/* * QLogic Fibre Channel HBA Driver * Copyright (c) 2003-2005 QLogic Corporation * * See LICENSE.qla2xxx for copyright and licensing details. */ static __inline__ uint16_t qla2x00_debounce_register(volatile uint16_t __iomem *); /* * qla2x00_debounce_register * Debounce register. * * Input: * port = register address. * * Returns: * register value. */ static __inline__ uint16_t qla2x00_debounce_register(volatile uint16_t __iomem *addr) { volatile uint16_t first; volatile uint16_t second; do { first = RD_REG_WORD(addr); barrier(); cpu_relax(); second = RD_REG_WORD(addr); } while (first != second); return (first); } static __inline__ int qla2x00_normalize_dma_addr( dma_addr_t *e_addr, uint32_t *e_len, dma_addr_t *ne_addr, uint32_t *ne_len); /** * qla2x00_normalize_dma_addr() - Normalize an DMA address. * @e_addr: Raw DMA address * @e_len: Raw DMA length * @ne_addr: Normalized second DMA address * @ne_len: Normalized second DMA length * * If the address does not span a 4GB page boundary, the contents of @ne_addr * and @ne_len are undefined. @e_len is updated to reflect a normalization. * * Example: * * ffffabc0ffffeeee (e_addr) start of DMA address * 0000000020000000 (e_len) length of DMA transfer * ffffabc11fffeeed end of DMA transfer * * Is the 4GB boundary crossed? * * ffffabc0ffffeeee (e_addr) * ffffabc11fffeeed (e_addr + e_len - 1) * 00000001e0000003 ((e_addr ^ (e_addr + e_len - 1)) * 0000000100000000 ((e_addr ^ (e_addr + e_len - 1)) & ~(0xffffffff) * * Compute start of second DMA segment: * * ffffabc0ffffeeee (e_addr) * ffffabc1ffffeeee (0x100000000 + e_addr) * ffffabc100000000 (0x100000000 + e_addr) & ~(0xffffffff) * ffffabc100000000 (ne_addr) * * Compute length of second DMA segment: * * 00000000ffffeeee (e_addr & 0xffffffff) * 0000000000001112 (0x100000000 - (e_addr & 0xffffffff)) * 000000001fffeeee (e_len - (0x100000000 - (e_addr & 0xffffffff)) * 000000001fffeeee (ne_len) * * Adjust length of first DMA segment * * 0000000020000000 (e_len) * 0000000000001112 (e_len - ne_len) * 0000000000001112 (e_len) * * Returns non-zero if the specified address was normalized, else zero. */ static __inline__ int qla2x00_normalize_dma_addr( dma_addr_t *e_addr, uint32_t *e_len, dma_addr_t *ne_addr, uint32_t *ne_len) { int normalized; normalized = 0; if ((*e_addr ^ (*e_addr + *e_len - 1)) & ~(0xFFFFFFFFULL)) { /* Compute normalized crossed address and len */ *ne_addr = (0x100000000ULL + *e_addr) & ~(0xFFFFFFFFULL); *ne_len = *e_len - (0x100000000ULL - (*e_addr & 0xFFFFFFFFULL)); *e_len -= *ne_len; normalized++; } return (normalized); } static __inline__ void qla2x00_poll(scsi_qla_host_t *); static inline void qla2x00_poll(scsi_qla_host_t *ha) { ha->isp_ops.intr_handler(0, ha); } static __inline__ void qla2x00_check_fabric_devices(scsi_qla_host_t *); /* * This routine will wait for fabric devices for * the reset delay. */ static __inline__ void qla2x00_check_fabric_devices(scsi_qla_host_t *ha) { uint16_t fw_state; qla2x00_get_firmware_state(ha, &fw_state); } /** * qla2x00_issue_marker() - Issue a Marker IOCB if necessary. * @ha: HA context * @ha_locked: is function called with the hardware lock * * Returns non-zero if a failure occured, else zero. */ static inline int qla2x00_issue_marker(scsi_qla_host_t *ha, int ha_locked) { /* Send marker if required */ if (ha->marker_needed != 0) { if (ha_locked) { if (__qla2x00_marker(ha, 0, 0, MK_SYNC_ALL) != QLA_SUCCESS) return (QLA_FUNCTION_FAILED); } else { if (qla2x00_marker(ha, 0, 0, MK_SYNC_ALL) != QLA_SUCCESS) return (QLA_FUNCTION_FAILED); } ha->marker_needed = 0; } return (QLA_SUCCESS); } static inline uint8_t *host_to_fcp_swap(uint8_t *, uint32_t); static inline uint8_t * host_to_fcp_swap(uint8_t *fcp, uint32_t bsize) { uint32_t *ifcp = (uint32_t *) fcp; uint32_t *ofcp = (uint32_t *) fcp; uint32_t iter = bsize >> 2; for (; iter ; iter--) *ofcp++ = swab32(*ifcp++); return fcp; } static inline int qla2x00_is_reserved_id(scsi_qla_host_t *, uint16_t); static inline int qla2x00_is_reserved_id(scsi_qla_host_t *ha, uint16_t loop_id) { if (IS_FWI2_CAPABLE(ha)) return (loop_id > NPH_LAST_HANDLE); return ((loop_id > ha->last_loop_id && loop_id < SNS_FIRST_LOOP_ID) || loop_id == MANAGEMENT_SERVER || loop_id == BROADCAST); };