/****************************************************************************** * * Copyright(c) 2003 - 2011 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * *****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common.h" #include "3945.h" /* Send led command */ static int il3945_send_led_cmd(struct il_priv *il, struct il_led_cmd *led_cmd) { struct il_host_cmd cmd = { .id = C_LEDS, .len = sizeof(struct il_led_cmd), .data = led_cmd, .flags = CMD_ASYNC, .callback = NULL, }; return il_send_cmd(il, &cmd); } #define IL_DECLARE_RATE_INFO(r, ip, in, rp, rn, pp, np) \ [RATE_##r##M_IDX] = { RATE_##r##M_PLCP, \ RATE_##r##M_IEEE, \ RATE_##ip##M_IDX, \ RATE_##in##M_IDX, \ RATE_##rp##M_IDX, \ RATE_##rn##M_IDX, \ RATE_##pp##M_IDX, \ RATE_##np##M_IDX, \ RATE_##r##M_IDX_TBL, \ RATE_##ip##M_IDX_TBL } /* * Parameter order: * rate, prev rate, next rate, prev tgg rate, next tgg rate * * If there isn't a valid next or previous rate then INV is used which * maps to RATE_INVALID * */ const struct il3945_rate_info il3945_rates[RATE_COUNT_3945] = { IL_DECLARE_RATE_INFO(1, INV, 2, INV, 2, INV, 2), /* 1mbps */ IL_DECLARE_RATE_INFO(2, 1, 5, 1, 5, 1, 5), /* 2mbps */ IL_DECLARE_RATE_INFO(5, 2, 6, 2, 11, 2, 11), /*5.5mbps */ IL_DECLARE_RATE_INFO(11, 9, 12, 5, 12, 5, 18), /* 11mbps */ IL_DECLARE_RATE_INFO(6, 5, 9, 5, 11, 5, 11), /* 6mbps */ IL_DECLARE_RATE_INFO(9, 6, 11, 5, 11, 5, 11), /* 9mbps */ IL_DECLARE_RATE_INFO(12, 11, 18, 11, 18, 11, 18), /* 12mbps */ IL_DECLARE_RATE_INFO(18, 12, 24, 12, 24, 11, 24), /* 18mbps */ IL_DECLARE_RATE_INFO(24, 18, 36, 18, 36, 18, 36), /* 24mbps */ IL_DECLARE_RATE_INFO(36, 24, 48, 24, 48, 24, 48), /* 36mbps */ IL_DECLARE_RATE_INFO(48, 36, 54, 36, 54, 36, 54), /* 48mbps */ IL_DECLARE_RATE_INFO(54, 48, INV, 48, INV, 48, INV), /* 54mbps */ }; static inline u8 il3945_get_prev_ieee_rate(u8 rate_idx) { u8 rate = il3945_rates[rate_idx].prev_ieee; if (rate == RATE_INVALID) rate = rate_idx; return rate; } /* 1 = enable the il3945_disable_events() function */ #define IL_EVT_DISABLE (0) #define IL_EVT_DISABLE_SIZE (1532/32) /** * il3945_disable_events - Disable selected events in uCode event log * * Disable an event by writing "1"s into "disable" * bitmap in SRAM. Bit position corresponds to Event # (id/type). * Default values of 0 enable uCode events to be logged. * Use for only special debugging. This function is just a placeholder as-is, * you'll need to provide the special bits! ... * ... and set IL_EVT_DISABLE to 1. */ void il3945_disable_events(struct il_priv *il) { int i; u32 base; /* SRAM address of event log header */ u32 disable_ptr; /* SRAM address of event-disable bitmap array */ u32 array_size; /* # of u32 entries in array */ static const u32 evt_disable[IL_EVT_DISABLE_SIZE] = { 0x00000000, /* 31 - 0 Event id numbers */ 0x00000000, /* 63 - 32 */ 0x00000000, /* 95 - 64 */ 0x00000000, /* 127 - 96 */ 0x00000000, /* 159 - 128 */ 0x00000000, /* 191 - 160 */ 0x00000000, /* 223 - 192 */ 0x00000000, /* 255 - 224 */ 0x00000000, /* 287 - 256 */ 0x00000000, /* 319 - 288 */ 0x00000000, /* 351 - 320 */ 0x00000000, /* 383 - 352 */ 0x00000000, /* 415 - 384 */ 0x00000000, /* 447 - 416 */ 0x00000000, /* 479 - 448 */ 0x00000000, /* 511 - 480 */ 0x00000000, /* 543 - 512 */ 0x00000000, /* 575 - 544 */ 0x00000000, /* 607 - 576 */ 0x00000000, /* 639 - 608 */ 0x00000000, /* 671 - 640 */ 0x00000000, /* 703 - 672 */ 0x00000000, /* 735 - 704 */ 0x00000000, /* 767 - 736 */ 0x00000000, /* 799 - 768 */ 0x00000000, /* 831 - 800 */ 0x00000000, /* 863 - 832 */ 0x00000000, /* 895 - 864 */ 0x00000000, /* 927 - 896 */ 0x00000000, /* 959 - 928 */ 0x00000000, /* 991 - 960 */ 0x00000000, /* 1023 - 992 */ 0x00000000, /* 1055 - 1024 */ 0x00000000, /* 1087 - 1056 */ 0x00000000, /* 1119 - 1088 */ 0x00000000, /* 1151 - 1120 */ 0x00000000, /* 1183 - 1152 */ 0x00000000, /* 1215 - 1184 */ 0x00000000, /* 1247 - 1216 */ 0x00000000, /* 1279 - 1248 */ 0x00000000, /* 1311 - 1280 */ 0x00000000, /* 1343 - 1312 */ 0x00000000, /* 1375 - 1344 */ 0x00000000, /* 1407 - 1376 */ 0x00000000, /* 1439 - 1408 */ 0x00000000, /* 1471 - 1440 */ 0x00000000, /* 1503 - 1472 */ }; base = le32_to_cpu(il->card_alive.log_event_table_ptr); if (!il3945_hw_valid_rtc_data_addr(base)) { IL_ERR("Invalid event log pointer 0x%08X\n", base); return; } disable_ptr = il_read_targ_mem(il, base + (4 * sizeof(u32))); array_size = il_read_targ_mem(il, base + (5 * sizeof(u32))); if (IL_EVT_DISABLE && array_size == IL_EVT_DISABLE_SIZE) { D_INFO("Disabling selected uCode log events at 0x%x\n", disable_ptr); for (i = 0; i < IL_EVT_DISABLE_SIZE; i++) il_write_targ_mem(il, disable_ptr + (i * sizeof(u32)), evt_disable[i]); } else { D_INFO("Selected uCode log events may be disabled\n"); D_INFO(" by writing \"1\"s into disable bitmap\n"); D_INFO(" in SRAM at 0x%x, size %d u32s\n", disable_ptr, array_size); } } static int il3945_hwrate_to_plcp_idx(u8 plcp) { int idx; for (idx = 0; idx < RATE_COUNT_3945; idx++) if (il3945_rates[idx].plcp == plcp) return idx; return -1; } #ifdef CONFIG_IWLEGACY_DEBUG #define TX_STATUS_ENTRY(x) case TX_3945_STATUS_FAIL_ ## x: return #x static const char * il3945_get_tx_fail_reason(u32 status) { switch (status & TX_STATUS_MSK) { case TX_3945_STATUS_SUCCESS: return "SUCCESS"; TX_STATUS_ENTRY(SHORT_LIMIT); TX_STATUS_ENTRY(LONG_LIMIT); TX_STATUS_ENTRY(FIFO_UNDERRUN); TX_STATUS_ENTRY(MGMNT_ABORT); TX_STATUS_ENTRY(NEXT_FRAG); TX_STATUS_ENTRY(LIFE_EXPIRE); TX_STATUS_ENTRY(DEST_PS); TX_STATUS_ENTRY(ABORTED); TX_STATUS_ENTRY(BT_RETRY); TX_STATUS_ENTRY(STA_INVALID); TX_STATUS_ENTRY(FRAG_DROPPED); TX_STATUS_ENTRY(TID_DISABLE); TX_STATUS_ENTRY(FRAME_FLUSHED); TX_STATUS_ENTRY(INSUFFICIENT_CF_POLL); TX_STATUS_ENTRY(TX_LOCKED); TX_STATUS_ENTRY(NO_BEACON_ON_RADAR); } return "UNKNOWN"; } #else static inline const char * il3945_get_tx_fail_reason(u32 status) { return ""; } #endif /* * get ieee prev rate from rate scale table. * for A and B mode we need to overright prev * value */ int il3945_rs_next_rate(struct il_priv *il, int rate) { int next_rate = il3945_get_prev_ieee_rate(rate); switch (il->band) { case IEEE80211_BAND_5GHZ: if (rate == RATE_12M_IDX) next_rate = RATE_9M_IDX; else if (rate == RATE_6M_IDX) next_rate = RATE_6M_IDX; break; case IEEE80211_BAND_2GHZ: if (!(il->_3945.sta_supp_rates & IL_OFDM_RATES_MASK) && il_is_associated(il)) { if (rate == RATE_11M_IDX) next_rate = RATE_5M_IDX; } break; default: break; } return next_rate; } /** * il3945_tx_queue_reclaim - Reclaim Tx queue entries already Tx'd * * When FW advances 'R' idx, all entries between old and new 'R' idx * need to be reclaimed. As result, some free space forms. If there is * enough free space (> low mark), wake the stack that feeds us. */ static void il3945_tx_queue_reclaim(struct il_priv *il, int txq_id, int idx) { struct il_tx_queue *txq = &il->txq[txq_id]; struct il_queue *q = &txq->q; struct sk_buff *skb; BUG_ON(txq_id == IL39_CMD_QUEUE_NUM); for (idx = il_queue_inc_wrap(idx, q->n_bd); q->read_ptr != idx; q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd)) { skb = txq->skbs[txq->q.read_ptr]; ieee80211_tx_status_irqsafe(il->hw, skb); txq->skbs[txq->q.read_ptr] = NULL; il->ops->txq_free_tfd(il, txq); } if (il_queue_space(q) > q->low_mark && txq_id >= 0 && txq_id != IL39_CMD_QUEUE_NUM && il->mac80211_registered) il_wake_queue(il, txq); } /** * il3945_hdl_tx - Handle Tx response */ static void il3945_hdl_tx(struct il_priv *il, struct il_rx_buf *rxb) { struct il_rx_pkt *pkt = rxb_addr(rxb); u16 sequence = le16_to_cpu(pkt->hdr.sequence); int txq_id = SEQ_TO_QUEUE(sequence); int idx = SEQ_TO_IDX(sequence); struct il_tx_queue *txq = &il->txq[txq_id]; struct ieee80211_tx_info *info; struct il3945_tx_resp *tx_resp = (void *)&pkt->u.raw[0]; u32 status = le32_to_cpu(tx_resp->status); int rate_idx; int fail; if (idx >= txq->q.n_bd || il_queue_used(&txq->q, idx) == 0) { IL_ERR("Read idx for DMA queue txq_id (%d) idx %d " "is out of range [0-%d] %d %d\n", txq_id, idx, txq->q.n_bd, txq->q.write_ptr, txq->q.read_ptr); return; } txq->time_stamp = jiffies; info = IEEE80211_SKB_CB(txq->skbs[txq->q.read_ptr]); ieee80211_tx_info_clear_status(info); /* Fill the MRR chain with some info about on-chip retransmissions */ rate_idx = il3945_hwrate_to_plcp_idx(tx_resp->rate); if (info->band == IEEE80211_BAND_5GHZ) rate_idx -= IL_FIRST_OFDM_RATE; fail = tx_resp->failure_frame; info->status.rates[0].idx = rate_idx; info->status.rates[0].count = fail + 1; /* add final attempt */ /* tx_status->rts_retry_count = tx_resp->failure_rts; */ info->flags |= ((status & TX_STATUS_MSK) == TX_STATUS_SUCCESS) ? IEEE80211_TX_STAT_ACK : 0; D_TX("Tx queue %d Status %s (0x%08x) plcp rate %d retries %d\n", txq_id, il3945_get_tx_fail_reason(status), status, tx_resp->rate, tx_resp->failure_frame); D_TX_REPLY("Tx queue reclaim %d\n", idx); il3945_tx_queue_reclaim(il, txq_id, idx); if (status & TX_ABORT_REQUIRED_MSK) IL_ERR("TODO: Implement Tx ABORT REQUIRED!!!\n"); } /***************************************************************************** * * Intel PRO/Wireless 3945ABG/BG Network Connection * * RX handler implementations * *****************************************************************************/ #ifdef CONFIG_IWLEGACY_DEBUGFS static void il3945_accumulative_stats(struct il_priv *il, __le32 * stats) { int i; __le32 *prev_stats; u32 *accum_stats; u32 *delta, *max_delta; prev_stats = (__le32 *) &il->_3945.stats; accum_stats = (u32 *) &il->_3945.accum_stats; delta = (u32 *) &il->_3945.delta_stats; max_delta = (u32 *) &il->_3945.max_delta; for (i = sizeof(__le32); i < sizeof(struct il3945_notif_stats); i += sizeof(__le32), stats++, prev_stats++, delta++, max_delta++, accum_stats++) { if (le32_to_cpu(*stats) > le32_to_cpu(*prev_stats)) { *delta = (le32_to_cpu(*stats) - le32_to_cpu(*prev_stats)); *accum_stats += *delta; if (*delta > *max_delta) *max_delta = *delta; } } /* reset accumulative stats for "no-counter" type stats */ il->_3945.accum_stats.general.temperature = il->_3945.stats.general.temperature; il->_3945.accum_stats.general.ttl_timestamp = il->_3945.stats.general.ttl_timestamp; } #endif void il3945_hdl_stats(struct il_priv *il, struct il_rx_buf *rxb) { struct il_rx_pkt *pkt = rxb_addr(rxb); D_RX("Statistics notification received (%d vs %d).\n", (int)sizeof(struct il3945_notif_stats), le32_to_cpu(pkt->len_n_flags) & IL_RX_FRAME_SIZE_MSK); #ifdef CONFIG_IWLEGACY_DEBUGFS il3945_accumulative_stats(il, (__le32 *) &pkt->u.raw); #endif memcpy(&il->_3945.stats, pkt->u.raw, sizeof(il->_3945.stats)); } void il3945_hdl_c_stats(struct il_priv *il, struct il_rx_buf *rxb) { struct il_rx_pkt *pkt = rxb_addr(rxb); __le32 *flag = (__le32 *) &pkt->u.raw; if (le32_to_cpu(*flag) & UCODE_STATS_CLEAR_MSK) { #ifdef CONFIG_IWLEGACY_DEBUGFS memset(&il->_3945.accum_stats, 0, sizeof(struct il3945_notif_stats)); memset(&il->_3945.delta_stats, 0, sizeof(struct il3945_notif_stats)); memset(&il->_3945.max_delta, 0, sizeof(struct il3945_notif_stats)); #endif D_RX("Statistics have been cleared\n"); } il3945_hdl_stats(il, rxb); } /****************************************************************************** * * Misc. internal state and helper functions * ******************************************************************************/ /* This is necessary only for a number of stats, see the caller. */ static int il3945_is_network_packet(struct il_priv *il, struct ieee80211_hdr *header) { /* Filter incoming packets to determine if they are targeted toward * this network, discarding packets coming from ourselves */ switch (il->iw_mode) { case NL80211_IFTYPE_ADHOC: /* Header: Dest. | Source | BSSID */ /* packets to our IBSS update information */ return !compare_ether_addr(header->addr3, il->bssid); case NL80211_IFTYPE_STATION: /* Header: Dest. | AP{BSSID} | Source */ /* packets to our IBSS update information */ return !compare_ether_addr(header->addr2, il->bssid); default: return 1; } } static void il3945_pass_packet_to_mac80211(struct il_priv *il, struct il_rx_buf *rxb, struct ieee80211_rx_status *stats) { struct il_rx_pkt *pkt = rxb_addr(rxb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)IL_RX_DATA(pkt); struct il3945_rx_frame_hdr *rx_hdr = IL_RX_HDR(pkt); struct il3945_rx_frame_end *rx_end = IL_RX_END(pkt); u16 len = le16_to_cpu(rx_hdr->len); struct sk_buff *skb; __le16 fc = hdr->frame_control; /* We received data from the HW, so stop the watchdog */ if (unlikely (len + IL39_RX_FRAME_SIZE > PAGE_SIZE << il->hw_params.rx_page_order)) { D_DROP("Corruption detected!\n"); return; } /* We only process data packets if the interface is open */ if (unlikely(!il->is_open)) { D_DROP("Dropping packet while interface is not open.\n"); return; } skb = dev_alloc_skb(128); if (!skb) { IL_ERR("dev_alloc_skb failed\n"); return; } if (!il3945_mod_params.sw_crypto) il_set_decrypted_flag(il, (struct ieee80211_hdr *)rxb_addr(rxb), le32_to_cpu(rx_end->status), stats); skb_add_rx_frag(skb, 0, rxb->page, (void *)rx_hdr->payload - (void *)pkt, len); il_update_stats(il, false, fc, len); memcpy(IEEE80211_SKB_RXCB(skb), stats, sizeof(*stats)); ieee80211_rx(il->hw, skb); il->alloc_rxb_page--; rxb->page = NULL; } #define IL_DELAY_NEXT_SCAN_AFTER_ASSOC (HZ*6) static void il3945_hdl_rx(struct il_priv *il, struct il_rx_buf *rxb) { struct ieee80211_hdr *header; struct ieee80211_rx_status rx_status; struct il_rx_pkt *pkt = rxb_addr(rxb); struct il3945_rx_frame_stats *rx_stats = IL_RX_STATS(pkt); struct il3945_rx_frame_hdr *rx_hdr = IL_RX_HDR(pkt); struct il3945_rx_frame_end *rx_end = IL_RX_END(pkt); u16 rx_stats_sig_avg __maybe_unused = le16_to_cpu(rx_stats->sig_avg); u16 rx_stats_noise_diff __maybe_unused = le16_to_cpu(rx_stats->noise_diff); u8 network_packet; rx_status.flag = 0; rx_status.mactime = le64_to_cpu(rx_end->timestamp); rx_status.band = (rx_hdr-> phy_flags & RX_RES_PHY_FLAGS_BAND_24_MSK) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; rx_status.freq = ieee80211_channel_to_frequency(le16_to_cpu(rx_hdr->channel), rx_status.band); rx_status.rate_idx = il3945_hwrate_to_plcp_idx(rx_hdr->rate); if (rx_status.band == IEEE80211_BAND_5GHZ) rx_status.rate_idx -= IL_FIRST_OFDM_RATE; rx_status.antenna = (le16_to_cpu(rx_hdr->phy_flags) & RX_RES_PHY_FLAGS_ANTENNA_MSK) >> 4; /* set the preamble flag if appropriate */ if (rx_hdr->phy_flags & RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK) rx_status.flag |= RX_FLAG_SHORTPRE; if ((unlikely(rx_stats->phy_count > 20))) { D_DROP("dsp size out of range [0,20]: %d/n", rx_stats->phy_count); return; } if (!(rx_end->status & RX_RES_STATUS_NO_CRC32_ERROR) || !(rx_end->status & RX_RES_STATUS_NO_RXE_OVERFLOW)) { D_RX("Bad CRC or FIFO: 0x%08X.\n", rx_end->status); return; } /* Convert 3945's rssi indicator to dBm */ rx_status.signal = rx_stats->rssi - IL39_RSSI_OFFSET; D_STATS("Rssi %d sig_avg %d noise_diff %d\n", rx_status.signal, rx_stats_sig_avg, rx_stats_noise_diff); header = (struct ieee80211_hdr *)IL_RX_DATA(pkt); network_packet = il3945_is_network_packet(il, header); D_STATS("[%c] %d RSSI:%d Signal:%u, Rate:%u\n", network_packet ? '*' : ' ', le16_to_cpu(rx_hdr->channel), rx_status.signal, rx_status.signal, rx_status.rate_idx); if (network_packet) { il->_3945.last_beacon_time = le32_to_cpu(rx_end->beacon_timestamp); il->_3945.last_tsf = le64_to_cpu(rx_end->timestamp); il->_3945.last_rx_rssi = rx_status.signal; } il3945_pass_packet_to_mac80211(il, rxb, &rx_status); } int il3945_hw_txq_attach_buf_to_tfd(struct il_priv *il, struct il_tx_queue *txq, dma_addr_t addr, u16 len, u8 reset, u8 pad) { int count; struct il_queue *q; struct il3945_tfd *tfd, *tfd_tmp; q = &txq->q; tfd_tmp = (struct il3945_tfd *)txq->tfds; tfd = &tfd_tmp[q->write_ptr]; if (reset) memset(tfd, 0, sizeof(*tfd)); count = TFD_CTL_COUNT_GET(le32_to_cpu(tfd->control_flags)); if (count >= NUM_TFD_CHUNKS || count < 0) { IL_ERR("Error can not send more than %d chunks\n", NUM_TFD_CHUNKS); return -EINVAL; } tfd->tbs[count].addr = cpu_to_le32(addr); tfd->tbs[count].len = cpu_to_le32(len); count++; tfd->control_flags = cpu_to_le32(TFD_CTL_COUNT_SET(count) | TFD_CTL_PAD_SET(pad)); return 0; } /** * il3945_hw_txq_free_tfd - Free one TFD, those at idx [txq->q.read_ptr] * * Does NOT advance any idxes */ void il3945_hw_txq_free_tfd(struct il_priv *il, struct il_tx_queue *txq) { struct il3945_tfd *tfd_tmp = (struct il3945_tfd *)txq->tfds; int idx = txq->q.read_ptr; struct il3945_tfd *tfd = &tfd_tmp[idx]; struct pci_dev *dev = il->pci_dev; int i; int counter; /* sanity check */ counter = TFD_CTL_COUNT_GET(le32_to_cpu(tfd->control_flags)); if (counter > NUM_TFD_CHUNKS) { IL_ERR("Too many chunks: %i\n", counter); /* @todo issue fatal error, it is quite serious situation */ return; } /* Unmap tx_cmd */ if (counter) pci_unmap_single(dev, dma_unmap_addr(&txq->meta[idx], mapping), dma_unmap_len(&txq->meta[idx], len), PCI_DMA_TODEVICE); /* unmap chunks if any */ for (i = 1; i < counter; i++) pci_unmap_single(dev, le32_to_cpu(tfd->tbs[i].addr), le32_to_cpu(tfd->tbs[i].len), PCI_DMA_TODEVICE); /* free SKB */ if (txq->skbs) { struct sk_buff *skb = txq->skbs[txq->q.read_ptr]; /* can be called from irqs-disabled context */ if (skb) { dev_kfree_skb_any(skb); txq->skbs[txq->q.read_ptr] = NULL; } } } /** * il3945_hw_build_tx_cmd_rate - Add rate portion to TX_CMD: * */ void il3945_hw_build_tx_cmd_rate(struct il_priv *il, struct il_device_cmd *cmd, struct ieee80211_tx_info *info, struct ieee80211_hdr *hdr, int sta_id) { u16 hw_value = ieee80211_get_tx_rate(il->hw, info)->hw_value; u16 rate_idx = min(hw_value & 0xffff, RATE_COUNT_3945 - 1); u16 rate_mask; int rate; const u8 rts_retry_limit = 7; u8 data_retry_limit; __le32 tx_flags; __le16 fc = hdr->frame_control; struct il3945_tx_cmd *tx_cmd = (struct il3945_tx_cmd *)cmd->cmd.payload; rate = il3945_rates[rate_idx].plcp; tx_flags = tx_cmd->tx_flags; /* We need to figure out how to get the sta->supp_rates while * in this running context */ rate_mask = RATES_MASK_3945; /* Set retry limit on DATA packets and Probe Responses */ if (ieee80211_is_probe_resp(fc)) data_retry_limit = 3; else data_retry_limit = IL_DEFAULT_TX_RETRY; tx_cmd->data_retry_limit = data_retry_limit; /* Set retry limit on RTS packets */ tx_cmd->rts_retry_limit = min(data_retry_limit, rts_retry_limit); tx_cmd->rate = rate; tx_cmd->tx_flags = tx_flags; /* OFDM */ tx_cmd->supp_rates[0] = ((rate_mask & IL_OFDM_RATES_MASK) >> IL_FIRST_OFDM_RATE) & 0xFF; /* CCK */ tx_cmd->supp_rates[1] = (rate_mask & 0xF); D_RATE("Tx sta id: %d, rate: %d (plcp), flags: 0x%4X " "cck/ofdm mask: 0x%x/0x%x\n", sta_id, tx_cmd->rate, le32_to_cpu(tx_cmd->tx_flags), tx_cmd->supp_rates[1], tx_cmd->supp_rates[0]); } static u8 il3945_sync_sta(struct il_priv *il, int sta_id, u16 tx_rate) { unsigned long flags_spin; struct il_station_entry *station; if (sta_id == IL_INVALID_STATION) return IL_INVALID_STATION; spin_lock_irqsave(&il->sta_lock, flags_spin); station = &il->stations[sta_id]; station->sta.sta.modify_mask = STA_MODIFY_TX_RATE_MSK; station->sta.rate_n_flags = cpu_to_le16(tx_rate); station->sta.mode = STA_CONTROL_MODIFY_MSK; il_send_add_sta(il, &station->sta, CMD_ASYNC); spin_unlock_irqrestore(&il->sta_lock, flags_spin); D_RATE("SCALE sync station %d to rate %d\n", sta_id, tx_rate); return sta_id; } static void il3945_set_pwr_vmain(struct il_priv *il) { /* * (for documentation purposes) * to set power to V_AUX, do if (pci_pme_capable(il->pci_dev, PCI_D3cold)) { il_set_bits_mask_prph(il, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_PWR_SRC_VAUX, ~APMG_PS_CTRL_MSK_PWR_SRC); _il_poll_bit(il, CSR_GPIO_IN, CSR_GPIO_IN_VAL_VAUX_PWR_SRC, CSR_GPIO_IN_BIT_AUX_POWER, 5000); } */ il_set_bits_mask_prph(il, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_PWR_SRC_VMAIN, ~APMG_PS_CTRL_MSK_PWR_SRC); _il_poll_bit(il, CSR_GPIO_IN, CSR_GPIO_IN_VAL_VMAIN_PWR_SRC, CSR_GPIO_IN_BIT_AUX_POWER, 5000); } static int il3945_rx_init(struct il_priv *il, struct il_rx_queue *rxq) { il_wr(il, FH39_RCSR_RBD_BASE(0), rxq->bd_dma); il_wr(il, FH39_RCSR_RPTR_ADDR(0), rxq->rb_stts_dma); il_wr(il, FH39_RCSR_WPTR(0), 0); il_wr(il, FH39_RCSR_CONFIG(0), FH39_RCSR_RX_CONFIG_REG_VAL_DMA_CHNL_EN_ENABLE | FH39_RCSR_RX_CONFIG_REG_VAL_RDRBD_EN_ENABLE | FH39_RCSR_RX_CONFIG_REG_BIT_WR_STTS_EN | FH39_RCSR_RX_CONFIG_REG_VAL_MAX_FRAG_SIZE_128 | (RX_QUEUE_SIZE_LOG << FH39_RCSR_RX_CONFIG_REG_POS_RBDC_SIZE) | FH39_RCSR_RX_CONFIG_REG_VAL_IRQ_DEST_INT_HOST | (1 << FH39_RCSR_RX_CONFIG_REG_POS_IRQ_RBTH) | FH39_RCSR_RX_CONFIG_REG_VAL_MSG_MODE_FH); /* fake read to flush all prev I/O */ il_rd(il, FH39_RSSR_CTRL); return 0; } static int il3945_tx_reset(struct il_priv *il) { /* bypass mode */ il_wr_prph(il, ALM_SCD_MODE_REG, 0x2); /* RA 0 is active */ il_wr_prph(il, ALM_SCD_ARASTAT_REG, 0x01); /* all 6 fifo are active */ il_wr_prph(il, ALM_SCD_TXFACT_REG, 0x3f); il_wr_prph(il, ALM_SCD_SBYP_MODE_1_REG, 0x010000); il_wr_prph(il, ALM_SCD_SBYP_MODE_2_REG, 0x030002); il_wr_prph(il, ALM_SCD_TXF4MF_REG, 0x000004); il_wr_prph(il, ALM_SCD_TXF5MF_REG, 0x000005); il_wr(il, FH39_TSSR_CBB_BASE, il->_3945.shared_phys); il_wr(il, FH39_TSSR_MSG_CONFIG, FH39_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TXPD_ON | FH39_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_TXPD_ON | FH39_TSSR_TX_MSG_CONFIG_REG_VAL_MAX_FRAG_SIZE_128B | FH39_TSSR_TX_MSG_CONFIG_REG_VAL_SNOOP_RD_TFD_ON | FH39_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RD_CBB_ON | FH39_TSSR_TX_MSG_CONFIG_REG_VAL_ORDER_RSP_WAIT_TH | FH39_TSSR_TX_MSG_CONFIG_REG_VAL_RSP_WAIT_TH); return 0; } /** * il3945_txq_ctx_reset - Reset TX queue context * * Destroys all DMA structures and initialize them again */ static int il3945_txq_ctx_reset(struct il_priv *il) { int rc, txq_id; il3945_hw_txq_ctx_free(il); /* allocate tx queue structure */ rc = il_alloc_txq_mem(il); if (rc) return rc; /* Tx CMD queue */ rc = il3945_tx_reset(il); if (rc) goto error; /* Tx queue(s) */ for (txq_id = 0; txq_id < il->hw_params.max_txq_num; txq_id++) { rc = il_tx_queue_init(il, txq_id); if (rc) { IL_ERR("Tx %d queue init failed\n", txq_id); goto error; } } return rc; error: il3945_hw_txq_ctx_free(il); return rc; } /* * Start up 3945's basic functionality after it has been reset * (e.g. after platform boot, or shutdown via il_apm_stop()) * NOTE: This does not load uCode nor start the embedded processor */ static int il3945_apm_init(struct il_priv *il) { int ret = il_apm_init(il); /* Clear APMG (NIC's internal power management) interrupts */ il_wr_prph(il, APMG_RTC_INT_MSK_REG, 0x0); il_wr_prph(il, APMG_RTC_INT_STT_REG, 0xFFFFFFFF); /* Reset radio chip */ il_set_bits_prph(il, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_RESET_REQ); udelay(5); il_clear_bits_prph(il, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_RESET_REQ); return ret; } static void il3945_nic_config(struct il_priv *il) { struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom; unsigned long flags; u8 rev_id = il->pci_dev->revision; spin_lock_irqsave(&il->lock, flags); /* Determine HW type */ D_INFO("HW Revision ID = 0x%X\n", rev_id); if (rev_id & PCI_CFG_REV_ID_BIT_RTP) D_INFO("RTP type\n"); else if (rev_id & PCI_CFG_REV_ID_BIT_BASIC_SKU) { D_INFO("3945 RADIO-MB type\n"); il_set_bit(il, CSR_HW_IF_CONFIG_REG, CSR39_HW_IF_CONFIG_REG_BIT_3945_MB); } else { D_INFO("3945 RADIO-MM type\n"); il_set_bit(il, CSR_HW_IF_CONFIG_REG, CSR39_HW_IF_CONFIG_REG_BIT_3945_MM); } if (EEPROM_SKU_CAP_OP_MODE_MRC == eeprom->sku_cap) { D_INFO("SKU OP mode is mrc\n"); il_set_bit(il, CSR_HW_IF_CONFIG_REG, CSR39_HW_IF_CONFIG_REG_BIT_SKU_MRC); } else D_INFO("SKU OP mode is basic\n"); if ((eeprom->board_revision & 0xF0) == 0xD0) { D_INFO("3945ABG revision is 0x%X\n", eeprom->board_revision); il_set_bit(il, CSR_HW_IF_CONFIG_REG, CSR39_HW_IF_CONFIG_REG_BIT_BOARD_TYPE); } else { D_INFO("3945ABG revision is 0x%X\n", eeprom->board_revision); il_clear_bit(il, CSR_HW_IF_CONFIG_REG, CSR39_HW_IF_CONFIG_REG_BIT_BOARD_TYPE); } if (eeprom->almgor_m_version <= 1) { il_set_bit(il, CSR_HW_IF_CONFIG_REG, CSR39_HW_IF_CONFIG_REG_BITS_SILICON_TYPE_A); D_INFO("Card M type A version is 0x%X\n", eeprom->almgor_m_version); } else { D_INFO("Card M type B version is 0x%X\n", eeprom->almgor_m_version); il_set_bit(il, CSR_HW_IF_CONFIG_REG, CSR39_HW_IF_CONFIG_REG_BITS_SILICON_TYPE_B); } spin_unlock_irqrestore(&il->lock, flags); if (eeprom->sku_cap & EEPROM_SKU_CAP_SW_RF_KILL_ENABLE) D_RF_KILL("SW RF KILL supported in EEPROM.\n"); if (eeprom->sku_cap & EEPROM_SKU_CAP_HW_RF_KILL_ENABLE) D_RF_KILL("HW RF KILL supported in EEPROM.\n"); } int il3945_hw_nic_init(struct il_priv *il) { int rc; unsigned long flags; struct il_rx_queue *rxq = &il->rxq; spin_lock_irqsave(&il->lock, flags); il3945_apm_init(il); spin_unlock_irqrestore(&il->lock, flags); il3945_set_pwr_vmain(il); il3945_nic_config(il); /* Allocate the RX queue, or reset if it is already allocated */ if (!rxq->bd) { rc = il_rx_queue_alloc(il); if (rc) { IL_ERR("Unable to initialize Rx queue\n"); return -ENOMEM; } } else il3945_rx_queue_reset(il, rxq); il3945_rx_replenish(il); il3945_rx_init(il, rxq); /* Look at using this instead: rxq->need_update = 1; il_rx_queue_update_write_ptr(il, rxq); */ il_wr(il, FH39_RCSR_WPTR(0), rxq->write & ~7); rc = il3945_txq_ctx_reset(il); if (rc) return rc; set_bit(S_INIT, &il->status); return 0; } /** * il3945_hw_txq_ctx_free - Free TXQ Context * * Destroy all TX DMA queues and structures */ void il3945_hw_txq_ctx_free(struct il_priv *il) { int txq_id; /* Tx queues */ if (il->txq) for (txq_id = 0; txq_id < il->hw_params.max_txq_num; txq_id++) if (txq_id == IL39_CMD_QUEUE_NUM) il_cmd_queue_free(il); else il_tx_queue_free(il, txq_id); /* free tx queue structure */ il_free_txq_mem(il); } void il3945_hw_txq_ctx_stop(struct il_priv *il) { int txq_id; /* stop SCD */ _il_wr_prph(il, ALM_SCD_MODE_REG, 0); _il_wr_prph(il, ALM_SCD_TXFACT_REG, 0); /* reset TFD queues */ for (txq_id = 0; txq_id < il->hw_params.max_txq_num; txq_id++) { _il_wr(il, FH39_TCSR_CONFIG(txq_id), 0x0); _il_poll_bit(il, FH39_TSSR_TX_STATUS, FH39_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(txq_id), FH39_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(txq_id), 1000); } } /** * il3945_hw_reg_adjust_power_by_temp * return idx delta into power gain settings table */ static int il3945_hw_reg_adjust_power_by_temp(int new_reading, int old_reading) { return (new_reading - old_reading) * (-11) / 100; } /** * il3945_hw_reg_temp_out_of_range - Keep temperature in sane range */ static inline int il3945_hw_reg_temp_out_of_range(int temperature) { return (temperature < -260 || temperature > 25) ? 1 : 0; } int il3945_hw_get_temperature(struct il_priv *il) { return _il_rd(il, CSR_UCODE_DRV_GP2); } /** * il3945_hw_reg_txpower_get_temperature * get the current temperature by reading from NIC */ static int il3945_hw_reg_txpower_get_temperature(struct il_priv *il) { struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom; int temperature; temperature = il3945_hw_get_temperature(il); /* driver's okay range is -260 to +25. * human readable okay range is 0 to +285 */ D_INFO("Temperature: %d\n", temperature + IL_TEMP_CONVERT); /* handle insane temp reading */ if (il3945_hw_reg_temp_out_of_range(temperature)) { IL_ERR("Error bad temperature value %d\n", temperature); /* if really really hot(?), * substitute the 3rd band/group's temp measured at factory */ if (il->last_temperature > 100) temperature = eeprom->groups[2].temperature; else /* else use most recent "sane" value from driver */ temperature = il->last_temperature; } return temperature; /* raw, not "human readable" */ } /* Adjust Txpower only if temperature variance is greater than threshold. * * Both are lower than older versions' 9 degrees */ #define IL_TEMPERATURE_LIMIT_TIMER 6 /** * il3945_is_temp_calib_needed - determines if new calibration is needed * * records new temperature in tx_mgr->temperature. * replaces tx_mgr->last_temperature *only* if calib needed * (assumes caller will actually do the calibration!). */ static int il3945_is_temp_calib_needed(struct il_priv *il) { int temp_diff; il->temperature = il3945_hw_reg_txpower_get_temperature(il); temp_diff = il->temperature - il->last_temperature; /* get absolute value */ if (temp_diff < 0) { D_POWER("Getting cooler, delta %d,\n", temp_diff); temp_diff = -temp_diff; } else if (temp_diff == 0) D_POWER("Same temp,\n"); else D_POWER("Getting warmer, delta %d,\n", temp_diff); /* if we don't need calibration, *don't* update last_temperature */ if (temp_diff < IL_TEMPERATURE_LIMIT_TIMER) { D_POWER("Timed thermal calib not needed\n"); return 0; } D_POWER("Timed thermal calib needed\n"); /* assume that caller will actually do calib ... * update the "last temperature" value */ il->last_temperature = il->temperature; return 1; } #define IL_MAX_GAIN_ENTRIES 78 #define IL_CCK_FROM_OFDM_POWER_DIFF -5 #define IL_CCK_FROM_OFDM_IDX_DIFF (10) /* radio and DSP power table, each step is 1/2 dB. * 1st number is for RF analog gain, 2nd number is for DSP pre-DAC gain. */ static struct il3945_tx_power power_gain_table[2][IL_MAX_GAIN_ENTRIES] = { { {251, 127}, /* 2.4 GHz, highest power */ {251, 127}, {251, 127}, {251, 127}, {251, 125}, {251, 110}, {251, 105}, {251, 98}, {187, 125}, {187, 115}, {187, 108}, {187, 99}, {243, 119}, {243, 111}, {243, 105}, {243, 97}, {243, 92}, {211, 106}, {211, 100}, {179, 120}, {179, 113}, {179, 107}, {147, 125}, {147, 119}, {147, 112}, {147, 106}, {147, 101}, {147, 97}, {147, 91}, {115, 107}, {235, 121}, {235, 115}, {235, 109}, {203, 127}, {203, 121}, {203, 115}, {203, 108}, {203, 102}, {203, 96}, {203, 92}, {171, 110}, {171, 104}, {171, 98}, {139, 116}, {227, 125}, {227, 119}, {227, 113}, {227, 107}, {227, 101}, {227, 96}, {195, 113}, {195, 106}, {195, 102}, {195, 95}, {163, 113}, {163, 106}, {163, 102}, {163, 95}, {131, 113}, {131, 106}, {131, 102}, {131, 95}, {99, 113}, {99, 106}, {99, 102}, {99, 95}, {67, 113}, {67, 106}, {67, 102}, {67, 95}, {35, 113}, {35, 106}, {35, 102}, {35, 95}, {3, 113}, {3, 106}, {3, 102}, {3, 95} /* 2.4 GHz, lowest power */ }, { {251, 127}, /* 5.x GHz, highest power */ {251, 120}, {251, 114}, {219, 119}, {219, 101}, {187, 113}, {187, 102}, {155, 114}, {155, 103}, {123, 117}, {123, 107}, {123, 99}, {123, 92}, {91, 108}, {59, 125}, {59, 118}, {59, 109}, {59, 102}, {59, 96}, {59, 90}, {27, 104}, {27, 98}, {27, 92}, {115, 118}, {115, 111}, {115, 104}, {83, 126}, {83, 121}, {83, 113}, {83, 105}, {83, 99}, {51, 118}, {51, 111}, {51, 104}, {51, 98}, {19, 116}, {19, 109}, {19, 102}, {19, 98}, {19, 93}, {171, 113}, {171, 107}, {171, 99}, {139, 120}, {139, 113}, {139, 107}, {139, 99}, {107, 120}, {107, 113}, {107, 107}, {107, 99}, {75, 120}, {75, 113}, {75, 107}, {75, 99}, {43, 120}, {43, 113}, {43, 107}, {43, 99}, {11, 120}, {11, 113}, {11, 107}, {11, 99}, {131, 107}, {131, 99}, {99, 120}, {99, 113}, {99, 107}, {99, 99}, {67, 120}, {67, 113}, {67, 107}, {67, 99}, {35, 120}, {35, 113}, {35, 107}, {35, 99}, {3, 120} /* 5.x GHz, lowest power */ } }; static inline u8 il3945_hw_reg_fix_power_idx(int idx) { if (idx < 0) return 0; if (idx >= IL_MAX_GAIN_ENTRIES) return IL_MAX_GAIN_ENTRIES - 1; return (u8) idx; } /* Kick off thermal recalibration check every 60 seconds */ #define REG_RECALIB_PERIOD (60) /** * il3945_hw_reg_set_scan_power - Set Tx power for scan probe requests * * Set (in our channel info database) the direct scan Tx power for 1 Mbit (CCK) * or 6 Mbit (OFDM) rates. */ static void il3945_hw_reg_set_scan_power(struct il_priv *il, u32 scan_tbl_idx, s32 rate_idx, const s8 *clip_pwrs, struct il_channel_info *ch_info, int band_idx) { struct il3945_scan_power_info *scan_power_info; s8 power; u8 power_idx; scan_power_info = &ch_info->scan_pwr_info[scan_tbl_idx]; /* use this channel group's 6Mbit clipping/saturation pwr, * but cap at regulatory scan power restriction (set during init * based on eeprom channel data) for this channel. */ power = min(ch_info->scan_power, clip_pwrs[RATE_6M_IDX_TBL]); power = min(power, il->tx_power_user_lmt); scan_power_info->requested_power = power; /* find difference between new scan *power* and current "normal" * Tx *power* for 6Mb. Use this difference (x2) to adjust the * current "normal" temperature-compensated Tx power *idx* for * this rate (1Mb or 6Mb) to yield new temp-compensated scan power * *idx*. */ power_idx = ch_info->power_info[rate_idx].power_table_idx - (power - ch_info-> power_info [RATE_6M_IDX_TBL]. requested_power) * 2; /* store reference idx that we use when adjusting *all* scan * powers. So we can accommodate user (all channel) or spectrum * management (single channel) power changes "between" temperature * feedback compensation procedures. * don't force fit this reference idx into gain table; it may be a * negative number. This will help avoid errors when we're at * the lower bounds (highest gains, for warmest temperatures) * of the table. */ /* don't exceed table bounds for "real" setting */ power_idx = il3945_hw_reg_fix_power_idx(power_idx); scan_power_info->power_table_idx = power_idx; scan_power_info->tpc.tx_gain = power_gain_table[band_idx][power_idx].tx_gain; scan_power_info->tpc.dsp_atten = power_gain_table[band_idx][power_idx].dsp_atten; } /** * il3945_send_tx_power - fill in Tx Power command with gain settings * * Configures power settings for all rates for the current channel, * using values from channel info struct, and send to NIC */ static int il3945_send_tx_power(struct il_priv *il) { int rate_idx, i; const struct il_channel_info *ch_info = NULL; struct il3945_txpowertable_cmd txpower = { .channel = il->active.channel, }; u16 chan; if (WARN_ONCE (test_bit(S_SCAN_HW, &il->status), "TX Power requested while scanning!\n")) return -EAGAIN; chan = le16_to_cpu(il->active.channel); txpower.band = (il->band == IEEE80211_BAND_5GHZ) ? 0 : 1; ch_info = il_get_channel_info(il, il->band, chan); if (!ch_info) { IL_ERR("Failed to get channel info for channel %d [%d]\n", chan, il->band); return -EINVAL; } if (!il_is_channel_valid(ch_info)) { D_POWER("Not calling TX_PWR_TBL_CMD on " "non-Tx channel.\n"); return 0; } /* fill cmd with power settings for all rates for current channel */ /* Fill OFDM rate */ for (rate_idx = IL_FIRST_OFDM_RATE, i = 0; rate_idx <= IL39_LAST_OFDM_RATE; rate_idx++, i++) { txpower.power[i].tpc = ch_info->power_info[i].tpc; txpower.power[i].rate = il3945_rates[rate_idx].plcp; D_POWER("ch %d:%d rf %d dsp %3d rate code 0x%02x\n", le16_to_cpu(txpower.channel), txpower.band, txpower.power[i].tpc.tx_gain, txpower.power[i].tpc.dsp_atten, txpower.power[i].rate); } /* Fill CCK rates */ for (rate_idx = IL_FIRST_CCK_RATE; rate_idx <= IL_LAST_CCK_RATE; rate_idx++, i++) { txpower.power[i].tpc = ch_info->power_info[i].tpc; txpower.power[i].rate = il3945_rates[rate_idx].plcp; D_POWER("ch %d:%d rf %d dsp %3d rate code 0x%02x\n", le16_to_cpu(txpower.channel), txpower.band, txpower.power[i].tpc.tx_gain, txpower.power[i].tpc.dsp_atten, txpower.power[i].rate); } return il_send_cmd_pdu(il, C_TX_PWR_TBL, sizeof(struct il3945_txpowertable_cmd), &txpower); } /** * il3945_hw_reg_set_new_power - Configures power tables at new levels * @ch_info: Channel to update. Uses power_info.requested_power. * * Replace requested_power and base_power_idx ch_info fields for * one channel. * * Called if user or spectrum management changes power preferences. * Takes into account h/w and modulation limitations (clip power). * * This does *not* send anything to NIC, just sets up ch_info for one channel. * * NOTE: reg_compensate_for_temperature_dif() *must* be run after this to * properly fill out the scan powers, and actual h/w gain settings, * and send changes to NIC */ static int il3945_hw_reg_set_new_power(struct il_priv *il, struct il_channel_info *ch_info) { struct il3945_channel_power_info *power_info; int power_changed = 0; int i; const s8 *clip_pwrs; int power; /* Get this chnlgrp's rate-to-max/clip-powers table */ clip_pwrs = il->_3945.clip_groups[ch_info->group_idx].clip_powers; /* Get this channel's rate-to-current-power settings table */ power_info = ch_info->power_info; /* update OFDM Txpower settings */ for (i = RATE_6M_IDX_TBL; i <= RATE_54M_IDX_TBL; i++, ++power_info) { int delta_idx; /* limit new power to be no more than h/w capability */ power = min(ch_info->curr_txpow, clip_pwrs[i]); if (power == power_info->requested_power) continue; /* find difference between old and new requested powers, * update base (non-temp-compensated) power idx */ delta_idx = (power - power_info->requested_power) * 2; power_info->base_power_idx -= delta_idx; /* save new requested power value */ power_info->requested_power = power; power_changed = 1; } /* update CCK Txpower settings, based on OFDM 12M setting ... * ... all CCK power settings for a given channel are the *same*. */ if (power_changed) { power = ch_info->power_info[RATE_12M_IDX_TBL].requested_power + IL_CCK_FROM_OFDM_POWER_DIFF; /* do all CCK rates' il3945_channel_power_info structures */ for (i = RATE_1M_IDX_TBL; i <= RATE_11M_IDX_TBL; i++) { power_info->requested_power = power; power_info->base_power_idx = ch_info->power_info[RATE_12M_IDX_TBL]. base_power_idx + IL_CCK_FROM_OFDM_IDX_DIFF; ++power_info; } } return 0; } /** * il3945_hw_reg_get_ch_txpower_limit - returns new power limit for channel * * NOTE: Returned power limit may be less (but not more) than requested, * based strictly on regulatory (eeprom and spectrum mgt) limitations * (no consideration for h/w clipping limitations). */ static int il3945_hw_reg_get_ch_txpower_limit(struct il_channel_info *ch_info) { s8 max_power; #if 0 /* if we're using TGd limits, use lower of TGd or EEPROM */ if (ch_info->tgd_data.max_power != 0) max_power = min(ch_info->tgd_data.max_power, ch_info->eeprom.max_power_avg); /* else just use EEPROM limits */ else #endif max_power = ch_info->eeprom.max_power_avg; return min(max_power, ch_info->max_power_avg); } /** * il3945_hw_reg_comp_txpower_temp - Compensate for temperature * * Compensate txpower settings of *all* channels for temperature. * This only accounts for the difference between current temperature * and the factory calibration temperatures, and bases the new settings * on the channel's base_power_idx. * * If RxOn is "associated", this sends the new Txpower to NIC! */ static int il3945_hw_reg_comp_txpower_temp(struct il_priv *il) { struct il_channel_info *ch_info = NULL; struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom; int delta_idx; const s8 *clip_pwrs; /* array of h/w max power levels for each rate */ u8 a_band; u8 rate_idx; u8 scan_tbl_idx; u8 i; int ref_temp; int temperature = il->temperature; if (il->disable_tx_power_cal || test_bit(S_SCANNING, &il->status)) { /* do not perform tx power calibration */ return 0; } /* set up new Tx power info for each and every channel, 2.4 and 5.x */ for (i = 0; i < il->channel_count; i++) { ch_info = &il->channel_info[i]; a_band = il_is_channel_a_band(ch_info); /* Get this chnlgrp's factory calibration temperature */ ref_temp = (s16) eeprom->groups[ch_info->group_idx].temperature; /* get power idx adjustment based on current and factory * temps */ delta_idx = il3945_hw_reg_adjust_power_by_temp(temperature, ref_temp); /* set tx power value for all rates, OFDM and CCK */ for (rate_idx = 0; rate_idx < RATE_COUNT_3945; rate_idx++) { int power_idx = ch_info->power_info[rate_idx].base_power_idx; /* temperature compensate */ power_idx += delta_idx; /* stay within table range */ power_idx = il3945_hw_reg_fix_power_idx(power_idx); ch_info->power_info[rate_idx].power_table_idx = (u8) power_idx; ch_info->power_info[rate_idx].tpc = power_gain_table[a_band][power_idx]; } /* Get this chnlgrp's rate-to-max/clip-powers table */ clip_pwrs = il->_3945.clip_groups[ch_info->group_idx].clip_powers; /* set scan tx power, 1Mbit for CCK, 6Mbit for OFDM */ for (scan_tbl_idx = 0; scan_tbl_idx < IL_NUM_SCAN_RATES; scan_tbl_idx++) { s32 actual_idx = (scan_tbl_idx == 0) ? RATE_1M_IDX_TBL : RATE_6M_IDX_TBL; il3945_hw_reg_set_scan_power(il, scan_tbl_idx, actual_idx, clip_pwrs, ch_info, a_band); } } /* send Txpower command for current channel to ucode */ return il->ops->send_tx_power(il); } int il3945_hw_reg_set_txpower(struct il_priv *il, s8 power) { struct il_channel_info *ch_info; s8 max_power; u8 a_band; u8 i; if (il->tx_power_user_lmt == power) { D_POWER("Requested Tx power same as current " "limit: %ddBm.\n", power); return 0; } D_POWER("Setting upper limit clamp to %ddBm.\n", power); il->tx_power_user_lmt = power; /* set up new Tx powers for each and every channel, 2.4 and 5.x */ for (i = 0; i < il->channel_count; i++) { ch_info = &il->channel_info[i]; a_band = il_is_channel_a_band(ch_info); /* find minimum power of all user and regulatory constraints * (does not consider h/w clipping limitations) */ max_power = il3945_hw_reg_get_ch_txpower_limit(ch_info); max_power = min(power, max_power); if (max_power != ch_info->curr_txpow) { ch_info->curr_txpow = max_power; /* this considers the h/w clipping limitations */ il3945_hw_reg_set_new_power(il, ch_info); } } /* update txpower settings for all channels, * send to NIC if associated. */ il3945_is_temp_calib_needed(il); il3945_hw_reg_comp_txpower_temp(il); return 0; } static int il3945_send_rxon_assoc(struct il_priv *il) { int rc = 0; struct il_rx_pkt *pkt; struct il3945_rxon_assoc_cmd rxon_assoc; struct il_host_cmd cmd = { .id = C_RXON_ASSOC, .len = sizeof(rxon_assoc), .flags = CMD_WANT_SKB, .data = &rxon_assoc, }; const struct il_rxon_cmd *rxon1 = &il->staging; const struct il_rxon_cmd *rxon2 = &il->active; if (rxon1->flags == rxon2->flags && rxon1->filter_flags == rxon2->filter_flags && rxon1->cck_basic_rates == rxon2->cck_basic_rates && rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates) { D_INFO("Using current RXON_ASSOC. Not resending.\n"); return 0; } rxon_assoc.flags = il->staging.flags; rxon_assoc.filter_flags = il->staging.filter_flags; rxon_assoc.ofdm_basic_rates = il->staging.ofdm_basic_rates; rxon_assoc.cck_basic_rates = il->staging.cck_basic_rates; rxon_assoc.reserved = 0; rc = il_send_cmd_sync(il, &cmd); if (rc) return rc; pkt = (struct il_rx_pkt *)cmd.reply_page; if (pkt->hdr.flags & IL_CMD_FAILED_MSK) { IL_ERR("Bad return from C_RXON_ASSOC command\n"); rc = -EIO; } il_free_pages(il, cmd.reply_page); return rc; } /** * il3945_commit_rxon - commit staging_rxon to hardware * * The RXON command in staging_rxon is committed to the hardware and * the active_rxon structure is updated with the new data. This * function correctly transitions out of the RXON_ASSOC_MSK state if * a HW tune is required based on the RXON structure changes. */ int il3945_commit_rxon(struct il_priv *il) { /* cast away the const for active_rxon in this function */ struct il3945_rxon_cmd *active_rxon = (void *)&il->active; struct il3945_rxon_cmd *staging_rxon = (void *)&il->staging; int rc = 0; bool new_assoc = !!(staging_rxon->filter_flags & RXON_FILTER_ASSOC_MSK); if (test_bit(S_EXIT_PENDING, &il->status)) return -EINVAL; if (!il_is_alive(il)) return -1; /* always get timestamp with Rx frame */ staging_rxon->flags |= RXON_FLG_TSF2HOST_MSK; /* select antenna */ staging_rxon->flags &= ~(RXON_FLG_DIS_DIV_MSK | RXON_FLG_ANT_SEL_MSK); staging_rxon->flags |= il3945_get_antenna_flags(il); rc = il_check_rxon_cmd(il); if (rc) { IL_ERR("Invalid RXON configuration. Not committing.\n"); return -EINVAL; } /* If we don't need to send a full RXON, we can use * il3945_rxon_assoc_cmd which is used to reconfigure filter * and other flags for the current radio configuration. */ if (!il_full_rxon_required(il)) { rc = il_send_rxon_assoc(il); if (rc) { IL_ERR("Error setting RXON_ASSOC " "configuration (%d).\n", rc); return rc; } memcpy(active_rxon, staging_rxon, sizeof(*active_rxon)); /* * We do not commit tx power settings while channel changing, * do it now if tx power changed. */ il_set_tx_power(il, il->tx_power_next, false); return 0; } /* If we are currently associated and the new config requires * an RXON_ASSOC and the new config wants the associated mask enabled, * we must clear the associated from the active configuration * before we apply the new config */ if (il_is_associated(il) && new_assoc) { D_INFO("Toggling associated bit on current RXON\n"); active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK; /* * reserved4 and 5 could have been filled by the iwlcore code. * Let's clear them before pushing to the 3945. */ active_rxon->reserved4 = 0; active_rxon->reserved5 = 0; rc = il_send_cmd_pdu(il, C_RXON, sizeof(struct il3945_rxon_cmd), &il->active); /* If the mask clearing failed then we set * active_rxon back to what it was previously */ if (rc) { active_rxon->filter_flags |= RXON_FILTER_ASSOC_MSK; IL_ERR("Error clearing ASSOC_MSK on current " "configuration (%d).\n", rc); return rc; } il_clear_ucode_stations(il); il_restore_stations(il); } D_INFO("Sending RXON\n" "* with%s RXON_FILTER_ASSOC_MSK\n" "* channel = %d\n" "* bssid = %pM\n", (new_assoc ? "" : "out"), le16_to_cpu(staging_rxon->channel), staging_rxon->bssid_addr); /* * reserved4 and 5 could have been filled by the iwlcore code. * Let's clear them before pushing to the 3945. */ staging_rxon->reserved4 = 0; staging_rxon->reserved5 = 0; il_set_rxon_hwcrypto(il, !il3945_mod_params.sw_crypto); /* Apply the new configuration */ rc = il_send_cmd_pdu(il, C_RXON, sizeof(struct il3945_rxon_cmd), staging_rxon); if (rc) { IL_ERR("Error setting new configuration (%d).\n", rc); return rc; } memcpy(active_rxon, staging_rxon, sizeof(*active_rxon)); if (!new_assoc) { il_clear_ucode_stations(il); il_restore_stations(il); } /* If we issue a new RXON command which required a tune then we must * send a new TXPOWER command or we won't be able to Tx any frames */ rc = il_set_tx_power(il, il->tx_power_next, true); if (rc) { IL_ERR("Error setting Tx power (%d).\n", rc); return rc; } /* Init the hardware's rate fallback order based on the band */ rc = il3945_init_hw_rate_table(il); if (rc) { IL_ERR("Error setting HW rate table: %02X\n", rc); return -EIO; } return 0; } /** * il3945_reg_txpower_periodic - called when time to check our temperature. * * -- reset periodic timer * -- see if temp has changed enough to warrant re-calibration ... if so: * -- correct coeffs for temp (can reset temp timer) * -- save this temp as "last", * -- send new set of gain settings to NIC * NOTE: This should continue working, even when we're not associated, * so we can keep our internal table of scan powers current. */ void il3945_reg_txpower_periodic(struct il_priv *il) { /* This will kick in the "brute force" * il3945_hw_reg_comp_txpower_temp() below */ if (!il3945_is_temp_calib_needed(il)) goto reschedule; /* Set up a new set of temp-adjusted TxPowers, send to NIC. * This is based *only* on current temperature, * ignoring any previous power measurements */ il3945_hw_reg_comp_txpower_temp(il); reschedule: queue_delayed_work(il->workqueue, &il->_3945.thermal_periodic, REG_RECALIB_PERIOD * HZ); } static void il3945_bg_reg_txpower_periodic(struct work_struct *work) { struct il_priv *il = container_of(work, struct il_priv, _3945.thermal_periodic.work); mutex_lock(&il->mutex); if (test_bit(S_EXIT_PENDING, &il->status) || il->txq == NULL) goto out; il3945_reg_txpower_periodic(il); out: mutex_unlock(&il->mutex); } /** * il3945_hw_reg_get_ch_grp_idx - find the channel-group idx (0-4) for channel. * * This function is used when initializing channel-info structs. * * NOTE: These channel groups do *NOT* match the bands above! * These channel groups are based on factory-tested channels; * on A-band, EEPROM's "group frequency" entries represent the top * channel in each group 1-4. Group 5 All B/G channels are in group 0. */ static u16 il3945_hw_reg_get_ch_grp_idx(struct il_priv *il, const struct il_channel_info *ch_info) { struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom; struct il3945_eeprom_txpower_group *ch_grp = &eeprom->groups[0]; u8 group; u16 group_idx = 0; /* based on factory calib frequencies */ u8 grp_channel; /* Find the group idx for the channel ... don't use idx 1(?) */ if (il_is_channel_a_band(ch_info)) { for (group = 1; group < 5; group++) { grp_channel = ch_grp[group].group_channel; if (ch_info->channel <= grp_channel) { group_idx = group; break; } } /* group 4 has a few channels *above* its factory cal freq */ if (group == 5) group_idx = 4; } else group_idx = 0; /* 2.4 GHz, group 0 */ D_POWER("Chnl %d mapped to grp %d\n", ch_info->channel, group_idx); return group_idx; } /** * il3945_hw_reg_get_matched_power_idx - Interpolate to get nominal idx * * Interpolate to get nominal (i.e. at factory calibration temperature) idx * into radio/DSP gain settings table for requested power. */ static int il3945_hw_reg_get_matched_power_idx(struct il_priv *il, s8 requested_power, s32 setting_idx, s32 *new_idx) { const struct il3945_eeprom_txpower_group *chnl_grp = NULL; struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom; s32 idx0, idx1; s32 power = 2 * requested_power; s32 i; const struct il3945_eeprom_txpower_sample *samples; s32 gains0, gains1; s32 res; s32 denominator; chnl_grp = &eeprom->groups[setting_idx]; samples = chnl_grp->samples; for (i = 0; i < 5; i++) { if (power == samples[i].power) { *new_idx = samples[i].gain_idx; return 0; } } if (power > samples[1].power) { idx0 = 0; idx1 = 1; } else if (power > samples[2].power) { idx0 = 1; idx1 = 2; } else if (power > samples[3].power) { idx0 = 2; idx1 = 3; } else { idx0 = 3; idx1 = 4; } denominator = (s32) samples[idx1].power - (s32) samples[idx0].power; if (denominator == 0) return -EINVAL; gains0 = (s32) samples[idx0].gain_idx * (1 << 19); gains1 = (s32) samples[idx1].gain_idx * (1 << 19); res = gains0 + (gains1 - gains0) * ((s32) power - (s32) samples[idx0].power) / denominator + (1 << 18); *new_idx = res >> 19; return 0; } static void il3945_hw_reg_init_channel_groups(struct il_priv *il) { u32 i; s32 rate_idx; struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom; const struct il3945_eeprom_txpower_group *group; D_POWER("Initializing factory calib info from EEPROM\n"); for (i = 0; i < IL_NUM_TX_CALIB_GROUPS; i++) { s8 *clip_pwrs; /* table of power levels for each rate */ s8 satur_pwr; /* saturation power for each chnl group */ group = &eeprom->groups[i]; /* sanity check on factory saturation power value */ if (group->saturation_power < 40) { IL_WARN("Error: saturation power is %d, " "less than minimum expected 40\n", group->saturation_power); return; } /* * Derive requested power levels for each rate, based on * hardware capabilities (saturation power for band). * Basic value is 3dB down from saturation, with further * power reductions for highest 3 data rates. These * backoffs provide headroom for high rate modulation * power peaks, without too much distortion (clipping). */ /* we'll fill in this array with h/w max power levels */ clip_pwrs = (s8 *) il->_3945.clip_groups[i].clip_powers; /* divide factory saturation power by 2 to find -3dB level */ satur_pwr = (s8) (group->saturation_power >> 1); /* fill in channel group's nominal powers for each rate */ for (rate_idx = 0; rate_idx < RATE_COUNT_3945; rate_idx++, clip_pwrs++) { switch (rate_idx) { case RATE_36M_IDX_TBL: if (i == 0) /* B/G */ *clip_pwrs = satur_pwr; else /* A */ *clip_pwrs = satur_pwr - 5; break; case RATE_48M_IDX_TBL: if (i == 0) *clip_pwrs = satur_pwr - 7; else *clip_pwrs = satur_pwr - 10; break; case RATE_54M_IDX_TBL: if (i == 0) *clip_pwrs = satur_pwr - 9; else *clip_pwrs = satur_pwr - 12; break; default: *clip_pwrs = satur_pwr; break; } } } } /** * il3945_txpower_set_from_eeprom - Set channel power info based on EEPROM * * Second pass (during init) to set up il->channel_info * * Set up Tx-power settings in our channel info database for each VALID * (for this geo/SKU) channel, at all Tx data rates, based on eeprom values * and current temperature. * * Since this is based on current temperature (at init time), these values may * not be valid for very long, but it gives us a starting/default point, * and allows us to active (i.e. using Tx) scan. * * This does *not* write values to NIC, just sets up our internal table. */ int il3945_txpower_set_from_eeprom(struct il_priv *il) { struct il_channel_info *ch_info = NULL; struct il3945_channel_power_info *pwr_info; struct il3945_eeprom *eeprom = (struct il3945_eeprom *)il->eeprom; int delta_idx; u8 rate_idx; u8 scan_tbl_idx; const s8 *clip_pwrs; /* array of power levels for each rate */ u8 gain, dsp_atten; s8 power; u8 pwr_idx, base_pwr_idx, a_band; u8 i; int temperature; /* save temperature reference, * so we can determine next time to calibrate */ temperature = il3945_hw_reg_txpower_get_temperature(il); il->last_temperature = temperature; il3945_hw_reg_init_channel_groups(il); /* initialize Tx power info for each and every channel, 2.4 and 5.x */ for (i = 0, ch_info = il->channel_info; i < il->channel_count; i++, ch_info++) { a_band = il_is_channel_a_band(ch_info); if (!il_is_channel_valid(ch_info)) continue; /* find this channel's channel group (*not* "band") idx */ ch_info->group_idx = il3945_hw_reg_get_ch_grp_idx(il, ch_info); /* Get this chnlgrp's rate->max/clip-powers table */ clip_pwrs = il->_3945.clip_groups[ch_info->group_idx].clip_powers; /* calculate power idx *adjustment* value according to * diff between current temperature and factory temperature */ delta_idx = il3945_hw_reg_adjust_power_by_temp(temperature, eeprom->groups[ch_info-> group_idx]. temperature); D_POWER("Delta idx for channel %d: %d [%d]\n", ch_info->channel, delta_idx, temperature + IL_TEMP_CONVERT); /* set tx power value for all OFDM rates */ for (rate_idx = 0; rate_idx < IL_OFDM_RATES; rate_idx++) { s32 uninitialized_var(power_idx); int rc; /* use channel group's clip-power table, * but don't exceed channel's max power */ s8 pwr = min(ch_info->max_power_avg, clip_pwrs[rate_idx]); pwr_info = &ch_info->power_info[rate_idx]; /* get base (i.e. at factory-measured temperature) * power table idx for this rate's power */ rc = il3945_hw_reg_get_matched_power_idx(il, pwr, ch_info-> group_idx, &power_idx); if (rc) { IL_ERR("Invalid power idx\n"); return rc; } pwr_info->base_power_idx = (u8) power_idx; /* temperature compensate */ power_idx += delta_idx; /* stay within range of gain table */ power_idx = il3945_hw_reg_fix_power_idx(power_idx); /* fill 1 OFDM rate's il3945_channel_power_info struct */ pwr_info->requested_power = pwr; pwr_info->power_table_idx = (u8) power_idx; pwr_info->tpc.tx_gain = power_gain_table[a_band][power_idx].tx_gain; pwr_info->tpc.dsp_atten = power_gain_table[a_band][power_idx].dsp_atten; } /* set tx power for CCK rates, based on OFDM 12 Mbit settings */ pwr_info = &ch_info->power_info[RATE_12M_IDX_TBL]; power = pwr_info->requested_power + IL_CCK_FROM_OFDM_POWER_DIFF; pwr_idx = pwr_info->power_table_idx + IL_CCK_FROM_OFDM_IDX_DIFF; base_pwr_idx = pwr_info->base_power_idx + IL_CCK_FROM_OFDM_IDX_DIFF; /* stay within table range */ pwr_idx = il3945_hw_reg_fix_power_idx(pwr_idx); gain = power_gain_table[a_band][pwr_idx].tx_gain; dsp_atten = power_gain_table[a_band][pwr_idx].dsp_atten; /* fill each CCK rate's il3945_channel_power_info structure * NOTE: All CCK-rate Txpwrs are the same for a given chnl! * NOTE: CCK rates start at end of OFDM rates! */ for (rate_idx = 0; rate_idx < IL_CCK_RATES; rate_idx++) { pwr_info = &ch_info->power_info[rate_idx + IL_OFDM_RATES]; pwr_info->requested_power = power; pwr_info->power_table_idx = pwr_idx; pwr_info->base_power_idx = base_pwr_idx; pwr_info->tpc.tx_gain = gain; pwr_info->tpc.dsp_atten = dsp_atten; } /* set scan tx power, 1Mbit for CCK, 6Mbit for OFDM */ for (scan_tbl_idx = 0; scan_tbl_idx < IL_NUM_SCAN_RATES; scan_tbl_idx++) { s32 actual_idx = (scan_tbl_idx == 0) ? RATE_1M_IDX_TBL : RATE_6M_IDX_TBL; il3945_hw_reg_set_scan_power(il, scan_tbl_idx, actual_idx, clip_pwrs, ch_info, a_band); } } return 0; } int il3945_hw_rxq_stop(struct il_priv *il) { int ret; _il_wr(il, FH39_RCSR_CONFIG(0), 0); ret = _il_poll_bit(il, FH39_RSSR_STATUS, FH39_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, FH39_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000); if (ret < 0) IL_ERR("Can't stop Rx DMA.\n"); return 0; } int il3945_hw_tx_queue_init(struct il_priv *il, struct il_tx_queue *txq) { int txq_id = txq->q.id; struct il3945_shared *shared_data = il->_3945.shared_virt; shared_data->tx_base_ptr[txq_id] = cpu_to_le32((u32) txq->q.dma_addr); il_wr(il, FH39_CBCC_CTRL(txq_id), 0); il_wr(il, FH39_CBCC_BASE(txq_id), 0); il_wr(il, FH39_TCSR_CONFIG(txq_id), FH39_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT | FH39_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF | FH39_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD | FH39_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL | FH39_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE); /* fake read to flush all prev. writes */ _il_rd(il, FH39_TSSR_CBB_BASE); return 0; } /* * HCMD utils */ static u16 il3945_get_hcmd_size(u8 cmd_id, u16 len) { switch (cmd_id) { case C_RXON: return sizeof(struct il3945_rxon_cmd); case C_POWER_TBL: return sizeof(struct il3945_powertable_cmd); default: return len; } } static u16 il3945_build_addsta_hcmd(const struct il_addsta_cmd *cmd, u8 * data) { struct il3945_addsta_cmd *addsta = (struct il3945_addsta_cmd *)data; addsta->mode = cmd->mode; memcpy(&addsta->sta, &cmd->sta, sizeof(struct sta_id_modify)); memcpy(&addsta->key, &cmd->key, sizeof(struct il4965_keyinfo)); addsta->station_flags = cmd->station_flags; addsta->station_flags_msk = cmd->station_flags_msk; addsta->tid_disable_tx = cpu_to_le16(0); addsta->rate_n_flags = cmd->rate_n_flags; addsta->add_immediate_ba_tid = cmd->add_immediate_ba_tid; addsta->remove_immediate_ba_tid = cmd->remove_immediate_ba_tid; addsta->add_immediate_ba_ssn = cmd->add_immediate_ba_ssn; return (u16) sizeof(struct il3945_addsta_cmd); } static int il3945_add_bssid_station(struct il_priv *il, const u8 * addr, u8 * sta_id_r) { int ret; u8 sta_id; unsigned long flags; if (sta_id_r) *sta_id_r = IL_INVALID_STATION; ret = il_add_station_common(il, addr, 0, NULL, &sta_id); if (ret) { IL_ERR("Unable to add station %pM\n", addr); return ret; } if (sta_id_r) *sta_id_r = sta_id; spin_lock_irqsave(&il->sta_lock, flags); il->stations[sta_id].used |= IL_STA_LOCAL; spin_unlock_irqrestore(&il->sta_lock, flags); return 0; } static int il3945_manage_ibss_station(struct il_priv *il, struct ieee80211_vif *vif, bool add) { struct il_vif_priv *vif_priv = (void *)vif->drv_priv; int ret; if (add) { ret = il3945_add_bssid_station(il, vif->bss_conf.bssid, &vif_priv->ibss_bssid_sta_id); if (ret) return ret; il3945_sync_sta(il, vif_priv->ibss_bssid_sta_id, (il->band == IEEE80211_BAND_5GHZ) ? RATE_6M_PLCP : RATE_1M_PLCP); il3945_rate_scale_init(il->hw, vif_priv->ibss_bssid_sta_id); return 0; } return il_remove_station(il, vif_priv->ibss_bssid_sta_id, vif->bss_conf.bssid); } /** * il3945_init_hw_rate_table - Initialize the hardware rate fallback table */ int il3945_init_hw_rate_table(struct il_priv *il) { int rc, i, idx, prev_idx; struct il3945_rate_scaling_cmd rate_cmd = { .reserved = {0, 0, 0}, }; struct il3945_rate_scaling_info *table = rate_cmd.table; for (i = 0; i < ARRAY_SIZE(il3945_rates); i++) { idx = il3945_rates[i].table_rs_idx; table[idx].rate_n_flags = cpu_to_le16(il3945_rates[i].plcp); table[idx].try_cnt = il->retry_rate; prev_idx = il3945_get_prev_ieee_rate(i); table[idx].next_rate_idx = il3945_rates[prev_idx].table_rs_idx; } switch (il->band) { case IEEE80211_BAND_5GHZ: D_RATE("Select A mode rate scale\n"); /* If one of the following CCK rates is used, * have it fall back to the 6M OFDM rate */ for (i = RATE_1M_IDX_TBL; i <= RATE_11M_IDX_TBL; i++) table[i].next_rate_idx = il3945_rates[IL_FIRST_OFDM_RATE].table_rs_idx; /* Don't fall back to CCK rates */ table[RATE_12M_IDX_TBL].next_rate_idx = RATE_9M_IDX_TBL; /* Don't drop out of OFDM rates */ table[RATE_6M_IDX_TBL].next_rate_idx = il3945_rates[IL_FIRST_OFDM_RATE].table_rs_idx; break; case IEEE80211_BAND_2GHZ: D_RATE("Select B/G mode rate scale\n"); /* If an OFDM rate is used, have it fall back to the * 1M CCK rates */ if (!(il->_3945.sta_supp_rates & IL_OFDM_RATES_MASK) && il_is_associated(il)) { idx = IL_FIRST_CCK_RATE; for (i = RATE_6M_IDX_TBL; i <= RATE_54M_IDX_TBL; i++) table[i].next_rate_idx = il3945_rates[idx].table_rs_idx; idx = RATE_11M_IDX_TBL; /* CCK shouldn't fall back to OFDM... */ table[idx].next_rate_idx = RATE_5M_IDX_TBL; } break; default: WARN_ON(1); break; } /* Update the rate scaling for control frame Tx */ rate_cmd.table_id = 0; rc = il_send_cmd_pdu(il, C_RATE_SCALE, sizeof(rate_cmd), &rate_cmd); if (rc) return rc; /* Update the rate scaling for data frame Tx */ rate_cmd.table_id = 1; return il_send_cmd_pdu(il, C_RATE_SCALE, sizeof(rate_cmd), &rate_cmd); } /* Called when initializing driver */ int il3945_hw_set_hw_params(struct il_priv *il) { memset((void *)&il->hw_params, 0, sizeof(struct il_hw_params)); il->_3945.shared_virt = dma_alloc_coherent(&il->pci_dev->dev, sizeof(struct il3945_shared), &il->_3945.shared_phys, GFP_KERNEL); if (!il->_3945.shared_virt) { IL_ERR("failed to allocate pci memory\n"); return -ENOMEM; } il->hw_params.bcast_id = IL3945_BROADCAST_ID; /* Assign number of Usable TX queues */ il->hw_params.max_txq_num = il->cfg->num_of_queues; il->hw_params.tfd_size = sizeof(struct il3945_tfd); il->hw_params.rx_page_order = get_order(IL_RX_BUF_SIZE_3K); il->hw_params.max_rxq_size = RX_QUEUE_SIZE; il->hw_params.max_rxq_log = RX_QUEUE_SIZE_LOG; il->hw_params.max_stations = IL3945_STATION_COUNT; il->sta_key_max_num = STA_KEY_MAX_NUM; il->hw_params.rx_wrt_ptr_reg = FH39_RSCSR_CHNL0_WPTR; il->hw_params.max_beacon_itrvl = IL39_MAX_UCODE_BEACON_INTERVAL; il->hw_params.beacon_time_tsf_bits = IL3945_EXT_BEACON_TIME_POS; return 0; } unsigned int il3945_hw_get_beacon_cmd(struct il_priv *il, struct il3945_frame *frame, u8 rate) { struct il3945_tx_beacon_cmd *tx_beacon_cmd; unsigned int frame_size; tx_beacon_cmd = (struct il3945_tx_beacon_cmd *)&frame->u; memset(tx_beacon_cmd, 0, sizeof(*tx_beacon_cmd)); tx_beacon_cmd->tx.sta_id = il->hw_params.bcast_id; tx_beacon_cmd->tx.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE; frame_size = il3945_fill_beacon_frame(il, tx_beacon_cmd->frame, sizeof(frame->u) - sizeof(*tx_beacon_cmd)); BUG_ON(frame_size > MAX_MPDU_SIZE); tx_beacon_cmd->tx.len = cpu_to_le16((u16) frame_size); tx_beacon_cmd->tx.rate = rate; tx_beacon_cmd->tx.tx_flags = (TX_CMD_FLG_SEQ_CTL_MSK | TX_CMD_FLG_TSF_MSK); /* supp_rates[0] == OFDM start at IL_FIRST_OFDM_RATE */ tx_beacon_cmd->tx.supp_rates[0] = (IL_OFDM_BASIC_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF; tx_beacon_cmd->tx.supp_rates[1] = (IL_CCK_BASIC_RATES_MASK & 0xF); return sizeof(struct il3945_tx_beacon_cmd) + frame_size; } void il3945_hw_handler_setup(struct il_priv *il) { il->handlers[C_TX] = il3945_hdl_tx; il->handlers[N_3945_RX] = il3945_hdl_rx; } void il3945_hw_setup_deferred_work(struct il_priv *il) { INIT_DELAYED_WORK(&il->_3945.thermal_periodic, il3945_bg_reg_txpower_periodic); } void il3945_hw_cancel_deferred_work(struct il_priv *il) { cancel_delayed_work(&il->_3945.thermal_periodic); } /* check contents of special bootstrap uCode SRAM */ static int il3945_verify_bsm(struct il_priv *il) { __le32 *image = il->ucode_boot.v_addr; u32 len = il->ucode_boot.len; u32 reg; u32 val; D_INFO("Begin verify bsm\n"); /* verify BSM SRAM contents */ val = il_rd_prph(il, BSM_WR_DWCOUNT_REG); for (reg = BSM_SRAM_LOWER_BOUND; reg < BSM_SRAM_LOWER_BOUND + len; reg += sizeof(u32), image++) { val = il_rd_prph(il, reg); if (val != le32_to_cpu(*image)) { IL_ERR("BSM uCode verification failed at " "addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n", BSM_SRAM_LOWER_BOUND, reg - BSM_SRAM_LOWER_BOUND, len, val, le32_to_cpu(*image)); return -EIO; } } D_INFO("BSM bootstrap uCode image OK\n"); return 0; } /****************************************************************************** * * EEPROM related functions * ******************************************************************************/ /* * Clear the OWNER_MSK, to establish driver (instead of uCode running on * embedded controller) as EEPROM reader; each read is a series of pulses * to/from the EEPROM chip, not a single event, so even reads could conflict * if they weren't arbitrated by some ownership mechanism. Here, the driver * simply claims ownership, which should be safe when this function is called * (i.e. before loading uCode!). */ static int il3945_eeprom_acquire_semaphore(struct il_priv *il) { _il_clear_bit(il, CSR_EEPROM_GP, CSR_EEPROM_GP_IF_OWNER_MSK); return 0; } static void il3945_eeprom_release_semaphore(struct il_priv *il) { return; } /** * il3945_load_bsm - Load bootstrap instructions * * BSM operation: * * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program * in special SRAM that does not power down during RFKILL. When powering back * up after power-saving sleeps (or during initial uCode load), the BSM loads * the bootstrap program into the on-board processor, and starts it. * * The bootstrap program loads (via DMA) instructions and data for a new * program from host DRAM locations indicated by the host driver in the * BSM_DRAM_* registers. Once the new program is loaded, it starts * automatically. * * When initializing the NIC, the host driver points the BSM to the * "initialize" uCode image. This uCode sets up some internal data, then * notifies host via "initialize alive" that it is complete. * * The host then replaces the BSM_DRAM_* pointer values to point to the * normal runtime uCode instructions and a backup uCode data cache buffer * (filled initially with starting data values for the on-board processor), * then triggers the "initialize" uCode to load and launch the runtime uCode, * which begins normal operation. * * When doing a power-save shutdown, runtime uCode saves data SRAM into * the backup data cache in DRAM before SRAM is powered down. * * When powering back up, the BSM loads the bootstrap program. This reloads * the runtime uCode instructions and the backup data cache into SRAM, * and re-launches the runtime uCode from where it left off. */ static int il3945_load_bsm(struct il_priv *il) { __le32 *image = il->ucode_boot.v_addr; u32 len = il->ucode_boot.len; dma_addr_t pinst; dma_addr_t pdata; u32 inst_len; u32 data_len; int rc; int i; u32 done; u32 reg_offset; D_INFO("Begin load bsm\n"); /* make sure bootstrap program is no larger than BSM's SRAM size */ if (len > IL39_MAX_BSM_SIZE) return -EINVAL; /* Tell bootstrap uCode where to find the "Initialize" uCode * in host DRAM ... host DRAM physical address bits 31:0 for 3945. * NOTE: il3945_initialize_alive_start() will replace these values, * after the "initialize" uCode has run, to point to * runtime/protocol instructions and backup data cache. */ pinst = il->ucode_init.p_addr; pdata = il->ucode_init_data.p_addr; inst_len = il->ucode_init.len; data_len = il->ucode_init_data.len; il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst); il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata); il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG, inst_len); il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, data_len); /* Fill BSM memory with bootstrap instructions */ for (reg_offset = BSM_SRAM_LOWER_BOUND; reg_offset < BSM_SRAM_LOWER_BOUND + len; reg_offset += sizeof(u32), image++) _il_wr_prph(il, reg_offset, le32_to_cpu(*image)); rc = il3945_verify_bsm(il); if (rc) return rc; /* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */ il_wr_prph(il, BSM_WR_MEM_SRC_REG, 0x0); il_wr_prph(il, BSM_WR_MEM_DST_REG, IL39_RTC_INST_LOWER_BOUND); il_wr_prph(il, BSM_WR_DWCOUNT_REG, len / sizeof(u32)); /* Load bootstrap code into instruction SRAM now, * to prepare to load "initialize" uCode */ il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START); /* Wait for load of bootstrap uCode to finish */ for (i = 0; i < 100; i++) { done = il_rd_prph(il, BSM_WR_CTRL_REG); if (!(done & BSM_WR_CTRL_REG_BIT_START)) break; udelay(10); } if (i < 100) D_INFO("BSM write complete, poll %d iterations\n", i); else { IL_ERR("BSM write did not complete!\n"); return -EIO; } /* Enable future boot loads whenever power management unit triggers it * (e.g. when powering back up after power-save shutdown) */ il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN); return 0; } const struct il_ops il3945_ops = { .txq_attach_buf_to_tfd = il3945_hw_txq_attach_buf_to_tfd, .txq_free_tfd = il3945_hw_txq_free_tfd, .txq_init = il3945_hw_tx_queue_init, .load_ucode = il3945_load_bsm, .dump_nic_error_log = il3945_dump_nic_error_log, .apm_init = il3945_apm_init, .send_tx_power = il3945_send_tx_power, .is_valid_rtc_data_addr = il3945_hw_valid_rtc_data_addr, .eeprom_acquire_semaphore = il3945_eeprom_acquire_semaphore, .eeprom_release_semaphore = il3945_eeprom_release_semaphore, .rxon_assoc = il3945_send_rxon_assoc, .commit_rxon = il3945_commit_rxon, .get_hcmd_size = il3945_get_hcmd_size, .build_addsta_hcmd = il3945_build_addsta_hcmd, .request_scan = il3945_request_scan, .post_scan = il3945_post_scan, .post_associate = il3945_post_associate, .config_ap = il3945_config_ap, .manage_ibss_station = il3945_manage_ibss_station, .send_led_cmd = il3945_send_led_cmd, }; static struct il_cfg il3945_bg_cfg = { .name = "3945BG", .fw_name_pre = IL3945_FW_PRE, .ucode_api_max = IL3945_UCODE_API_MAX, .ucode_api_min = IL3945_UCODE_API_MIN, .sku = IL_SKU_G, .eeprom_ver = EEPROM_3945_EEPROM_VERSION, .mod_params = &il3945_mod_params, .led_mode = IL_LED_BLINK, .eeprom_size = IL3945_EEPROM_IMG_SIZE, .num_of_queues = IL39_NUM_QUEUES, .pll_cfg_val = CSR39_ANA_PLL_CFG_VAL, .set_l0s = false, .use_bsm = true, .led_compensation = 64, .wd_timeout = IL_DEF_WD_TIMEOUT, .regulatory_bands = { EEPROM_REGULATORY_BAND_1_CHANNELS, EEPROM_REGULATORY_BAND_2_CHANNELS, EEPROM_REGULATORY_BAND_3_CHANNELS, EEPROM_REGULATORY_BAND_4_CHANNELS, EEPROM_REGULATORY_BAND_5_CHANNELS, EEPROM_REGULATORY_BAND_NO_HT40, EEPROM_REGULATORY_BAND_NO_HT40, }, }; static struct il_cfg il3945_abg_cfg = { .name = "3945ABG", .fw_name_pre = IL3945_FW_PRE, .ucode_api_max = IL3945_UCODE_API_MAX, .ucode_api_min = IL3945_UCODE_API_MIN, .sku = IL_SKU_A | IL_SKU_G, .eeprom_ver = EEPROM_3945_EEPROM_VERSION, .mod_params = &il3945_mod_params, .led_mode = IL_LED_BLINK, .eeprom_size = IL3945_EEPROM_IMG_SIZE, .num_of_queues = IL39_NUM_QUEUES, .pll_cfg_val = CSR39_ANA_PLL_CFG_VAL, .set_l0s = false, .use_bsm = true, .led_compensation = 64, .wd_timeout = IL_DEF_WD_TIMEOUT, .regulatory_bands = { EEPROM_REGULATORY_BAND_1_CHANNELS, EEPROM_REGULATORY_BAND_2_CHANNELS, EEPROM_REGULATORY_BAND_3_CHANNELS, EEPROM_REGULATORY_BAND_4_CHANNELS, EEPROM_REGULATORY_BAND_5_CHANNELS, EEPROM_REGULATORY_BAND_NO_HT40, EEPROM_REGULATORY_BAND_NO_HT40, }, }; DEFINE_PCI_DEVICE_TABLE(il3945_hw_card_ids) = { {IL_PCI_DEVICE(0x4222, 0x1005, il3945_bg_cfg)}, {IL_PCI_DEVICE(0x4222, 0x1034, il3945_bg_cfg)}, {IL_PCI_DEVICE(0x4222, 0x1044, il3945_bg_cfg)}, {IL_PCI_DEVICE(0x4227, 0x1014, il3945_bg_cfg)}, {IL_PCI_DEVICE(0x4222, PCI_ANY_ID, il3945_abg_cfg)}, {IL_PCI_DEVICE(0x4227, PCI_ANY_ID, il3945_abg_cfg)}, {0} }; MODULE_DEVICE_TABLE(pci, il3945_hw_card_ids);