/****************************************************************************** * * Copyright(c) 2009-2012 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * wlanfae * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, * Hsinchu 300, Taiwan. * * Larry Finger * *****************************************************************************/ #include "../wifi.h" #include "../pci.h" #include "../ps.h" #include "reg.h" #include "def.h" #include "phy.h" #include "rf.h" #include "dm.h" #include "fw.h" #include "hw.h" #include "table.h" static u32 _rtl92s_phy_calculate_bit_shift(u32 bitmask) { u32 i; for (i = 0; i <= 31; i++) { if (((bitmask >> i) & 0x1) == 1) break; } return i; } u32 rtl92s_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 returnvalue = 0, originalvalue, bitshift; RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x)\n", regaddr, bitmask); originalvalue = rtl_read_dword(rtlpriv, regaddr); bitshift = _rtl92s_phy_calculate_bit_shift(bitmask); returnvalue = (originalvalue & bitmask) >> bitshift; RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "BBR MASK=0x%x Addr[0x%x]=0x%x\n", bitmask, regaddr, originalvalue); return returnvalue; } void rtl92s_phy_set_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 originalvalue, bitshift; RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x), data(%#x)\n", regaddr, bitmask, data); if (bitmask != MASKDWORD) { originalvalue = rtl_read_dword(rtlpriv, regaddr); bitshift = _rtl92s_phy_calculate_bit_shift(bitmask); data = ((originalvalue & (~bitmask)) | (data << bitshift)); } rtl_write_dword(rtlpriv, regaddr, data); RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x), data(%#x)\n", regaddr, bitmask, data); } static u32 _rtl92s_phy_rf_serial_read(struct ieee80211_hw *hw, enum radio_path rfpath, u32 offset) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath]; u32 newoffset; u32 tmplong, tmplong2; u8 rfpi_enable = 0; u32 retvalue = 0; offset &= 0x3f; newoffset = offset; tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD); if (rfpath == RF90_PATH_A) tmplong2 = tmplong; else tmplong2 = rtl_get_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD); tmplong2 = (tmplong2 & (~BLSSI_READADDRESS)) | (newoffset << 23) | BLSSI_READEDGE; rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD, tmplong & (~BLSSI_READEDGE)); mdelay(1); rtl_set_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD, tmplong2); mdelay(1); rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD, tmplong | BLSSI_READEDGE); mdelay(1); if (rfpath == RF90_PATH_A) rfpi_enable = (u8)rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1, BIT(8)); else if (rfpath == RF90_PATH_B) rfpi_enable = (u8)rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1, BIT(8)); if (rfpi_enable) retvalue = rtl_get_bbreg(hw, pphyreg->rflssi_readbackpi, BLSSI_READBACK_DATA); else retvalue = rtl_get_bbreg(hw, pphyreg->rflssi_readback, BLSSI_READBACK_DATA); retvalue = rtl_get_bbreg(hw, pphyreg->rflssi_readback, BLSSI_READBACK_DATA); RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFR-%d Addr[0x%x]=0x%x\n", rfpath, pphyreg->rflssi_readback, retvalue); return retvalue; } static void _rtl92s_phy_rf_serial_write(struct ieee80211_hw *hw, enum radio_path rfpath, u32 offset, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath]; u32 data_and_addr = 0; u32 newoffset; offset &= 0x3f; newoffset = offset; data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff; rtl_set_bbreg(hw, pphyreg->rf3wire_offset, MASKDWORD, data_and_addr); RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFW-%d Addr[0x%x]=0x%x\n", rfpath, pphyreg->rf3wire_offset, data_and_addr); } u32 rtl92s_phy_query_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath, u32 regaddr, u32 bitmask) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 original_value, readback_value, bitshift; RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), rfpath(%#x), bitmask(%#x)\n", regaddr, rfpath, bitmask); spin_lock(&rtlpriv->locks.rf_lock); original_value = _rtl92s_phy_rf_serial_read(hw, rfpath, regaddr); bitshift = _rtl92s_phy_calculate_bit_shift(bitmask); readback_value = (original_value & bitmask) >> bitshift; spin_unlock(&rtlpriv->locks.rf_lock); RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n", regaddr, rfpath, bitmask, original_value); return readback_value; } void rtl92s_phy_set_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath, u32 regaddr, u32 bitmask, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); u32 original_value, bitshift; if (!((rtlphy->rf_pathmap >> rfpath) & 0x1)) return; RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n", regaddr, bitmask, data, rfpath); spin_lock(&rtlpriv->locks.rf_lock); if (bitmask != RFREG_OFFSET_MASK) { original_value = _rtl92s_phy_rf_serial_read(hw, rfpath, regaddr); bitshift = _rtl92s_phy_calculate_bit_shift(bitmask); data = ((original_value & (~bitmask)) | (data << bitshift)); } _rtl92s_phy_rf_serial_write(hw, rfpath, regaddr, data); spin_unlock(&rtlpriv->locks.rf_lock); RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n", regaddr, bitmask, data, rfpath); } void rtl92s_phy_scan_operation_backup(struct ieee80211_hw *hw, u8 operation) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); if (!is_hal_stop(rtlhal)) { switch (operation) { case SCAN_OPT_BACKUP: rtl92s_phy_set_fw_cmd(hw, FW_CMD_PAUSE_DM_BY_SCAN); break; case SCAN_OPT_RESTORE: rtl92s_phy_set_fw_cmd(hw, FW_CMD_RESUME_DM_BY_SCAN); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Unknown operation\n"); break; } } } void rtl92s_phy_set_bw_mode(struct ieee80211_hw *hw, enum nl80211_channel_type ch_type) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u8 reg_bw_opmode; RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "Switch to %s bandwidth\n", rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ? "20MHz" : "40MHz"); if (rtlphy->set_bwmode_inprogress) return; if (is_hal_stop(rtlhal)) return; rtlphy->set_bwmode_inprogress = true; reg_bw_opmode = rtl_read_byte(rtlpriv, BW_OPMODE); /* dummy read */ rtl_read_byte(rtlpriv, RRSR + 2); switch (rtlphy->current_chan_bw) { case HT_CHANNEL_WIDTH_20: reg_bw_opmode |= BW_OPMODE_20MHZ; rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode); break; case HT_CHANNEL_WIDTH_20_40: reg_bw_opmode &= ~BW_OPMODE_20MHZ; rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "unknown bandwidth: %#X\n", rtlphy->current_chan_bw); break; } switch (rtlphy->current_chan_bw) { case HT_CHANNEL_WIDTH_20: rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0); rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0); if (rtlhal->version >= VERSION_8192S_BCUT) rtl_write_byte(rtlpriv, RFPGA0_ANALOGPARAMETER2, 0x58); break; case HT_CHANNEL_WIDTH_20_40: rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1); rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1); rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCK_SIDEBAND, (mac->cur_40_prime_sc >> 1)); rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc); if (rtlhal->version >= VERSION_8192S_BCUT) rtl_write_byte(rtlpriv, RFPGA0_ANALOGPARAMETER2, 0x18); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "unknown bandwidth: %#X\n", rtlphy->current_chan_bw); break; } rtl92s_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw); rtlphy->set_bwmode_inprogress = false; RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n"); } static bool _rtl92s_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable, u32 cmdtableidx, u32 cmdtablesz, enum swchnlcmd_id cmdid, u32 para1, u32 para2, u32 msdelay) { struct swchnlcmd *pcmd; if (cmdtable == NULL) { RT_ASSERT(false, "cmdtable cannot be NULL\n"); return false; } if (cmdtableidx >= cmdtablesz) return false; pcmd = cmdtable + cmdtableidx; pcmd->cmdid = cmdid; pcmd->para1 = para1; pcmd->para2 = para2; pcmd->msdelay = msdelay; return true; } static bool _rtl92s_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw, u8 channel, u8 *stage, u8 *step, u32 *delay) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct swchnlcmd precommoncmd[MAX_PRECMD_CNT]; u32 precommoncmdcnt; struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT]; u32 postcommoncmdcnt; struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT]; u32 rfdependcmdcnt; struct swchnlcmd *currentcmd = NULL; u8 rfpath; u8 num_total_rfpath = rtlphy->num_total_rfpath; precommoncmdcnt = 0; _rtl92s_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++, MAX_PRECMD_CNT, CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0); _rtl92s_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++, MAX_PRECMD_CNT, CMDID_END, 0, 0, 0); postcommoncmdcnt = 0; _rtl92s_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++, MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0); rfdependcmdcnt = 0; RT_ASSERT((channel >= 1 && channel <= 14), "invalid channel for Zebra: %d\n", channel); _rtl92s_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++, MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG, RF_CHNLBW, channel, 10); _rtl92s_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++, MAX_RFDEPENDCMD_CNT, CMDID_END, 0, 0, 0); do { switch (*stage) { case 0: currentcmd = &precommoncmd[*step]; break; case 1: currentcmd = &rfdependcmd[*step]; break; case 2: currentcmd = &postcommoncmd[*step]; break; } if (currentcmd->cmdid == CMDID_END) { if ((*stage) == 2) { return true; } else { (*stage)++; (*step) = 0; continue; } } switch (currentcmd->cmdid) { case CMDID_SET_TXPOWEROWER_LEVEL: rtl92s_phy_set_txpower(hw, channel); break; case CMDID_WRITEPORT_ULONG: rtl_write_dword(rtlpriv, currentcmd->para1, currentcmd->para2); break; case CMDID_WRITEPORT_USHORT: rtl_write_word(rtlpriv, currentcmd->para1, (u16)currentcmd->para2); break; case CMDID_WRITEPORT_UCHAR: rtl_write_byte(rtlpriv, currentcmd->para1, (u8)currentcmd->para2); break; case CMDID_RF_WRITEREG: for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) { rtlphy->rfreg_chnlval[rfpath] = ((rtlphy->rfreg_chnlval[rfpath] & 0xfffffc00) | currentcmd->para2); rtl_set_rfreg(hw, (enum radio_path)rfpath, currentcmd->para1, RFREG_OFFSET_MASK, rtlphy->rfreg_chnlval[rfpath]); } break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); break; } break; } while (true); (*delay) = currentcmd->msdelay; (*step)++; return false; } u8 rtl92s_phy_sw_chnl(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); u32 delay; bool ret; RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "switch to channel%d\n", rtlphy->current_channel); if (rtlphy->sw_chnl_inprogress) return 0; if (rtlphy->set_bwmode_inprogress) return 0; if (is_hal_stop(rtlhal)) return 0; rtlphy->sw_chnl_inprogress = true; rtlphy->sw_chnl_stage = 0; rtlphy->sw_chnl_step = 0; do { if (!rtlphy->sw_chnl_inprogress) break; ret = _rtl92s_phy_sw_chnl_step_by_step(hw, rtlphy->current_channel, &rtlphy->sw_chnl_stage, &rtlphy->sw_chnl_step, &delay); if (!ret) { if (delay > 0) mdelay(delay); else continue; } else { rtlphy->sw_chnl_inprogress = false; } break; } while (true); rtlphy->sw_chnl_inprogress = false; RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n"); return 1; } static void _rtl92se_phy_set_rf_sleep(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 u1btmp; u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL); u1btmp |= BIT(0); rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp); rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0); rtl_write_byte(rtlpriv, TXPAUSE, 0xFF); rtl_write_word(rtlpriv, CMDR, 0x57FC); udelay(100); rtl_write_word(rtlpriv, CMDR, 0x77FC); rtl_write_byte(rtlpriv, PHY_CCA, 0x0); udelay(10); rtl_write_word(rtlpriv, CMDR, 0x37FC); udelay(10); rtl_write_word(rtlpriv, CMDR, 0x77FC); udelay(10); rtl_write_word(rtlpriv, CMDR, 0x57FC); /* we should chnge GPIO to input mode * this will drop away current about 25mA*/ rtl8192se_gpiobit3_cfg_inputmode(hw); } bool rtl92s_phy_set_rf_power_state(struct ieee80211_hw *hw, enum rf_pwrstate rfpwr_state) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); bool bresult = true; u8 i, queue_id; struct rtl8192_tx_ring *ring = NULL; if (rfpwr_state == ppsc->rfpwr_state) return false; switch (rfpwr_state) { case ERFON:{ if ((ppsc->rfpwr_state == ERFOFF) && RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) { bool rtstatus; u32 InitializeCount = 0; do { InitializeCount++; RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, "IPS Set eRf nic enable\n"); rtstatus = rtl_ps_enable_nic(hw); } while ((rtstatus != true) && (InitializeCount < 10)); RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); } else { RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG, "awake, sleeped:%d ms state_inap:%x\n", jiffies_to_msecs(jiffies - ppsc-> last_sleep_jiffies), rtlpriv->psc.state_inap); ppsc->last_awake_jiffies = jiffies; rtl_write_word(rtlpriv, CMDR, 0x37FC); rtl_write_byte(rtlpriv, TXPAUSE, 0x00); rtl_write_byte(rtlpriv, PHY_CCA, 0x3); } if (mac->link_state == MAC80211_LINKED) rtlpriv->cfg->ops->led_control(hw, LED_CTL_LINK); else rtlpriv->cfg->ops->led_control(hw, LED_CTL_NO_LINK); break; } case ERFOFF:{ if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) { RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, "IPS Set eRf nic disable\n"); rtl_ps_disable_nic(hw); RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); } else { if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) rtlpriv->cfg->ops->led_control(hw, LED_CTL_NO_LINK); else rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); } break; } case ERFSLEEP: if (ppsc->rfpwr_state == ERFOFF) return false; for (queue_id = 0, i = 0; queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) { ring = &pcipriv->dev.tx_ring[queue_id]; if (skb_queue_len(&ring->queue) == 0 || queue_id == BEACON_QUEUE) { queue_id++; continue; } else { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "eRf Off/Sleep: %d times TcbBusyQueue[%d] = %d before doze!\n", i + 1, queue_id, skb_queue_len(&ring->queue)); udelay(10); i++; } if (i >= MAX_DOZE_WAITING_TIMES_9x) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "ERFOFF: %d times TcbBusyQueue[%d] = %d !\n", MAX_DOZE_WAITING_TIMES_9x, queue_id, skb_queue_len(&ring->queue)); break; } } RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG, "Set ERFSLEEP awaked:%d ms\n", jiffies_to_msecs(jiffies - ppsc->last_awake_jiffies)); RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG, "sleep awaked:%d ms state_inap:%x\n", jiffies_to_msecs(jiffies - ppsc->last_awake_jiffies), rtlpriv->psc.state_inap); ppsc->last_sleep_jiffies = jiffies; _rtl92se_phy_set_rf_sleep(hw); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); bresult = false; break; } if (bresult) ppsc->rfpwr_state = rfpwr_state; return bresult; } static bool _rtl92s_phy_config_rfpa_bias_current(struct ieee80211_hw *hw, enum radio_path rfpath) { struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); bool rtstatus = true; u32 tmpval = 0; /* If inferiority IC, we have to increase the PA bias current */ if (rtlhal->ic_class != IC_INFERIORITY_A) { tmpval = rtl92s_phy_query_rf_reg(hw, rfpath, RF_IPA, 0xf); rtl92s_phy_set_rf_reg(hw, rfpath, RF_IPA, 0xf, tmpval + 1); } return rtstatus; } static void _rtl92s_store_pwrindex_diffrate_offset(struct ieee80211_hw *hw, u32 reg_addr, u32 bitmask, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); int index; if (reg_addr == RTXAGC_RATE18_06) index = 0; else if (reg_addr == RTXAGC_RATE54_24) index = 1; else if (reg_addr == RTXAGC_CCK_MCS32) index = 6; else if (reg_addr == RTXAGC_MCS03_MCS00) index = 2; else if (reg_addr == RTXAGC_MCS07_MCS04) index = 3; else if (reg_addr == RTXAGC_MCS11_MCS08) index = 4; else if (reg_addr == RTXAGC_MCS15_MCS12) index = 5; else return; rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][index] = data; if (index == 5) rtlphy->pwrgroup_cnt++; } static void _rtl92s_phy_init_register_definition(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); /*RF Interface Sowrtware Control */ rtlphy->phyreg_def[RF90_PATH_A].rfintfs = RFPGA0_XAB_RFINTERFACESW; rtlphy->phyreg_def[RF90_PATH_B].rfintfs = RFPGA0_XAB_RFINTERFACESW; rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW; rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW; /* RF Interface Readback Value */ rtlphy->phyreg_def[RF90_PATH_A].rfintfi = RFPGA0_XAB_RFINTERFACERB; rtlphy->phyreg_def[RF90_PATH_B].rfintfi = RFPGA0_XAB_RFINTERFACERB; rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB; rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB; /* RF Interface Output (and Enable) */ rtlphy->phyreg_def[RF90_PATH_A].rfintfo = RFPGA0_XA_RFINTERFACEOE; rtlphy->phyreg_def[RF90_PATH_B].rfintfo = RFPGA0_XB_RFINTERFACEOE; rtlphy->phyreg_def[RF90_PATH_C].rfintfo = RFPGA0_XC_RFINTERFACEOE; rtlphy->phyreg_def[RF90_PATH_D].rfintfo = RFPGA0_XD_RFINTERFACEOE; /* RF Interface (Output and) Enable */ rtlphy->phyreg_def[RF90_PATH_A].rfintfe = RFPGA0_XA_RFINTERFACEOE; rtlphy->phyreg_def[RF90_PATH_B].rfintfe = RFPGA0_XB_RFINTERFACEOE; rtlphy->phyreg_def[RF90_PATH_C].rfintfe = RFPGA0_XC_RFINTERFACEOE; rtlphy->phyreg_def[RF90_PATH_D].rfintfe = RFPGA0_XD_RFINTERFACEOE; /* Addr of LSSI. Wirte RF register by driver */ rtlphy->phyreg_def[RF90_PATH_A].rf3wire_offset = RFPGA0_XA_LSSIPARAMETER; rtlphy->phyreg_def[RF90_PATH_B].rf3wire_offset = RFPGA0_XB_LSSIPARAMETER; rtlphy->phyreg_def[RF90_PATH_C].rf3wire_offset = RFPGA0_XC_LSSIPARAMETER; rtlphy->phyreg_def[RF90_PATH_D].rf3wire_offset = RFPGA0_XD_LSSIPARAMETER; /* RF parameter */ rtlphy->phyreg_def[RF90_PATH_A].rflssi_select = RFPGA0_XAB_RFPARAMETER; rtlphy->phyreg_def[RF90_PATH_B].rflssi_select = RFPGA0_XAB_RFPARAMETER; rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = RFPGA0_XCD_RFPARAMETER; rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = RFPGA0_XCD_RFPARAMETER; /* Tx AGC Gain Stage (same for all path. Should we remove this?) */ rtlphy->phyreg_def[RF90_PATH_A].rftxgain_stage = RFPGA0_TXGAINSTAGE; rtlphy->phyreg_def[RF90_PATH_B].rftxgain_stage = RFPGA0_TXGAINSTAGE; rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE; rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE; /* Tranceiver A~D HSSI Parameter-1 */ rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1; rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1; rtlphy->phyreg_def[RF90_PATH_C].rfhssi_para1 = RFPGA0_XC_HSSIPARAMETER1; rtlphy->phyreg_def[RF90_PATH_D].rfhssi_para1 = RFPGA0_XD_HSSIPARAMETER1; /* Tranceiver A~D HSSI Parameter-2 */ rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2; rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2; rtlphy->phyreg_def[RF90_PATH_C].rfhssi_para2 = RFPGA0_XC_HSSIPARAMETER2; rtlphy->phyreg_def[RF90_PATH_D].rfhssi_para2 = RFPGA0_XD_HSSIPARAMETER2; /* RF switch Control */ rtlphy->phyreg_def[RF90_PATH_A].rfswitch_control = RFPGA0_XAB_SWITCHCONTROL; rtlphy->phyreg_def[RF90_PATH_B].rfswitch_control = RFPGA0_XAB_SWITCHCONTROL; rtlphy->phyreg_def[RF90_PATH_C].rfswitch_control = RFPGA0_XCD_SWITCHCONTROL; rtlphy->phyreg_def[RF90_PATH_D].rfswitch_control = RFPGA0_XCD_SWITCHCONTROL; /* AGC control 1 */ rtlphy->phyreg_def[RF90_PATH_A].rfagc_control1 = ROFDM0_XAAGCCORE1; rtlphy->phyreg_def[RF90_PATH_B].rfagc_control1 = ROFDM0_XBAGCCORE1; rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1; rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1; /* AGC control 2 */ rtlphy->phyreg_def[RF90_PATH_A].rfagc_control2 = ROFDM0_XAAGCCORE2; rtlphy->phyreg_def[RF90_PATH_B].rfagc_control2 = ROFDM0_XBAGCCORE2; rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2; rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2; /* RX AFE control 1 */ rtlphy->phyreg_def[RF90_PATH_A].rfrxiq_imbalance = ROFDM0_XARXIQIMBALANCE; rtlphy->phyreg_def[RF90_PATH_B].rfrxiq_imbalance = ROFDM0_XBRXIQIMBALANCE; rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbalance = ROFDM0_XCRXIQIMBALANCE; rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbalance = ROFDM0_XDRXIQIMBALANCE; /* RX AFE control 1 */ rtlphy->phyreg_def[RF90_PATH_A].rfrx_afe = ROFDM0_XARXAFE; rtlphy->phyreg_def[RF90_PATH_B].rfrx_afe = ROFDM0_XBRXAFE; rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE; rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE; /* Tx AFE control 1 */ rtlphy->phyreg_def[RF90_PATH_A].rftxiq_imbalance = ROFDM0_XATXIQIMBALANCE; rtlphy->phyreg_def[RF90_PATH_B].rftxiq_imbalance = ROFDM0_XBTXIQIMBALANCE; rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbalance = ROFDM0_XCTXIQIMBALANCE; rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbalance = ROFDM0_XDTXIQIMBALANCE; /* Tx AFE control 2 */ rtlphy->phyreg_def[RF90_PATH_A].rftx_afe = ROFDM0_XATXAFE; rtlphy->phyreg_def[RF90_PATH_B].rftx_afe = ROFDM0_XBTXAFE; rtlphy->phyreg_def[RF90_PATH_C].rftx_afe = ROFDM0_XCTXAFE; rtlphy->phyreg_def[RF90_PATH_D].rftx_afe = ROFDM0_XDTXAFE; /* Tranceiver LSSI Readback */ rtlphy->phyreg_def[RF90_PATH_A].rflssi_readback = RFPGA0_XA_LSSIREADBACK; rtlphy->phyreg_def[RF90_PATH_B].rflssi_readback = RFPGA0_XB_LSSIREADBACK; rtlphy->phyreg_def[RF90_PATH_C].rflssi_readback = RFPGA0_XC_LSSIREADBACK; rtlphy->phyreg_def[RF90_PATH_D].rflssi_readback = RFPGA0_XD_LSSIREADBACK; /* Tranceiver LSSI Readback PI mode */ rtlphy->phyreg_def[RF90_PATH_A].rflssi_readbackpi = TRANSCEIVERA_HSPI_READBACK; rtlphy->phyreg_def[RF90_PATH_B].rflssi_readbackpi = TRANSCEIVERB_HSPI_READBACK; } static bool _rtl92s_phy_config_bb(struct ieee80211_hw *hw, u8 configtype) { int i; u32 *phy_reg_table; u32 *agc_table; u16 phy_reg_len, agc_len; agc_len = AGCTAB_ARRAYLENGTH; agc_table = rtl8192seagctab_array; /* Default RF_type: 2T2R */ phy_reg_len = PHY_REG_2T2RARRAYLENGTH; phy_reg_table = rtl8192sephy_reg_2t2rarray; if (configtype == BASEBAND_CONFIG_PHY_REG) { for (i = 0; i < phy_reg_len; i = i + 2) { if (phy_reg_table[i] == 0xfe) mdelay(50); else if (phy_reg_table[i] == 0xfd) mdelay(5); else if (phy_reg_table[i] == 0xfc) mdelay(1); else if (phy_reg_table[i] == 0xfb) udelay(50); else if (phy_reg_table[i] == 0xfa) udelay(5); else if (phy_reg_table[i] == 0xf9) udelay(1); /* Add delay for ECS T20 & LG malow platform, */ udelay(1); rtl92s_phy_set_bb_reg(hw, phy_reg_table[i], MASKDWORD, phy_reg_table[i + 1]); } } else if (configtype == BASEBAND_CONFIG_AGC_TAB) { for (i = 0; i < agc_len; i = i + 2) { rtl92s_phy_set_bb_reg(hw, agc_table[i], MASKDWORD, agc_table[i + 1]); /* Add delay for ECS T20 & LG malow platform */ udelay(1); } } return true; } static bool _rtl92s_phy_set_bb_to_diff_rf(struct ieee80211_hw *hw, u8 configtype) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); u32 *phy_regarray2xtxr_table; u16 phy_regarray2xtxr_len; int i; if (rtlphy->rf_type == RF_1T1R) { phy_regarray2xtxr_table = rtl8192sephy_changeto_1t1rarray; phy_regarray2xtxr_len = PHY_CHANGETO_1T1RARRAYLENGTH; } else if (rtlphy->rf_type == RF_1T2R) { phy_regarray2xtxr_table = rtl8192sephy_changeto_1t2rarray; phy_regarray2xtxr_len = PHY_CHANGETO_1T2RARRAYLENGTH; } else { return false; } if (configtype == BASEBAND_CONFIG_PHY_REG) { for (i = 0; i < phy_regarray2xtxr_len; i = i + 3) { if (phy_regarray2xtxr_table[i] == 0xfe) mdelay(50); else if (phy_regarray2xtxr_table[i] == 0xfd) mdelay(5); else if (phy_regarray2xtxr_table[i] == 0xfc) mdelay(1); else if (phy_regarray2xtxr_table[i] == 0xfb) udelay(50); else if (phy_regarray2xtxr_table[i] == 0xfa) udelay(5); else if (phy_regarray2xtxr_table[i] == 0xf9) udelay(1); rtl92s_phy_set_bb_reg(hw, phy_regarray2xtxr_table[i], phy_regarray2xtxr_table[i + 1], phy_regarray2xtxr_table[i + 2]); } } return true; } static bool _rtl92s_phy_config_bb_with_pg(struct ieee80211_hw *hw, u8 configtype) { int i; u32 *phy_table_pg; u16 phy_pg_len; phy_pg_len = PHY_REG_ARRAY_PGLENGTH; phy_table_pg = rtl8192sephy_reg_array_pg; if (configtype == BASEBAND_CONFIG_PHY_REG) { for (i = 0; i < phy_pg_len; i = i + 3) { if (phy_table_pg[i] == 0xfe) mdelay(50); else if (phy_table_pg[i] == 0xfd) mdelay(5); else if (phy_table_pg[i] == 0xfc) mdelay(1); else if (phy_table_pg[i] == 0xfb) udelay(50); else if (phy_table_pg[i] == 0xfa) udelay(5); else if (phy_table_pg[i] == 0xf9) udelay(1); _rtl92s_store_pwrindex_diffrate_offset(hw, phy_table_pg[i], phy_table_pg[i + 1], phy_table_pg[i + 2]); rtl92s_phy_set_bb_reg(hw, phy_table_pg[i], phy_table_pg[i + 1], phy_table_pg[i + 2]); } } return true; } static bool _rtl92s_phy_bb_config_parafile(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); bool rtstatus = true; /* 1. Read PHY_REG.TXT BB INIT!! */ /* We will separate as 1T1R/1T2R/1T2R_GREEN/2T2R */ if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_2T2R || rtlphy->rf_type == RF_1T1R || rtlphy->rf_type == RF_2T2R_GREEN) { rtstatus = _rtl92s_phy_config_bb(hw, BASEBAND_CONFIG_PHY_REG); if (rtlphy->rf_type != RF_2T2R && rtlphy->rf_type != RF_2T2R_GREEN) /* so we should reconfig BB reg with the right * PHY parameters. */ rtstatus = _rtl92s_phy_set_bb_to_diff_rf(hw, BASEBAND_CONFIG_PHY_REG); } else { rtstatus = false; } if (rtstatus != true) { RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Write BB Reg Fail!!\n"); goto phy_BB8190_Config_ParaFile_Fail; } /* 2. If EEPROM or EFUSE autoload OK, We must config by * PHY_REG_PG.txt */ if (rtlefuse->autoload_failflag == false) { rtlphy->pwrgroup_cnt = 0; rtstatus = _rtl92s_phy_config_bb_with_pg(hw, BASEBAND_CONFIG_PHY_REG); } if (rtstatus != true) { RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "_rtl92s_phy_bb_config_parafile(): BB_PG Reg Fail!!\n"); goto phy_BB8190_Config_ParaFile_Fail; } /* 3. BB AGC table Initialization */ rtstatus = _rtl92s_phy_config_bb(hw, BASEBAND_CONFIG_AGC_TAB); if (rtstatus != true) { pr_err("%s(): AGC Table Fail\n", __func__); goto phy_BB8190_Config_ParaFile_Fail; } /* Check if the CCK HighPower is turned ON. */ /* This is used to calculate PWDB. */ rtlphy->cck_high_power = (bool)(rtl92s_phy_query_bb_reg(hw, RFPGA0_XA_HSSIPARAMETER2, 0x200)); phy_BB8190_Config_ParaFile_Fail: return rtstatus; } u8 rtl92s_phy_config_rf(struct ieee80211_hw *hw, enum radio_path rfpath) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); int i; bool rtstatus = true; u32 *radio_a_table; u32 *radio_b_table; u16 radio_a_tblen, radio_b_tblen; radio_a_tblen = RADIOA_1T_ARRAYLENGTH; radio_a_table = rtl8192seradioa_1t_array; /* Using Green mode array table for RF_2T2R_GREEN */ if (rtlphy->rf_type == RF_2T2R_GREEN) { radio_b_table = rtl8192seradiob_gm_array; radio_b_tblen = RADIOB_GM_ARRAYLENGTH; } else { radio_b_table = rtl8192seradiob_array; radio_b_tblen = RADIOB_ARRAYLENGTH; } RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Radio No %x\n", rfpath); rtstatus = true; switch (rfpath) { case RF90_PATH_A: for (i = 0; i < radio_a_tblen; i = i + 2) { if (radio_a_table[i] == 0xfe) /* Delay specific ms. Only RF configuration * requires delay. */ mdelay(50); else if (radio_a_table[i] == 0xfd) mdelay(5); else if (radio_a_table[i] == 0xfc) mdelay(1); else if (radio_a_table[i] == 0xfb) udelay(50); else if (radio_a_table[i] == 0xfa) udelay(5); else if (radio_a_table[i] == 0xf9) udelay(1); else rtl92s_phy_set_rf_reg(hw, rfpath, radio_a_table[i], MASK20BITS, radio_a_table[i + 1]); /* Add delay for ECS T20 & LG malow platform */ udelay(1); } /* PA Bias current for inferiority IC */ _rtl92s_phy_config_rfpa_bias_current(hw, rfpath); break; case RF90_PATH_B: for (i = 0; i < radio_b_tblen; i = i + 2) { if (radio_b_table[i] == 0xfe) /* Delay specific ms. Only RF configuration * requires delay.*/ mdelay(50); else if (radio_b_table[i] == 0xfd) mdelay(5); else if (radio_b_table[i] == 0xfc) mdelay(1); else if (radio_b_table[i] == 0xfb) udelay(50); else if (radio_b_table[i] == 0xfa) udelay(5); else if (radio_b_table[i] == 0xf9) udelay(1); else rtl92s_phy_set_rf_reg(hw, rfpath, radio_b_table[i], MASK20BITS, radio_b_table[i + 1]); /* Add delay for ECS T20 & LG malow platform */ udelay(1); } break; case RF90_PATH_C: ; break; case RF90_PATH_D: ; break; default: break; } return rtstatus; } bool rtl92s_phy_mac_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 i; u32 arraylength; u32 *ptraArray; arraylength = MAC_2T_ARRAYLENGTH; ptraArray = rtl8192semac_2t_array; for (i = 0; i < arraylength; i = i + 2) rtl_write_byte(rtlpriv, ptraArray[i], (u8)ptraArray[i + 1]); return true; } bool rtl92s_phy_bb_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); bool rtstatus = true; u8 pathmap, index, rf_num = 0; u8 path1, path2; _rtl92s_phy_init_register_definition(hw); /* Config BB and AGC */ rtstatus = _rtl92s_phy_bb_config_parafile(hw); /* Check BB/RF confiuration setting. */ /* We only need to configure RF which is turned on. */ path1 = (u8)(rtl92s_phy_query_bb_reg(hw, RFPGA0_TXINFO, 0xf)); mdelay(10); path2 = (u8)(rtl92s_phy_query_bb_reg(hw, ROFDM0_TRXPATHENABLE, 0xf)); pathmap = path1 | path2; rtlphy->rf_pathmap = pathmap; for (index = 0; index < 4; index++) { if ((pathmap >> index) & 0x1) rf_num++; } if ((rtlphy->rf_type == RF_1T1R && rf_num != 1) || (rtlphy->rf_type == RF_1T2R && rf_num != 2) || (rtlphy->rf_type == RF_2T2R && rf_num != 2) || (rtlphy->rf_type == RF_2T2R_GREEN && rf_num != 2)) { RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "RF_Type(%x) does not match RF_Num(%x)!!\n", rtlphy->rf_type, rf_num); RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "path1 0x%x, path2 0x%x, pathmap 0x%x\n", path1, path2, pathmap); } return rtstatus; } bool rtl92s_phy_rf_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); /* Initialize general global value */ if (rtlphy->rf_type == RF_1T1R) rtlphy->num_total_rfpath = 1; else rtlphy->num_total_rfpath = 2; /* Config BB and RF */ return rtl92s_phy_rf6052_config(hw); } void rtl92s_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); /* read rx initial gain */ rtlphy->default_initialgain[0] = rtl_get_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0); rtlphy->default_initialgain[1] = rtl_get_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0); rtlphy->default_initialgain[2] = rtl_get_bbreg(hw, ROFDM0_XCAGCCORE1, MASKBYTE0); rtlphy->default_initialgain[3] = rtl_get_bbreg(hw, ROFDM0_XDAGCCORE1, MASKBYTE0); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x)\n", rtlphy->default_initialgain[0], rtlphy->default_initialgain[1], rtlphy->default_initialgain[2], rtlphy->default_initialgain[3]); /* read framesync */ rtlphy->framesync = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3, MASKBYTE0); rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2, MASKDWORD); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Default framesync (0x%x) = 0x%x\n", ROFDM0_RXDETECTOR3, rtlphy->framesync); } static void _rtl92s_phy_get_txpower_index(struct ieee80211_hw *hw, u8 channel, u8 *cckpowerlevel, u8 *ofdmpowerLevel) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 index = (channel - 1); /* 1. CCK */ /* RF-A */ cckpowerlevel[0] = rtlefuse->txpwrlevel_cck[0][index]; /* RF-B */ cckpowerlevel[1] = rtlefuse->txpwrlevel_cck[1][index]; /* 2. OFDM for 1T or 2T */ if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_1T1R) { /* Read HT 40 OFDM TX power */ ofdmpowerLevel[0] = rtlefuse->txpwrlevel_ht40_1s[0][index]; ofdmpowerLevel[1] = rtlefuse->txpwrlevel_ht40_1s[1][index]; } else if (rtlphy->rf_type == RF_2T2R) { /* Read HT 40 OFDM TX power */ ofdmpowerLevel[0] = rtlefuse->txpwrlevel_ht40_2s[0][index]; ofdmpowerLevel[1] = rtlefuse->txpwrlevel_ht40_2s[1][index]; } } static void _rtl92s_phy_ccxpower_indexcheck(struct ieee80211_hw *hw, u8 channel, u8 *cckpowerlevel, u8 *ofdmpowerlevel) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); rtlphy->cur_cck_txpwridx = cckpowerlevel[0]; rtlphy->cur_ofdm24g_txpwridx = ofdmpowerlevel[0]; } void rtl92s_phy_set_txpower(struct ieee80211_hw *hw, u8 channel) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); /* [0]:RF-A, [1]:RF-B */ u8 cckpowerlevel[2], ofdmpowerLevel[2]; if (rtlefuse->txpwr_fromeprom == false) return; /* Mainly we use RF-A Tx Power to write the Tx Power registers, * but the RF-B Tx Power must be calculated by the antenna diff. * So we have to rewrite Antenna gain offset register here. * Please refer to BB register 0x80c * 1. For CCK. * 2. For OFDM 1T or 2T */ _rtl92s_phy_get_txpower_index(hw, channel, &cckpowerlevel[0], &ofdmpowerLevel[0]); RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, "Channel-%d, cckPowerLevel (A / B) = 0x%x / 0x%x, ofdmPowerLevel (A / B) = 0x%x / 0x%x\n", channel, cckpowerlevel[0], cckpowerlevel[1], ofdmpowerLevel[0], ofdmpowerLevel[1]); _rtl92s_phy_ccxpower_indexcheck(hw, channel, &cckpowerlevel[0], &ofdmpowerLevel[0]); rtl92s_phy_rf6052_set_ccktxpower(hw, cckpowerlevel[0]); rtl92s_phy_rf6052_set_ofdmtxpower(hw, &ofdmpowerLevel[0], channel); } void rtl92s_phy_chk_fwcmd_iodone(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u16 pollingcnt = 10000; u32 tmpvalue; /* Make sure that CMD IO has be accepted by FW. */ do { udelay(10); tmpvalue = rtl_read_dword(rtlpriv, WFM5); if (tmpvalue == 0) break; } while (--pollingcnt); if (pollingcnt == 0) RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Set FW Cmd fail!!\n"); } static void _rtl92s_phy_set_fwcmd_io(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); u32 input, current_aid = 0; if (is_hal_stop(rtlhal)) return; /* We re-map RA related CMD IO to combinational ones */ /* if FW version is v.52 or later. */ switch (rtlhal->current_fwcmd_io) { case FW_CMD_RA_REFRESH_N: rtlhal->current_fwcmd_io = FW_CMD_RA_REFRESH_N_COMB; break; case FW_CMD_RA_REFRESH_BG: rtlhal->current_fwcmd_io = FW_CMD_RA_REFRESH_BG_COMB; break; default: break; } switch (rtlhal->current_fwcmd_io) { case FW_CMD_RA_RESET: RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_RA_RESET\n"); rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET); rtl92s_phy_chk_fwcmd_iodone(hw); break; case FW_CMD_RA_ACTIVE: RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_RA_ACTIVE\n"); rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE); rtl92s_phy_chk_fwcmd_iodone(hw); break; case FW_CMD_RA_REFRESH_N: RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_RA_REFRESH_N\n"); input = FW_RA_REFRESH; rtl_write_dword(rtlpriv, WFM5, input); rtl92s_phy_chk_fwcmd_iodone(hw); rtl_write_dword(rtlpriv, WFM5, FW_RA_ENABLE_RSSI_MASK); rtl92s_phy_chk_fwcmd_iodone(hw); break; case FW_CMD_RA_REFRESH_BG: RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_RA_REFRESH_BG\n"); rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH); rtl92s_phy_chk_fwcmd_iodone(hw); rtl_write_dword(rtlpriv, WFM5, FW_RA_DISABLE_RSSI_MASK); rtl92s_phy_chk_fwcmd_iodone(hw); break; case FW_CMD_RA_REFRESH_N_COMB: RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_RA_REFRESH_N_COMB\n"); input = FW_RA_IOT_N_COMB; rtl_write_dword(rtlpriv, WFM5, input); rtl92s_phy_chk_fwcmd_iodone(hw); break; case FW_CMD_RA_REFRESH_BG_COMB: RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_RA_REFRESH_BG_COMB\n"); input = FW_RA_IOT_BG_COMB; rtl_write_dword(rtlpriv, WFM5, input); rtl92s_phy_chk_fwcmd_iodone(hw); break; case FW_CMD_IQK_ENABLE: RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_IQK_ENABLE\n"); rtl_write_dword(rtlpriv, WFM5, FW_IQK_ENABLE); rtl92s_phy_chk_fwcmd_iodone(hw); break; case FW_CMD_PAUSE_DM_BY_SCAN: /* Lower initial gain */ rtl_set_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0, 0x17); rtl_set_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0, 0x17); /* CCA threshold */ rtl_set_bbreg(hw, RCCK0_CCA, MASKBYTE2, 0x40); break; case FW_CMD_RESUME_DM_BY_SCAN: /* CCA threshold */ rtl_set_bbreg(hw, RCCK0_CCA, MASKBYTE2, 0xcd); rtl92s_phy_set_txpower(hw, rtlphy->current_channel); break; case FW_CMD_HIGH_PWR_DISABLE: if (rtlpriv->dm.dm_flag & HAL_DM_HIPWR_DISABLE) break; /* Lower initial gain */ rtl_set_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0, 0x17); rtl_set_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0, 0x17); /* CCA threshold */ rtl_set_bbreg(hw, RCCK0_CCA, MASKBYTE2, 0x40); break; case FW_CMD_HIGH_PWR_ENABLE: if ((rtlpriv->dm.dm_flag & HAL_DM_HIPWR_DISABLE) || rtlpriv->dm.dynamic_txpower_enable) break; /* CCA threshold */ rtl_set_bbreg(hw, RCCK0_CCA, MASKBYTE2, 0xcd); break; case FW_CMD_LPS_ENTER: RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_LPS_ENTER\n"); current_aid = rtlpriv->mac80211.assoc_id; rtl_write_dword(rtlpriv, WFM5, (FW_LPS_ENTER | ((current_aid | 0xc000) << 8))); rtl92s_phy_chk_fwcmd_iodone(hw); /* FW set TXOP disable here, so disable EDCA * turbo mode until driver leave LPS */ break; case FW_CMD_LPS_LEAVE: RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_LPS_LEAVE\n"); rtl_write_dword(rtlpriv, WFM5, FW_LPS_LEAVE); rtl92s_phy_chk_fwcmd_iodone(hw); break; case FW_CMD_ADD_A2_ENTRY: RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "FW_CMD_ADD_A2_ENTRY\n"); rtl_write_dword(rtlpriv, WFM5, FW_ADD_A2_ENTRY); rtl92s_phy_chk_fwcmd_iodone(hw); break; case FW_CMD_CTRL_DM_BY_DRIVER: RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "FW_CMD_CTRL_DM_BY_DRIVER\n"); rtl_write_dword(rtlpriv, WFM5, FW_CTRL_DM_BY_DRIVER); rtl92s_phy_chk_fwcmd_iodone(hw); break; default: break; } rtl92s_phy_chk_fwcmd_iodone(hw); /* Clear FW CMD operation flag. */ rtlhal->set_fwcmd_inprogress = false; } bool rtl92s_phy_set_fw_cmd(struct ieee80211_hw *hw, enum fwcmd_iotype fw_cmdio) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u32 fw_param = FW_CMD_IO_PARA_QUERY(rtlpriv); u16 fw_cmdmap = FW_CMD_IO_QUERY(rtlpriv); bool bPostProcessing = false; RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "Set FW Cmd(%#x), set_fwcmd_inprogress(%d)\n", fw_cmdio, rtlhal->set_fwcmd_inprogress); do { /* We re-map to combined FW CMD ones if firmware version */ /* is v.53 or later. */ switch (fw_cmdio) { case FW_CMD_RA_REFRESH_N: fw_cmdio = FW_CMD_RA_REFRESH_N_COMB; break; case FW_CMD_RA_REFRESH_BG: fw_cmdio = FW_CMD_RA_REFRESH_BG_COMB; break; default: break; } /* If firmware version is v.62 or later, * use FW_CMD_IO_SET for FW_CMD_CTRL_DM_BY_DRIVER */ if (hal_get_firmwareversion(rtlpriv) >= 0x3E) { if (fw_cmdio == FW_CMD_CTRL_DM_BY_DRIVER) fw_cmdio = FW_CMD_CTRL_DM_BY_DRIVER_NEW; } /* We shall revise all FW Cmd IO into Reg0x364 * DM map table in the future. */ switch (fw_cmdio) { case FW_CMD_RA_INIT: RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "RA init!!\n"); fw_cmdmap |= FW_RA_INIT_CTL; FW_CMD_IO_SET(rtlpriv, fw_cmdmap); /* Clear control flag to sync with FW. */ FW_CMD_IO_CLR(rtlpriv, FW_RA_INIT_CTL); break; case FW_CMD_DIG_DISABLE: RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "Set DIG disable!!\n"); fw_cmdmap &= ~FW_DIG_ENABLE_CTL; FW_CMD_IO_SET(rtlpriv, fw_cmdmap); break; case FW_CMD_DIG_ENABLE: case FW_CMD_DIG_RESUME: if (!(rtlpriv->dm.dm_flag & HAL_DM_DIG_DISABLE)) { RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "Set DIG enable or resume!!\n"); fw_cmdmap |= (FW_DIG_ENABLE_CTL | FW_SS_CTL); FW_CMD_IO_SET(rtlpriv, fw_cmdmap); } break; case FW_CMD_DIG_HALT: RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "Set DIG halt!!\n"); fw_cmdmap &= ~(FW_DIG_ENABLE_CTL | FW_SS_CTL); FW_CMD_IO_SET(rtlpriv, fw_cmdmap); break; case FW_CMD_TXPWR_TRACK_THERMAL: { u8 thermalval = 0; fw_cmdmap |= FW_PWR_TRK_CTL; /* Clear FW parameter in terms of thermal parts. */ fw_param &= FW_PWR_TRK_PARAM_CLR; thermalval = rtlpriv->dm.thermalvalue; fw_param |= ((thermalval << 24) | (rtlefuse->thermalmeter[0] << 16)); RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "Set TxPwr tracking!! FwCmdMap(%#x), FwParam(%#x)\n", fw_cmdmap, fw_param); FW_CMD_PARA_SET(rtlpriv, fw_param); FW_CMD_IO_SET(rtlpriv, fw_cmdmap); /* Clear control flag to sync with FW. */ FW_CMD_IO_CLR(rtlpriv, FW_PWR_TRK_CTL); } break; /* The following FW CMDs are only compatible to * v.53 or later. */ case FW_CMD_RA_REFRESH_N_COMB: fw_cmdmap |= FW_RA_N_CTL; /* Clear RA BG mode control. */ fw_cmdmap &= ~(FW_RA_BG_CTL | FW_RA_INIT_CTL); /* Clear FW parameter in terms of RA parts. */ fw_param &= FW_RA_PARAM_CLR; RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "[FW CMD] [New Version] Set RA/IOT Comb in n mode!! FwCmdMap(%#x), FwParam(%#x)\n", fw_cmdmap, fw_param); FW_CMD_PARA_SET(rtlpriv, fw_param); FW_CMD_IO_SET(rtlpriv, fw_cmdmap); /* Clear control flag to sync with FW. */ FW_CMD_IO_CLR(rtlpriv, FW_RA_N_CTL); break; case FW_CMD_RA_REFRESH_BG_COMB: fw_cmdmap |= FW_RA_BG_CTL; /* Clear RA n-mode control. */ fw_cmdmap &= ~(FW_RA_N_CTL | FW_RA_INIT_CTL); /* Clear FW parameter in terms of RA parts. */ fw_param &= FW_RA_PARAM_CLR; FW_CMD_PARA_SET(rtlpriv, fw_param); FW_CMD_IO_SET(rtlpriv, fw_cmdmap); /* Clear control flag to sync with FW. */ FW_CMD_IO_CLR(rtlpriv, FW_RA_BG_CTL); break; case FW_CMD_IQK_ENABLE: fw_cmdmap |= FW_IQK_CTL; FW_CMD_IO_SET(rtlpriv, fw_cmdmap); /* Clear control flag to sync with FW. */ FW_CMD_IO_CLR(rtlpriv, FW_IQK_CTL); break; /* The following FW CMD is compatible to v.62 or later. */ case FW_CMD_CTRL_DM_BY_DRIVER_NEW: fw_cmdmap |= FW_DRIVER_CTRL_DM_CTL; FW_CMD_IO_SET(rtlpriv, fw_cmdmap); break; /* The followed FW Cmds needs post-processing later. */ case FW_CMD_RESUME_DM_BY_SCAN: fw_cmdmap |= (FW_DIG_ENABLE_CTL | FW_HIGH_PWR_ENABLE_CTL | FW_SS_CTL); if (rtlpriv->dm.dm_flag & HAL_DM_DIG_DISABLE || !digtable.dig_enable_flag) fw_cmdmap &= ~FW_DIG_ENABLE_CTL; if ((rtlpriv->dm.dm_flag & HAL_DM_HIPWR_DISABLE) || rtlpriv->dm.dynamic_txpower_enable) fw_cmdmap &= ~FW_HIGH_PWR_ENABLE_CTL; if ((digtable.dig_ext_port_stage == DIG_EXT_PORT_STAGE_0) || (digtable.dig_ext_port_stage == DIG_EXT_PORT_STAGE_1)) fw_cmdmap &= ~FW_DIG_ENABLE_CTL; FW_CMD_IO_SET(rtlpriv, fw_cmdmap); bPostProcessing = true; break; case FW_CMD_PAUSE_DM_BY_SCAN: fw_cmdmap &= ~(FW_DIG_ENABLE_CTL | FW_HIGH_PWR_ENABLE_CTL | FW_SS_CTL); FW_CMD_IO_SET(rtlpriv, fw_cmdmap); bPostProcessing = true; break; case FW_CMD_HIGH_PWR_DISABLE: fw_cmdmap &= ~FW_HIGH_PWR_ENABLE_CTL; FW_CMD_IO_SET(rtlpriv, fw_cmdmap); bPostProcessing = true; break; case FW_CMD_HIGH_PWR_ENABLE: if (!(rtlpriv->dm.dm_flag & HAL_DM_HIPWR_DISABLE) && (rtlpriv->dm.dynamic_txpower_enable != true)) { fw_cmdmap |= (FW_HIGH_PWR_ENABLE_CTL | FW_SS_CTL); FW_CMD_IO_SET(rtlpriv, fw_cmdmap); bPostProcessing = true; } break; case FW_CMD_DIG_MODE_FA: fw_cmdmap |= FW_FA_CTL; FW_CMD_IO_SET(rtlpriv, fw_cmdmap); break; case FW_CMD_DIG_MODE_SS: fw_cmdmap &= ~FW_FA_CTL; FW_CMD_IO_SET(rtlpriv, fw_cmdmap); break; case FW_CMD_PAPE_CONTROL: RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "[FW CMD] Set PAPE Control\n"); fw_cmdmap &= ~FW_PAPE_CTL_BY_SW_HW; FW_CMD_IO_SET(rtlpriv, fw_cmdmap); break; default: /* Pass to original FW CMD processing callback * routine. */ bPostProcessing = true; break; } } while (false); /* We shall post processing these FW CMD if * variable bPostProcessing is set. */ if (bPostProcessing && !rtlhal->set_fwcmd_inprogress) { rtlhal->set_fwcmd_inprogress = true; /* Update current FW Cmd for callback use. */ rtlhal->current_fwcmd_io = fw_cmdio; } else { return false; } _rtl92s_phy_set_fwcmd_io(hw); return true; } static void _rtl92s_phy_check_ephy_switchready(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 delay = 100; u8 regu1; regu1 = rtl_read_byte(rtlpriv, 0x554); while ((regu1 & BIT(5)) && (delay > 0)) { regu1 = rtl_read_byte(rtlpriv, 0x554); delay--; /* We delay only 50us to prevent * being scheduled out. */ udelay(50); } } void rtl92s_phy_switch_ephy_parameter(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); /* The way to be capable to switch clock request * when the PG setting does not support clock request. * This is the backdoor solution to switch clock * request before ASPM or D3. */ rtl_write_dword(rtlpriv, 0x540, 0x73c11); rtl_write_dword(rtlpriv, 0x548, 0x2407c); /* Switch EPHY parameter!!!! */ rtl_write_word(rtlpriv, 0x550, 0x1000); rtl_write_byte(rtlpriv, 0x554, 0x20); _rtl92s_phy_check_ephy_switchready(hw); rtl_write_word(rtlpriv, 0x550, 0xa0eb); rtl_write_byte(rtlpriv, 0x554, 0x3e); _rtl92s_phy_check_ephy_switchready(hw); rtl_write_word(rtlpriv, 0x550, 0xff80); rtl_write_byte(rtlpriv, 0x554, 0x39); _rtl92s_phy_check_ephy_switchready(hw); /* Delay L1 enter time */ if (ppsc->support_aspm && !ppsc->support_backdoor) rtl_write_byte(rtlpriv, 0x560, 0x40); else rtl_write_byte(rtlpriv, 0x560, 0x00); } void rtl92s_phy_set_beacon_hwreg(struct ieee80211_hw *hw, u16 BeaconInterval) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl_write_dword(rtlpriv, WFM5, 0xF1000000 | (BeaconInterval << 8)); }