXT(entry); return; } dev->stats.rx_bytes += len; skb_reserve(skb, 2); /* 16 byte align */ skb_put(skb, len); /* make room */ skb_copy_to_linear_data(skb, (unsigned char *)&(ib->rx_buf [entry][0]), len); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); dev->last_rx = jiffies; dev->stats.rx_packets++; } /* Return the packet to the pool */ rd->mblength = 0; rd->rmd1_bits = LE_R1_OWN; entry = RX_NEXT(entry); } lp->rx_new = entry; } static void lance_tx_dvma(struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); struct lance_init_block *ib = lp->init_block_mem; int i, j; spin_lock(&lp->lock); j = lp->tx_old; for (i = j; i != lp->tx_new; i = j) { struct lance_tx_desc *td = &ib->btx_ring [i]; u8 bits = td->tmd1_bits; /* If we hit a packet not owned by us, stop */ if (bits & LE_T1_OWN) break; if (bits & LE_T1_ERR) { u16 status = td->misc; dev->stats.tx_errors++; if (status & LE_T3_RTY) dev->stats.tx_aborted_errors++; if (status & LE_T3_LCOL) dev->stats.tx_window_errors++; if (status & LE_T3_CLOS) { dev->stats.tx_carrier_errors++; if (lp->auto_select) { lp->tpe = 1 - lp->tpe; printk(KERN_NOTICE "%s: Carrier Lost, trying %s\n", dev->name, lp->tpe?"TPE":"AUI"); STOP_LANCE(lp); lp->init_ring(dev); load_csrs(lp); init_restart_lance(lp); goto out; } } /* Buffer errors and underflows turn off the * transmitter, restart the adapter. */ if (status & (LE_T3_BUF|LE_T3_UFL)) { dev->stats.tx_fifo_errors++; printk(KERN_ERR "%s: Tx: ERR_BUF|ERR_UFL, restarting\n", dev->name); STOP_LANCE(lp); lp->init_ring(dev); load_csrs(lp); init_restart_lance(lp); goto out; } } else if ((bits & LE_T1_POK) == LE_T1_POK) { /* * So we don't count the packet more than once. */ td->tmd1_bits = bits & ~(LE_T1_POK); /* One collision before packet was sent. */ if (bits & LE_T1_EONE) dev->stats.collisions++; /* More than one collision, be optimistic. */ if (bits & LE_T1_EMORE) dev->stats.collisions += 2; dev->stats.tx_packets++; } j = TX_NEXT(j); } lp->tx_old = j; out: if (netif_queue_stopped(dev) && TX_BUFFS_AVAIL > 0) netif_wake_queue(dev); spin_unlock(&lp->lock); } static void lance_piocopy_to_skb(struct sk_buff *skb, void __iomem *piobuf, int len) { u16 *p16 = (u16 *) skb->data; u32 *p32; u8 *p8; void __iomem *pbuf = piobuf; /* We know here that both src and dest are on a 16bit boundary. */ *p16++ = sbus_readw(pbuf); p32 = (u32 *) p16; pbuf += 2; len -= 2; while (len >= 4) { *p32++ = sbus_readl(pbuf); pbuf += 4; len -= 4; } p8 = (u8 *) p32; if (len >= 2) { p16 = (u16 *) p32; *p16++ = sbus_readw(pbuf); pbuf += 2; len -= 2; p8 = (u8 *) p16; } if (len >= 1) *p8 = sbus_readb(pbuf); } static void lance_rx_pio(struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); struct lance_init_block __iomem *ib = lp->init_block_iomem; struct lance_rx_desc __iomem *rd; unsigned char bits; int len, entry; struct sk_buff *skb; entry = lp->rx_new; for (rd = &ib->brx_ring [entry]; !((bits = sbus_readb(&rd->rmd1_bits)) & LE_R1_OWN); rd = &ib->brx_ring [entry]) { /* We got an incomplete frame? */ if ((bits & LE_R1_POK) != LE_R1_POK) { dev->stats.rx_over_errors++; dev->stats.rx_errors++; } else if (bits & LE_R1_ERR) { /* Count only the end frame as a rx error, * not the beginning */ if (bits & LE_R1_BUF) dev->stats.rx_fifo_errors++; if (bits & LE_R1_CRC) dev->stats.rx_crc_errors++; if (bits & LE_R1_OFL) dev->stats.rx_over_errors++; if (bits & LE_R1_FRA) dev->stats.rx_frame_errors++; if (bits & LE_R1_EOP) dev->stats.rx_errors++; } else { len = (sbus_readw(&rd->mblength) & 0xfff) - 4; skb = dev_alloc_skb(len + 2); if (skb == NULL) { printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", dev->name); dev->stats.rx_dropped++; sbus_writew(0, &rd->mblength); sbus_writeb(LE_R1_OWN, &rd->rmd1_bits); lp->rx_new = RX_NEXT(entry); return; } dev->stats.rx_bytes += len; skb_reserve (skb, 2); /* 16 byte align */ skb_put(skb, len); /* make room */ lance_piocopy_to_skb(skb, &(ib->rx_buf[entry][0]), len); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); dev->last_rx = jiffies; dev->stats.rx_packets++; } /* Return the packet to the pool */ sbus_writew(0, &rd->mblength); sbus_writeb(LE_R1_OWN, &rd->rmd1_bits); entry = RX_NEXT(entry); } lp->rx_new = entry; } static void lance_tx_pio(struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); struct lance_init_block __iomem *ib = lp->init_block_iomem; int i, j; spin_lock(&lp->lock); j = lp->tx_old; for (i = j; i != lp->tx_new; i = j) { struct lance_tx_desc __iomem *td = &ib->btx_ring [i]; u8 bits = sbus_readb(&td->tmd1_bits); /* If we hit a packet not owned by us, stop */ if (bits & LE_T1_OWN) break; if (bits & LE_T1_ERR) { u16 status = sbus_readw(&td->misc); dev->stats.tx_errors++; if (status & LE_T3_RTY) dev->stats.tx_aborted_errors++; if (status & LE_T3_LCOL) dev->stats.tx_window_errors++; if (status & LE_T3_CLOS) { dev->stats.tx_carrier_errors++; if (lp->auto_select) { lp->tpe = 1 - lp->tpe; printk(KERN_NOTICE "%s: Carrier Lost, trying %s\n", dev->name, lp->tpe?"TPE":"AUI"); STOP_LANCE(lp); lp->init_ring(dev); load_csrs(lp); init_restart_lance(lp); goto out; } } /* Buffer errors and underflows turn off the * transmitter, restart the adapter. */ if (status & (LE_T3_BUF|LE_T3_UFL)) { dev->stats.tx_fifo_errors++; printk(KERN_ERR "%s: Tx: ERR_BUF|ERR_UFL, restarting\n", dev->name); STOP_LANCE(lp); lp->init_ring(dev); load_csrs(lp); init_restart_lance(lp); goto out; } } else if ((bits & LE_T1_POK) == LE_T1_POK) { /* * So we don't count the packet more than once. */ sbus_writeb(bits & ~(LE_T1_POK), &td->tmd1_bits); /* One collision before packet was sent. */ if (bits & LE_T1_EONE) dev->stats.collisions++; /* More than one collision, be optimistic. */ if (bits & LE_T1_EMORE) dev->stats.collisions += 2; dev->stats.tx_packets++; } j = TX_NEXT(j); } lp->tx_old = j; if (netif_queue_stopped(dev) && TX_BUFFS_AVAIL > 0) netif_wake_queue(dev); out: spin_unlock(&lp->lock); } static irqreturn_t lance_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct lance_private *lp = netdev_priv(dev); int csr0; sbus_writew(LE_CSR0, lp->lregs + RAP); csr0 = sbus_readw(lp->lregs + RDP); /* Acknowledge all the interrupt sources ASAP */ sbus_writew(csr0 & (LE_C0_INTR | LE_C0_TINT | LE_C0_RINT), lp->lregs + RDP); if ((csr0 & LE_C0_ERR) != 0) { /* Clear the error condition */ sbus_writew((LE_C0_BABL | LE_C0_ERR | LE_C0_MISS | LE_C0_CERR | LE_C0_MERR), lp->lregs + RDP); } if (csr0 & LE_C0_RINT) lp->rx(dev); if (csr0 & LE_C0_TINT) lp->tx(dev); if (csr0 & LE_C0_BABL) dev->stats.tx_errors++; if (csr0 & LE_C0_MISS) dev->stats.rx_errors++; if (csr0 & LE_C0_MERR) { if (lp->dregs) { u32 addr = sbus_readl(lp->dregs + DMA_ADDR); printk(KERN_ERR "%s: Memory error, status %04x, addr %06x\n", dev->name, csr0, addr & 0xffffff); } else { printk(KERN_ERR "%s: Memory error, status %04x\n", dev->name, csr0); } sbus_writew(LE_C0_STOP, lp->lregs + RDP); if (lp->dregs) { u32 dma_csr = sbus_readl(lp->dregs + DMA_CSR); dma_csr |= DMA_FIFO_INV; sbus_writel(dma_csr, lp->dregs + DMA_CSR); } lp->init_ring(dev); load_csrs(lp); init_restart_lance(lp); netif_wake_queue(dev); } sbus_writew(LE_C0_INEA, lp->lregs + RDP); return IRQ_HANDLED; } /* Build a fake network packet and send it to ourselves. */ static void build_fake_packet(struct lance_private *lp) { struct net_device *dev = lp->dev; int i, entry; entry = lp->tx_new & TX_RING_MOD_MASK; if (lp->pio_buffer) { struct lance_init_block __iomem *ib = lp->init_block_iomem; u16 __iomem *packet = (u16 __iomem *) &(ib->tx_buf[entry][0]); struct ethhdr __iomem *eth = (struct ethhdr __iomem *) packet; for (i = 0; i < (ETH_ZLEN / sizeof(u16)); i++) sbus_writew(0, &packet[i]); for (i = 0; i < 6; i++) { sbus_writeb(dev->dev_addr[i], ð->h_dest[i]); sbus_writeb(dev->dev_addr[i], ð->h_source[i]); } sbus_writew((-ETH_ZLEN) | 0xf000, &ib->btx_ring[entry].length); sbus_writew(0, &ib->btx_ring[entry].misc); sbus_writeb(LE_T1_POK|LE_T1_OWN, &ib->btx_ring[entry].tmd1_bits); } else { struct lance_init_block *ib = lp->init_block_mem; u16 *packet = (u16 *) &(ib->tx_buf[entry][0]); struct ethhdr *eth = (struct ethhdr *) packet; memset(packet, 0, ETH_ZLEN); for (i = 0; i < 6; i++) { eth->h_dest[i] = dev->dev_addr[i]; eth->h_source[i] = dev->dev_addr[i]; } ib->btx_ring[entry].length = (-ETH_ZLEN) | 0xf000; ib->btx_ring[entry].misc = 0; ib->btx_ring[entry].tmd1_bits = (LE_T1_POK|LE_T1_OWN); } lp->tx_new = TX_NEXT(entry); } static int lance_open(struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); int status = 0; STOP_LANCE(lp); if (request_irq(dev->irq, &lance_interrupt, IRQF_SHARED, lancestr, (void *) dev)) { printk(KERN_ERR "Lance: Can't get irq %d\n", dev->irq); return -EAGAIN; } /* On the 4m, setup the ledma to provide the upper bits for buffers */ if (lp->dregs) { u32 regval = lp->init_block_dvma & 0xff000000; sbus_writel(regval, lp->dregs + DMA_TEST); } /* Set mode and clear multicast filter only at device open, * so that lance_init_ring() called at any error will not * forget multicast filters. * * BTW it is common bug in all lance drivers! --ANK */ if (lp->pio_buffer) { struct lance_init_block __iomem *ib = lp->init_block_iomem; sbus_writew(0, &ib->mode); sbus_writel(0, &ib->filter[0]); sbus_writel(0, &ib->filter[1]); } else { struct lance_init_block *ib = lp->init_block_mem; ib->mode = 0; ib->filter [0] = 0; ib->filter [1] = 0; } lp->init_ring(dev); load_csrs(lp); netif_start_queue(dev); status = init_restart_lance(lp); if (!status && lp->auto_select) { build_fake_packet(lp); sbus_writew(LE_C0_INEA | LE_C0_TDMD, lp->lregs + RDP); } return status; } static int lance_close(struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); netif_stop_queue(dev); del_timer_sync(&lp->multicast_timer); STOP_LANCE(lp); free_irq(dev->irq, (void *) dev); return 0; } static int lance_reset(struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); int status; STOP_LANCE(lp); /* On the 4m, reset the dma too */ if (lp->dregs) { u32 csr, addr; printk(KERN_ERR "resetting ledma\n"); csr = sbus_readl(lp->dregs + DMA_CSR); sbus_writel(csr | DMA_RST_ENET, lp->dregs + DMA_CSR); udelay(200); sbus_writel(csr & ~DMA_RST_ENET, lp->dregs + DMA_CSR); addr = lp->init_block_dvma & 0xff000000; sbus_writel(addr, lp->dregs + DMA_TEST); } lp->init_ring(dev); load_csrs(lp); dev->trans_start = jiffies; status = init_restart_lance(lp); return status; } static void lance_piocopy_from_skb(void __iomem *dest, unsigned char *src, int len) { void __iomem *piobuf = dest; u32 *p32; u16 *p16; u8 *p8; switch ((unsigned long)src & 0x3) { case 0: p32 = (u32 *) src; while (len >= 4) { sbus_writel(*p32, piobuf); p32++; piobuf += 4; len -= 4; } src = (char *) p32; break; case 1: case 3: p8 = (u8 *) src; while (len >= 4) { u32 val; val = p8[0] << 24; val |= p8[1] << 16; val |= p8[2] << 8; val |= p8[3]; sbus_writel(val, piobuf); p8 += 4; piobuf += 4; len -= 4; } src = (char *) p8; break; case 2: p16 = (u16 *) src; while (len >= 4) { u32 val = p16[0]<<16 | p16[1]; sbus_writel(val, piobuf); p16 += 2; piobuf += 4; len -= 4; } src = (char *) p16; break; }; if (len >= 2) { u16 val = src[0] << 8 | src[1]; sbus_writew(val, piobuf); src += 2; piobuf += 2; len -= 2; } if (len >= 1) sbus_writeb(src[0], piobuf); } static void lance_piozero(void __iomem *dest, int len) { void __iomem *piobuf = dest; if ((unsigned long)piobuf & 1) { sbus_writeb(0, piobuf); piobuf += 1; len -= 1; if (len == 0) return; } if (len == 1) { sbus_writeb(0, piobuf); return; } if ((unsigned long)piobuf & 2) { sbus_writew(0, piobuf); piobuf += 2; len -= 2; if (len == 0) return; } while (len >= 4) { sbus_writel(0, piobuf); piobuf += 4; len -= 4; } if (len >= 2) { sbus_writew(0, piobuf); piobuf += 2; len -= 2; } if (len >= 1) sbus_writeb(0, piobuf); } static void lance_tx_timeout(struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); printk(KERN_ERR "%s: transmit timed out, status %04x, reset\n", dev->name, sbus_readw(lp->lregs + RDP)); lance_reset(dev); netif_wake_queue(dev); } static int lance_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); int entry, skblen, len; skblen = skb->len; len = (skblen <= ETH_ZLEN) ? ETH_ZLEN : skblen; spin_lock_irq(&lp->lock); dev->stats.tx_bytes += len; entry = lp->tx_new & TX_RING_MOD_MASK; if (lp->pio_buffer) { struct lance_init_block __iomem *ib = lp->init_block_iomem; sbus_writew((-len) | 0xf000, &ib->btx_ring[entry].length); sbus_writew(0, &ib->btx_ring[entry].misc); lance_piocopy_from_skb(&ib->tx_buf[entry][0], skb->data, skblen); if (len != skblen) lance_piozero(&ib->tx_buf[entry][skblen], len - skblen); sbus_writeb(LE_T1_POK | LE_T1_OWN, &ib->btx_ring[entry].tmd1_bits); } else { struct lance_init_block *ib = lp->init_block_mem; ib->btx_ring [entry].length = (-len) | 0xf000; ib->btx_ring [entry].misc = 0; skb_copy_from_linear_data(skb, &ib->tx_buf [entry][0], skblen); if (len != skblen) memset((char *) &ib->tx_buf [entry][skblen], 0, len - skblen); ib->btx_ring [entry].tmd1_bits = (LE_T1_POK | LE_T1_OWN); } lp->tx_new = TX_NEXT(entry); if (TX_BUFFS_AVAIL <= 0) netif_stop_queue(dev); /* Kick the lance: transmit now */ sbus_writew(LE_C0_INEA | LE_C0_TDMD, lp->lregs + RDP); /* Read back CSR to invalidate the E-Cache. * This is needed, because DMA_DSBL_WR_INV is set. */ if (lp->dregs) sbus_readw(lp->lregs + RDP); spin_unlock_irq(&lp->lock); dev->trans_start = jiffies; dev_kfree_skb(skb); return 0; } /* taken from the depca driver */ static void lance_load_multicast(struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); struct dev_mc_list *dmi = dev->mc_list; char *addrs; int i; u32 crc; u32 val; /* set all multicast bits */ if (dev->flags & IFF_ALLMULTI) val = ~0; else val = 0; if (lp->pio_buffer) { struct lance_init_block __iomem *ib = lp->init_block_iomem; sbus_writel(val, &ib->filter[0]); sbus_writel(val, &ib->filter[1]); } else { struct lance_init_block *ib = lp->init_block_mem; ib->filter [0] = val; ib->filter [1] = val; } if (dev->flags & IFF_ALLMULTI) return; /* Add addresses */ for (i = 0; i < dev->mc_count; i++) { addrs = dmi->dmi_addr; dmi = dmi->next; /* multicast address? */ if (!(*addrs & 1)) continue; crc = ether_crc_le(6, addrs); crc = crc >> 26; if (lp->pio_buffer) { struct lance_init_block __iomem *ib = lp->init_block_iomem; u16 __iomem *mcast_table = (u16 __iomem *) &ib->filter; u16 tmp = sbus_readw(&mcast_table[crc>>4]); tmp |= 1 << (crc & 0xf); sbus_writew(tmp, &mcast_table[crc>>4]); } else { struct lance_init_block *ib = lp->init_block_mem; u16 *mcast_table = (u16 *) &ib->filter; mcast_table [crc >> 4] |= 1 << (crc & 0xf); } } } static void lance_set_multicast(struct net_device *dev) { struct lance_private *lp = netdev_priv(dev); struct lance_init_block *ib_mem = lp->init_block_mem; struct lance_init_block __iomem *ib_iomem = lp->init_block_iomem; u16 mode; if (!netif_running(dev)) return; if (lp->tx_old != lp->tx_new) { mod_timer(&lp->multicast_timer, jiffies + 4); netif_wake_queue(dev); return; } netif_stop_queue(dev); STOP_LANCE(lp); lp->init_ring(dev); if (lp->pio_buffer) mode = sbus_readw(&ib_iomem->mode); else mode = ib_mem->mode; if (dev->flags & IFF_PROMISC) { mode |= LE_MO_PROM; if (lp->pio_buffer) sbus_writew(mode, &ib_iomem->mode); else ib_mem->mode = mode; } else { mode &= ~LE_MO_PROM; if (lp->pio_buffer) sbus_writew(mode, &ib_iomem->mode); else ib_mem->mode = mode; lance_load_multicast(dev); } load_csrs(lp); init_restart_lance(lp); netif_wake_queue(dev); } static void lance_set_multicast_retry(unsigned long _opaque) { struct net_device *dev = (struct net_device *) _opaque; lance_set_multicast(dev); } static void lance_free_hwresources(struct lance_private *lp) { if (lp->lregs) of_iounmap(&lp->op->resource[0], lp->lregs, LANCE_REG_SIZE); if (lp->dregs) { struct of_device *ledma = lp->ledma; of_iounmap(&ledma->resource[0], lp->dregs, resource_size(&ledma->resource[0])); } if (lp->init_block_iomem) { of_iounmap(&lp->lebuffer->resource[0], lp->init_block_iomem, sizeof(struct lance_init_block)); } else if (lp->init_block_mem) { dma_free_coherent(&lp->op->dev, sizeof(struct lance_init_block), lp->init_block_mem, lp->init_block_dvma); } } /* Ethtool support... */ static void sparc_lance_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strcpy(info->driver, "sunlance"); strcpy(info->version, "2.02"); } static u32 sparc_lance_get_link(struct net_device *dev) { /* We really do not keep track of this, but this * is better than not reporting anything at all. */ return 1; } static const struct ethtool_ops sparc_lance_ethtool_ops = { .get_drvinfo = sparc_lance_get_drvinfo, .get_link = sparc_lance_get_link, }; static int __devinit sparc_lance_probe_one(struct of_device *op, struct of_device *ledma, struct of_device *lebuffer) { struct device_node *dp = op->node; static unsigned version_printed; struct lance_private *lp; struct net_device *dev; DECLARE_MAC_BUF(mac); int i; dev = alloc_etherdev(sizeof(struct lance_private) + 8); if (!dev) return -ENOMEM; lp = netdev_priv(dev); if (sparc_lance_debug && version_printed++ == 0) printk (KERN_INFO "%s", version); spin_lock_init(&lp->lock); /* Copy the IDPROM ethernet address to the device structure, later we * will copy the address in the device structure to the lance * initialization block. */ for (i = 0; i < 6; i++) dev->dev_addr[i] = idprom->id_ethaddr[i]; /* Get the IO region */ lp->lregs = of_ioremap(&op->resource[0], 0, LANCE_REG_SIZE, lancestr); if (!lp->lregs) { printk(KERN_ERR "SunLance: Cannot map registers.\n"); goto fail; } lp->ledma = ledma; if (lp->ledma) { lp->dregs = of_ioremap(&ledma->resource[0], 0, resource_size(&ledma->resource[0]), "ledma"); if (!lp->dregs) { printk(KERN_ERR "SunLance: Cannot map " "ledma registers.\n"); goto fail; } } lp->op = op; lp->lebuffer = lebuffer; if (lebuffer) { /* sanity check */ if (lebuffer->resource[0].start & 7) { printk(KERN_ERR "SunLance: ERROR: Rx and Tx rings not on even boundary.\n"); goto fail; } lp->init_block_iomem = of_ioremap(&lebuffer->resource[0], 0, sizeof(struct lance_init_block), "lebuffer"); if (!lp->init_block_iomem) { printk(KERN_ERR "SunLance: Cannot map PIO buffer.\n"); goto fail; } lp->init_block_dvma = 0; lp->pio_buffer = 1; lp->init_ring = lance_init_ring_pio; lp->rx = lance_rx_pio; lp->tx = lance_tx_pio; } else { lp->init_block_mem = dma_alloc_coherent(&op->dev, sizeof(struct lance_init_block), &lp->init_block_dvma, GFP_ATOMIC); if (!lp->init_block_mem) { printk(KERN_ERR "SunLance: Cannot allocate consistent DMA memory.\n"); goto fail; } lp->pio_buffer = 0; lp->init_ring = lance_init_ring_dvma; lp->rx = lance_rx_dvma; lp->tx = lance_tx_dvma; } lp->busmaster_regval = of_getintprop_default(dp, "busmaster-regval", (LE_C3_BSWP | LE_C3_ACON | LE_C3_BCON)); lp->name = lancestr; lp->burst_sizes = 0; if (lp->ledma) { struct device_node *ledma_dp = ledma->node; struct device_node *sbus_dp; unsigned int sbmask; const char *prop; u32 csr; /* Find burst-size property for ledma */ lp->burst_sizes = of_getintprop_default(ledma_dp, "burst-sizes", 0); /* ledma may be capable of fast bursts, but sbus may not. */ sbus_dp = ledma_dp->parent; sbmask = of_getintprop_default(sbus_dp, "burst-sizes", DMA_BURSTBITS); lp->burst_sizes &= sbmask; /* Get the cable-selection property */ prop = of_get_property(ledma_dp, "cable-selection", NULL); if (!prop || prop[0] == '\0') { struct device_node *nd; printk(KERN_INFO "SunLance: using " "auto-carrier-detection.\n"); nd = of_find_node_by_path("/options"); if (!nd) goto no_link_test; prop = of_get_property(nd, "tpe-link-test?", NULL); if (!prop) goto no_link_test; if (strcmp(prop, "true")) { printk(KERN_NOTICE "SunLance: warning: overriding option " "'tpe-link-test?'\n"); printk(KERN_NOTICE "SunLance: warning: mail any problems " "to ecd@skynet.be\n"); auxio_set_lte(AUXIO_LTE_ON); } no_link_test: lp->auto_select = 1; lp->tpe = 0; } else if (!strcmp(prop, "aui")) { lp->auto_select = 0; lp->tpe = 0; } else { lp->auto_select = 0; lp->tpe = 1; } /* Reset ledma */ csr = sbus_readl(lp->dregs + DMA_CSR); sbus_writel(csr | DMA_RST_ENET, lp->dregs + DMA_CSR); udelay(200); sbus_writel(csr & ~DMA_RST_ENET, lp->dregs + DMA_CSR); } else lp->dregs = NULL; lp->dev = dev; SET_NETDEV_DEV(dev, &op->dev); dev->open = &lance_open; dev->stop = &lance_close; dev->hard_start_xmit = &lance_start_xmit; dev->tx_timeout = &lance_tx_timeout; dev->watchdog_timeo = 5*HZ; dev->set_multicast_list = &lance_set_multicast; dev->ethtool_ops = &sparc_lance_ethtool_ops; dev->irq = op->irqs[0]; /* We cannot sleep if the chip is busy during a * multicast list update event, because such events * can occur from interrupts (ex. IPv6). So we * use a timer to try again later when necessary. -DaveM */ init_timer(&lp->multicast_timer); lp->multicast_timer.data = (unsigned long) dev; lp->multicast_timer.function = &lance_set_multicast_retry; if (register_netdev(dev)) { printk(KERN_ERR "SunLance: Cannot register device.\n"); goto fail; } dev_set_drvdata(&op->dev, lp); printk(KERN_INFO "%s: LANCE %s\n", dev->name, print_mac(mac, dev->dev_addr)); return 0; fail: lance_free_hwresources(lp); free_netdev(dev); return -ENODEV; } static int __devinit sunlance_sbus_probe(struct of_device *op, const struct of_device_id *match) { struct of_device *parent = to_of_device(op->dev.parent); struct device_node *parent_dp = parent->node; int err; if (!strcmp(parent_dp->name, "ledma")) { err = sparc_lance_probe_one(op, parent, NULL); } else if (!strcmp(parent_dp->name, "lebuffer")) { err = sparc_lance_probe_one(op, NULL, parent); } else err = sparc_lance_probe_one(op, NULL, NULL); return err; } static int __devexit sunlance_sbus_remove(struct of_device *op) { struct lance_private *lp = dev_get_drvdata(&op->dev); struct net_device *net_dev = lp->dev; unregister_netdev(net_dev); lance_free_hwresources(lp); free_netdev(net_dev); dev_set_drvdata(&op->dev, NULL); return 0; } static const struct of_device_id sunlance_sbus_match[] = { { .name = "le", }, {}, }; MODULE_DEVICE_TABLE(of, sunlance_sbus_match); static struct of_platform_driver sunlance_sbus_driver = { .name = "sunlance", .match_table = sunlance_sbus_match, .probe = sunlance_sbus_probe, .remove = __devexit_p(sunlance_sbus_remove), }; /* Find all the lance cards on the system and initialize them */ static int __init sparc_lance_init(void) { return of_register_driver(&sunlance_sbus_driver, &of_bus_type); } static void __exit sparc_lance_exit(void) { of_unregister_driver(&sunlance_sbus_driver); } module_init(sparc_lance_init); module_exit(sparc_lance_exit);