/* * PTP 1588 clock using the EG20T PCH * * Copyright (C) 2010 OMICRON electronics GmbH * Copyright (C) 2011-2012 LAPIS SEMICONDUCTOR Co., LTD. * * This code was derived from the IXP46X driver. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #define STATION_ADDR_LEN 20 #define PCI_DEVICE_ID_PCH_1588 0x8819 #define IO_MEM_BAR 1 #define DEFAULT_ADDEND 0xA0000000 #define TICKS_NS_SHIFT 5 #define N_EXT_TS 2 enum pch_status { PCH_SUCCESS, PCH_INVALIDPARAM, PCH_NOTIMESTAMP, PCH_INTERRUPTMODEINUSE, PCH_FAILED, PCH_UNSUPPORTED, }; /** * struct pch_ts_regs - IEEE 1588 registers */ struct pch_ts_regs { u32 control; u32 event; u32 addend; u32 accum; u32 test; u32 ts_compare; u32 rsystime_lo; u32 rsystime_hi; u32 systime_lo; u32 systime_hi; u32 trgt_lo; u32 trgt_hi; u32 asms_lo; u32 asms_hi; u32 amms_lo; u32 amms_hi; u32 ch_control; u32 ch_event; u32 tx_snap_lo; u32 tx_snap_hi; u32 rx_snap_lo; u32 rx_snap_hi; u32 src_uuid_lo; u32 src_uuid_hi; u32 can_status; u32 can_snap_lo; u32 can_snap_hi; u32 ts_sel; u32 ts_st[6]; u32 reserve1[14]; u32 stl_max_set_en; u32 stl_max_set; u32 reserve2[13]; u32 srst; }; #define PCH_TSC_RESET (1 << 0) #define PCH_TSC_TTM_MASK (1 << 1) #define PCH_TSC_ASMS_MASK (1 << 2) #define PCH_TSC_AMMS_MASK (1 << 3) #define PCH_TSC_PPSM_MASK (1 << 4) #define PCH_TSE_TTIPEND (1 << 1) #define PCH_TSE_SNS (1 << 2) #define PCH_TSE_SNM (1 << 3) #define PCH_TSE_PPS (1 << 4) #define PCH_CC_MM (1 << 0) #define PCH_CC_TA (1 << 1) #define PCH_CC_MODE_SHIFT 16 #define PCH_CC_MODE_MASK 0x001F0000 #define PCH_CC_VERSION (1 << 31) #define PCH_CE_TXS (1 << 0) #define PCH_CE_RXS (1 << 1) #define PCH_CE_OVR (1 << 0) #define PCH_CE_VAL (1 << 1) #define PCH_ECS_ETH (1 << 0) #define PCH_ECS_CAN (1 << 1) #define PCH_STATION_BYTES 6 #define PCH_IEEE1588_ETH (1 << 0) #define PCH_IEEE1588_CAN (1 << 1) /** * struct pch_dev - Driver private data */ struct pch_dev { struct pch_ts_regs *regs; struct ptp_clock *ptp_clock; struct ptp_clock_info caps; int exts0_enabled; int exts1_enabled; u32 mem_base; u32 mem_size; u32 irq; struct pci_dev *pdev; spinlock_t register_lock; }; /** * struct pch_params - 1588 module parameter */ struct pch_params { u8 station[STATION_ADDR_LEN]; }; /* structure to hold the module parameters */ static struct pch_params pch_param = { "00:00:00:00:00:00" }; /* * Register access functions */ static inline void pch_eth_enable_set(struct pch_dev *chip) { u32 val; /* SET the eth_enable bit */ val = ioread32(&chip->regs->ts_sel) | (PCH_ECS_ETH); iowrite32(val, (&chip->regs->ts_sel)); } static u64 pch_systime_read(struct pch_ts_regs *regs) { u64 ns; u32 lo, hi; lo = ioread32(®s->systime_lo); hi = ioread32(®s->systime_hi); ns = ((u64) hi) << 32; ns |= lo; ns <<= TICKS_NS_SHIFT; return ns; } static void pch_systime_write(struct pch_ts_regs *regs, u64 ns) { u32 hi, lo; ns >>= TICKS_NS_SHIFT; hi = ns >> 32; lo = ns & 0xffffffff; iowrite32(lo, ®s->systime_lo); iowrite32(hi, ®s->systime_hi); } static inline void pch_block_reset(struct pch_dev *chip) { u32 val; /* Reset Hardware Assist block */ val = ioread32(&chip->regs->control) | PCH_TSC_RESET; iowrite32(val, (&chip->regs->control)); val = val & ~PCH_TSC_RESET; iowrite32(val, (&chip->regs->control)); } u32 pch_ch_control_read(struct pci_dev *pdev) { struct pch_dev *chip = pci_get_drvdata(pdev); u32 val; val = ioread32(&chip->regs->ch_control); return val; } EXPORT_SYMBOL(pch_ch_control_read); void pch_ch_control_write(struct pci_dev *pdev, u32 val) { struct pch_dev *chip = pci_get_drvdata(pdev); iowrite32(val, (&chip->regs->ch_control)); } EXPORT_SYMBOL(pch_ch_control_write); u32 pch_ch_event_read(struct pci_dev *pdev) { struct pch_dev *chip = pci_get_drvdata(pdev); u32 val; val = ioread32(&chip->regs->ch_event); return val; } EXPORT_SYMBOL(pch_ch_event_read); void pch_ch_event_write(struct pci_dev *pdev, u32 val) { struct pch_dev *chip = pci_get_drvdata(pdev); iowrite32(val, (&chip->regs->ch_event)); } EXPORT_SYMBOL(pch_ch_event_write); u32 pch_src_uuid_lo_read(struct pci_dev *pdev) { struct pch_dev *chip = pci_get_drvdata(pdev); u32 val; val = ioread32(&chip->regs->src_uuid_lo); return val; } EXPORT_SYMBOL(pch_src_uuid_lo_read); u32 pch_src_uuid_hi_read(struct pci_dev *pdev) { struct pch_dev *chip = pci_get_drvdata(pdev); u32 val; val = ioread32(&chip->regs->src_uuid_hi); return val; } EXPORT_SYMBOL(pch_src_uuid_hi_read); u64 pch_rx_snap_read(struct pci_dev *pdev) { struct pch_dev *chip = pci_get_drvdata(pdev); u64 ns; u32 lo, hi; lo = ioread32(&chip->regs->rx_snap_lo); hi = ioread32(&chip->regs->rx_snap_hi); ns = ((u64) hi) << 32; ns |= lo; ns <<= TICKS_NS_SHIFT; return ns; } EXPORT_SYMBOL(pch_rx_snap_read); u64 pch_tx_snap_read(struct pci_dev *pdev) { struct pch_dev *chip = pci_get_drvdata(pdev); u64 ns; u32 lo, hi; lo = ioread32(&chip->regs->tx_snap_lo); hi = ioread32(&chip->regs->tx_snap_hi); ns = ((u64) hi) << 32; ns |= lo; ns <<= TICKS_NS_SHIFT; return ns; } EXPORT_SYMBOL(pch_tx_snap_read); /* This function enables all 64 bits in system time registers [high & low]. This is a work-around for non continuous value in the SystemTime Register*/ static void pch_set_system_time_count(struct pch_dev *chip) { iowrite32(0x01, &chip->regs->stl_max_set_en); iowrite32(0xFFFFFFFF, &chip->regs->stl_max_set); iowrite32(0x00, &chip->regs->stl_max_set_en); } static void pch_reset(struct pch_dev *chip) { /* Reset Hardware Assist */ pch_block_reset(chip); /* enable all 32 bits in system time registers */ pch_set_system_time_count(chip); } /** * pch_set_station_address() - This API sets the station address used by * IEEE 1588 hardware when looking at PTP * traffic on the ethernet interface * @addr: dress which contain the column separated address to be used. */ static int pch_set_station_address(u8 *addr, struct pci_dev *pdev) { s32 i; struct pch_dev *chip = pci_get_drvdata(pdev); /* Verify the parameter */ if ((chip->regs == 0) || addr == (u8 *)NULL) { dev_err(&pdev->dev, "invalid params returning PCH_INVALIDPARAM\n"); return PCH_INVALIDPARAM; } /* For all station address bytes */ for (i = 0; i < PCH_STATION_BYTES; i++) { u32 val; s32 tmp; tmp = hex_to_bin(addr[i * 3]); if (tmp < 0) { dev_err(&pdev->dev, "invalid params returning PCH_INVALIDPARAM\n"); return PCH_INVALIDPARAM; } val = tmp * 16; tmp = hex_to_bin(addr[(i * 3) + 1]); if (tmp < 0) { dev_err(&pdev->dev, "invalid params returning PCH_INVALIDPARAM\n"); return PCH_INVALIDPARAM; } val += tmp; /* Expects ':' separated addresses */ if ((i < 5) && (addr[(i * 3) + 2] != ':')) { dev_err(&pdev->dev, "invalid params returning PCH_INVALIDPARAM\n"); return PCH_INVALIDPARAM; } /* Ideally we should set the address only after validating entire string */ dev_dbg(&pdev->dev, "invoking pch_station_set\n"); iowrite32(val, &chip->regs->ts_st[i]); } return 0; } /* * Interrupt service routine */ static irqreturn_t isr(int irq, void *priv) { struct pch_dev *pch_dev = priv; struct pch_ts_regs *regs = pch_dev->regs; struct ptp_clock_event event; u32 ack = 0, lo, hi, val; val = ioread32(®s->event); if (val & PCH_TSE_SNS) { ack |= PCH_TSE_SNS; if (pch_dev->exts0_enabled) { hi = ioread32(®s->asms_hi); lo = ioread32(®s->asms_lo); event.type = PTP_CLOCK_EXTTS; event.index = 0; event.timestamp = ((u64) hi) << 32; event.timestamp |= lo; event.timestamp <<= TICKS_NS_SHIFT; ptp_clock_event(pch_dev->ptp_clock, &event); } } if (val & PCH_TSE_SNM) { ack |= PCH_TSE_SNM; if (pch_dev->exts1_enabled) { hi = ioread32(®s->amms_hi); lo = ioread32(®s->amms_lo); event.type = PTP_CLOCK_EXTTS; event.index = 1; event.timestamp = ((u64) hi) << 32; event.timestamp |= lo; event.timestamp <<= TICKS_NS_SHIFT; ptp_clock_event(pch_dev->ptp_clock, &event); } } if (val & PCH_TSE_TTIPEND) ack |= PCH_TSE_TTIPEND; /* this bit seems to be always set */ if (ack) { iowrite32(ack, ®s->event); return IRQ_HANDLED; } else return IRQ_NONE; } /* * PTP clock operations */ static int ptp_pch_adjfreq(struct ptp_clock_info *ptp, s32 ppb) { u64 adj; u32 diff, addend; int neg_adj = 0; struct pch_dev *pch_dev = container_of(ptp, struct pch_dev, caps); struct pch_ts_regs *regs = pch_dev->regs; if (ppb < 0) { neg_adj = 1; ppb = -ppb; } addend = DEFAULT_ADDEND; adj = addend; adj *= ppb; diff = div_u64(adj, 1000000000ULL); addend = neg_adj ? addend - diff : addend + diff; iowrite32(addend, ®s->addend); return 0; } static int ptp_pch_adjtime(struct ptp_clock_info *ptp, s64 delta) { s64 now; unsigned long flags; struct pch_dev *pch_dev = container_of(ptp, struct pch_dev, caps); struct pch_ts_regs *regs = pch_dev->regs; spin_lock_irqsave(&pch_dev->register_lock, flags); now = pch_systime_read(regs); now += delta; pch_systime_write(regs, now); spin_unlock_irqrestore(&pch_dev->register_lock, flags); return 0; } static int ptp_pch_gettime(struct ptp_clock_info *ptp, struct timespec *ts) { u64 ns; u32 remainder; unsigned long flags; struct pch_dev *pch_dev = container_of(ptp, struct pch_dev, caps); struct pch_ts_regs *regs = pch_dev->regs; spin_lock_irqsave(&pch_dev->register_lock, flags); ns = pch_systime_read(regs); spin_unlock_irqrestore(&pch_dev->register_lock, flags); ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder); ts->tv_nsec = remainder; return 0; } static int ptp_pch_settime(struct ptp_clock_info *ptp, const struct timespec *ts) { u64 ns; unsigned long flags; struct pch_dev *pch_dev = container_of(ptp, struct pch_dev, caps); struct pch_ts_regs *regs = pch_dev->regs; ns = ts->tv_sec * 1000000000ULL; ns += ts->tv_nsec; spin_lock_irqsave(&pch_dev->register_lock, flags); pch_systime_write(regs, ns); spin_unlock_irqrestore(&pch_dev->register_lock, flags); return 0; } static int ptp_pch_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct pch_dev *pch_dev = container_of(ptp, struct pch_dev, caps); switch (rq->type) { case PTP_CLK_REQ_EXTTS: switch (rq->extts.index) { case 0: pch_dev->exts0_enabled = on ? 1 : 0; break; case 1: pch_dev->exts1_enabled = on ? 1 : 0; break; default: return -EINVAL; } return 0; default: break; } return -EOPNOTSUPP; } static struct ptp_clock_info ptp_pch_caps = { .owner = THIS_MODULE, .name = "PCH timer", .max_adj = 50000000, .n_ext_ts = N_EXT_TS, .pps = 0, .adjfreq = ptp_pch_adjfreq, .adjtime = ptp_pch_adjtime, .gettime = ptp_pch_gettime, .settime = ptp_pch_settime, .enable = ptp_pch_enable, }; #ifdef CONFIG_PM static s32 pch_suspend(struct pci_dev *pdev, pm_message_t state) { pci_disable_device(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); if (pci_save_state(pdev) != 0) { dev_err(&pdev->dev, "could not save PCI config state\n"); return -ENOMEM; } pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static s32 pch_resume(struct pci_dev *pdev) { s32 ret; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); ret = pci_enable_device(pdev); if (ret) { dev_err(&pdev->dev, "pci_enable_device failed\n"); return ret; } pci_enable_wake(pdev, PCI_D3hot, 0); return 0; } #else #define pch_suspend NULL #define pch_resume NULL #endif static void __devexit pch_remove(struct pci_dev *pdev) { struct pch_dev *chip = pci_get_drvdata(pdev); ptp_clock_unregister(chip->ptp_clock); /* free the interrupt */ if (pdev->irq != 0) free_irq(pdev->irq, chip); /* unmap the virtual IO memory space */ if (chip->regs != 0) { iounmap(chip->regs); chip->regs = 0; } /* release the reserved IO memory space */ if (chip->mem_base != 0) { release_mem_region(chip->mem_base, chip->mem_size); chip->mem_base = 0; } pci_disable_device(pdev); kfree(chip); dev_info(&pdev->dev, "complete\n"); } static s32 __devinit pch_probe(struct pci_dev *pdev, const struct pci_device_id *id) { s32 ret; unsigned long flags; struct pch_dev *chip; chip = kzalloc(sizeof(struct pch_dev), GFP_KERNEL); if (chip == NULL) return -ENOMEM; /* enable the 1588 pci device */ ret = pci_enable_device(pdev); if (ret != 0) { dev_err(&pdev->dev, "could not enable the pci device\n"); goto err_pci_en; } chip->mem_base = pci_resource_start(pdev, IO_MEM_BAR); if (!chip->mem_base) { dev_err(&pdev->dev, "could not locate IO memory address\n"); ret = -ENODEV; goto err_pci_start; } /* retrieve the available length of the IO memory space */ chip->mem_size = pci_resource_len(pdev, IO_MEM_BAR); /* allocate the memory for the device registers */ if (!request_mem_region(chip->mem_base, chip->mem_size, "1588_regs")) { dev_err(&pdev->dev, "could not allocate register memory space\n"); ret = -EBUSY; goto err_req_mem_region; } /* get the virtual address to the 1588 registers */ chip->regs = ioremap(chip->mem_base, chip->mem_size); if (!chip->regs) { dev_err(&pdev->dev, "Could not get virtual address\n"); ret = -ENOMEM; goto err_ioremap; } chip->caps = ptp_pch_caps; chip->ptp_clock = ptp_clock_register(&chip->caps); if (IS_ERR(chip->ptp_clock)) return PTR_ERR(chip->ptp_clock); spin_lock_init(&chip->register_lock); ret = request_irq(pdev->irq, &isr, IRQF_SHARED, KBUILD_MODNAME, chip); if (ret != 0) { dev_err(&pdev->dev, "failed to get irq %d\n", pdev->irq); goto err_req_irq; } /* indicate success */ chip->irq = pdev->irq; chip->pdev = pdev; pci_set_drvdata(pdev, chip); spin_lock_irqsave(&chip->register_lock, flags); /* reset the ieee1588 h/w */ pch_reset(chip); iowrite32(DEFAULT_ADDEND, &chip->regs->addend); iowrite32(1, &chip->regs->trgt_lo); iowrite32(0, &chip->regs->trgt_hi); iowrite32(PCH_TSE_TTIPEND, &chip->regs->event); /* Version: IEEE1588 v1 and IEEE1588-2008, Mode: All Evwnt, Locked */ iowrite32(0x80020000, &chip->regs->ch_control); pch_eth_enable_set(chip); if (strcmp(pch_param.station, "00:00:00:00:00:00") != 0) { if (pch_set_station_address(pch_param.station, pdev) != 0) { dev_err(&pdev->dev, "Invalid station address parameter\n" "Module loaded but station address not set correctly\n" ); } } spin_unlock_irqrestore(&chip->register_lock, flags); return 0; err_req_irq: ptp_clock_unregister(chip->ptp_clock); iounmap(chip->regs); chip->regs = 0; err_ioremap: release_mem_region(chip->mem_base, chip->mem_size); err_req_mem_region: chip->mem_base = 0; err_pci_start: pci_disable_device(pdev); err_pci_en: kfree(chip); dev_err(&pdev->dev, "probe failed(ret=0x%x)\n", ret); return ret; } static DEFINE_PCI_DEVICE_TABLE(pch_ieee1588_pcidev_id) = { { .vendor = PCI_VENDOR_ID_INTEL, .device = PCI_DEVICE_ID_PCH_1588 }, {0} }; static struct pci_driver pch_driver = { .name = KBUILD_MODNAME, .id_table = pch_ieee1588_pcidev_id, .probe = pch_probe, .remove = pch_remove, .suspend = pch_suspend, .resume = pch_resume, }; static void __exit ptp_pch_exit(void) { pci_unregister_driver(&pch_driver); } static s32 __init ptp_pch_init(void) { s32 ret; /* register the driver with the pci core */ ret = pci_register_driver(&pch_driver); return ret; } module_init(ptp_pch_init); module_exit(ptp_pch_exit); module_param_string(station, pch_param.station, sizeof pch_param.station, 0444); MODULE_PARM_DESC(station, "IEEE 1588 station address to use - column separated hex values"); MODULE_AUTHOR("LAPIS SEMICONDUCTOR, "); MODULE_DESCRIPTION("PTP clock using the EG20T timer"); MODULE_LICENSE("GPL");