/* * Driver for Nvidia TEGRA spi controller. * * Copyright (C) 2010 Google, Inc. * * Author: * Erik Gilling * * Copyright (C) 2010-2011 NVIDIA Corporation * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ /*#define DEBUG 1*/ /*#define VERBOSE_DEBUG 1*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SLINK_COMMAND 0x000 #define SLINK_BIT_LENGTH(x) (((x) & 0x1f) << 0) #define SLINK_WORD_SIZE(x) (((x) & 0x1f) << 5) #define SLINK_BOTH_EN (1 << 10) #define SLINK_CS_SW (1 << 11) #define SLINK_CS_VALUE (1 << 12) #define SLINK_CS_POLARITY (1 << 13) #define SLINK_IDLE_SDA_DRIVE_LOW (0 << 16) #define SLINK_IDLE_SDA_DRIVE_HIGH (1 << 16) #define SLINK_IDLE_SDA_PULL_LOW (2 << 16) #define SLINK_IDLE_SDA_PULL_HIGH (3 << 16) #define SLINK_IDLE_SDA_MASK (3 << 16) #define SLINK_CS_POLARITY1 (1 << 20) #define SLINK_CK_SDA (1 << 21) #define SLINK_CS_POLARITY2 (1 << 22) #define SLINK_CS_POLARITY3 (1 << 23) #define SLINK_IDLE_SCLK_DRIVE_LOW (0 << 24) #define SLINK_IDLE_SCLK_DRIVE_HIGH (1 << 24) #define SLINK_IDLE_SCLK_PULL_LOW (2 << 24) #define SLINK_IDLE_SCLK_PULL_HIGH (3 << 24) #define SLINK_IDLE_SCLK_MASK (3 << 24) #define SLINK_M_S (1 << 28) #define SLINK_WAIT (1 << 29) #define SLINK_GO (1 << 30) #define SLINK_ENB (1 << 31) #define SLINK_COMMAND2 0x004 #define SLINK_LSBFE (1 << 0) #define SLINK_SSOE (1 << 1) #define SLINK_SPIE (1 << 4) #define SLINK_BIDIROE (1 << 6) #define SLINK_MODFEN (1 << 7) #define SLINK_INT_SIZE(x) (((x) & 0x1f) << 8) #define SLINK_CS_ACTIVE_BETWEEN (1 << 17) #define SLINK_SS_EN_CS(x) (((x) & 0x3) << 18) #define SLINK_SS_SETUP(x) (((x) & 0x3) << 20) #define SLINK_FIFO_REFILLS_0 (0 << 22) #define SLINK_FIFO_REFILLS_1 (1 << 22) #define SLINK_FIFO_REFILLS_2 (2 << 22) #define SLINK_FIFO_REFILLS_3 (3 << 22) #define SLINK_FIFO_REFILLS_MASK (3 << 22) #define SLINK_WAIT_PACK_INT(x) (((x) & 0x7) << 26) #define SLINK_SPC0 (1 << 29) #define SLINK_TXEN (1 << 30) #define SLINK_RXEN (1 << 31) #define SLINK_STATUS 0x008 #define SLINK_COUNT(val) (((val) >> 0) & 0x1f) #define SLINK_WORD(val) (((val) >> 5) & 0x1f) #define SLINK_BLK_CNT(val) (((val) >> 0) & 0xffff) #define SLINK_MODF (1 << 16) #define SLINK_RX_UNF (1 << 18) #define SLINK_TX_OVF (1 << 19) #define SLINK_TX_FULL (1 << 20) #define SLINK_TX_EMPTY (1 << 21) #define SLINK_RX_FULL (1 << 22) #define SLINK_RX_EMPTY (1 << 23) #define SLINK_TX_UNF (1 << 24) #define SLINK_RX_OVF (1 << 25) #define SLINK_TX_FLUSH (1 << 26) #define SLINK_RX_FLUSH (1 << 27) #define SLINK_SCLK (1 << 28) #define SLINK_ERR (1 << 29) #define SLINK_RDY (1 << 30) #define SLINK_BSY (1 << 31) #define SLINK_MAS_DATA 0x010 #define SLINK_SLAVE_DATA 0x014 #define SLINK_DMA_CTL 0x018 #define SLINK_DMA_BLOCK_SIZE(x) (((x) & 0xffff) << 0) #define SLINK_TX_TRIG_1 (0 << 16) #define SLINK_TX_TRIG_4 (1 << 16) #define SLINK_TX_TRIG_8 (2 << 16) #define SLINK_TX_TRIG_16 (3 << 16) #define SLINK_TX_TRIG_MASK (3 << 16) #define SLINK_RX_TRIG_1 (0 << 18) #define SLINK_RX_TRIG_4 (1 << 18) #define SLINK_RX_TRIG_8 (2 << 18) #define SLINK_RX_TRIG_16 (3 << 18) #define SLINK_RX_TRIG_MASK (3 << 18) #define SLINK_PACKED (1 << 20) #define SLINK_PACK_SIZE_4 (0 << 21) #define SLINK_PACK_SIZE_8 (1 << 21) #define SLINK_PACK_SIZE_16 (2 << 21) #define SLINK_PACK_SIZE_32 (3 << 21) #define SLINK_PACK_SIZE_MASK (3 << 21) #define SLINK_IE_TXC (1 << 26) #define SLINK_IE_RXC (1 << 27) #define SLINK_DMA_EN (1 << 31) #define SLINK_STATUS2 0x01c #define SLINK_TX_FIFO_EMPTY_COUNT(val) (((val) & 0x3f) >> 0) #define SLINK_RX_FIFO_FULL_COUNT(val) (((val) & 0x3f0000) >> 16) #define SLINK_SS_HOLD_TIME(val) (((val) & 0xF) << 6) #define SLINK_TX_FIFO 0x100 #define SLINK_RX_FIFO 0x180 #define DATA_DIR_TX (1 << 0) #define DATA_DIR_RX (1 << 1) #define SPI_FIFO_DEPTH 32 #define SLINK_DMA_TIMEOUT (msecs_to_jiffies(1000)) static const unsigned long spi_tegra_req_sels[] = { TEGRA_DMA_REQ_SEL_SL2B1, TEGRA_DMA_REQ_SEL_SL2B2, TEGRA_DMA_REQ_SEL_SL2B3, TEGRA_DMA_REQ_SEL_SL2B4, #ifndef CONFIG_ARCH_TEGRA_2x_SOC TEGRA_DMA_REQ_SEL_SL2B5, TEGRA_DMA_REQ_SEL_SL2B6, #endif }; #define DEFAULT_SPI_DMA_BUF_LEN (16*1024) #define TX_FIFO_EMPTY_COUNT_MAX SLINK_TX_FIFO_EMPTY_COUNT(0x20) #define RX_FIFO_FULL_COUNT_ZERO SLINK_RX_FIFO_FULL_COUNT(0) #define SLINK_STATUS2_RESET \ (TX_FIFO_EMPTY_COUNT_MAX | \ RX_FIFO_FULL_COUNT_ZERO << 16) #define MAX_CHIP_SELECT 4 #define SLINK_FIFO_DEPTH 4 struct spi_tegra_data { struct spi_master *master; struct platform_device *pdev; spinlock_t lock; char port_name[32]; struct clk *clk; void __iomem *base; phys_addr_t phys; unsigned irq; u32 cur_speed; struct list_head queue; struct spi_transfer *cur; struct spi_device *cur_spi; unsigned cur_pos; unsigned cur_len; unsigned words_per_32bit; unsigned bytes_per_word; unsigned curr_dma_words; unsigned cur_direction; bool is_dma_allowed; struct tegra_dma_req rx_dma_req; struct tegra_dma_channel *rx_dma; u32 *rx_buf; dma_addr_t rx_buf_phys; unsigned cur_rx_pos; struct tegra_dma_req tx_dma_req; struct tegra_dma_channel *tx_dma; u32 *tx_buf; dma_addr_t tx_buf_phys; unsigned cur_tx_pos; unsigned dma_buf_size; unsigned max_buf_size; bool is_curr_dma_xfer; bool is_clkon_always; bool clk_state; bool is_suspended; bool is_hw_based_cs; struct completion rx_dma_complete; struct completion tx_dma_complete; bool is_transfer_in_progress; u32 rx_complete; u32 tx_complete; u32 tx_status; u32 rx_status; u32 status_reg; bool is_packed; unsigned long packed_size; u32 command_reg; u32 command2_reg; u32 dma_control_reg; u32 def_command_reg; u32 def_command2_reg; struct spi_clk_parent *parent_clk_list; int parent_clk_count; unsigned long max_rate; unsigned long max_parent_rate; int min_div; struct workqueue_struct *spi_workqueue; struct work_struct spi_transfer_work; }; static inline unsigned long spi_tegra_readl(struct spi_tegra_data *tspi, unsigned long reg) { if (!tspi->clk_state) BUG(); return readl(tspi->base + reg); } static inline void spi_tegra_writel(struct spi_tegra_data *tspi, unsigned long val, unsigned long reg) { if (!tspi->clk_state) BUG(); writel(val, tspi->base + reg); } static void spi_tegra_clear_status(struct spi_tegra_data *tspi) { unsigned long val; unsigned long val_write = 0; val = spi_tegra_readl(tspi, SLINK_STATUS); val_write = SLINK_RDY; if (val & SLINK_TX_OVF) val_write |= SLINK_TX_OVF; if (val & SLINK_RX_OVF) val_write |= SLINK_RX_OVF; if (val & SLINK_RX_UNF) val_write |= SLINK_RX_UNF; if (val & SLINK_TX_UNF) val_write |= SLINK_TX_UNF; spi_tegra_writel(tspi, val_write, SLINK_STATUS); } static unsigned long spi_tegra_get_packed_size(struct spi_tegra_data *tspi, struct spi_transfer *t) { unsigned long val; switch (tspi->bytes_per_word) { case 0: val = SLINK_PACK_SIZE_4; break; case 1: val = SLINK_PACK_SIZE_8; break; case 2: val = SLINK_PACK_SIZE_16; break; case 4: val = SLINK_PACK_SIZE_32; break; default: val = 0; } return val; } static unsigned spi_tegra_calculate_curr_xfer_param( struct spi_device *spi, struct spi_tegra_data *tspi, struct spi_transfer *t) { unsigned remain_len = t->len - tspi->cur_pos; unsigned max_word; unsigned bits_per_word ; unsigned max_len; unsigned total_fifo_words; bits_per_word = t->bits_per_word ? t->bits_per_word : spi->bits_per_word; tspi->bytes_per_word = (bits_per_word - 1) / 8 + 1; if (bits_per_word == 8 || bits_per_word == 16) { tspi->is_packed = 1; tspi->words_per_32bit = 32/bits_per_word; } else { tspi->is_packed = 0; tspi->words_per_32bit = 1; } tspi->packed_size = spi_tegra_get_packed_size(tspi, t); if (tspi->is_packed) { max_len = min(remain_len, tspi->max_buf_size); tspi->curr_dma_words = max_len/tspi->bytes_per_word; total_fifo_words = remain_len/4; } else { max_word = (remain_len - 1) / tspi->bytes_per_word + 1; max_word = min(max_word, tspi->max_buf_size/4); tspi->curr_dma_words = max_word; total_fifo_words = remain_len/tspi->bytes_per_word; } return total_fifo_words; } static unsigned spi_tegra_fill_tx_fifo_from_client_txbuf( struct spi_tegra_data *tspi, struct spi_transfer *t) { unsigned nbytes; unsigned tx_empty_count; unsigned long fifo_status; u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos; unsigned max_n_32bit; unsigned i, count; unsigned long x; unsigned int written_words; fifo_status = spi_tegra_readl(tspi, SLINK_STATUS2); tx_empty_count = SLINK_TX_FIFO_EMPTY_COUNT(fifo_status); if (tspi->is_packed) { nbytes = tspi->curr_dma_words * tspi->bytes_per_word; max_n_32bit = (min(nbytes, tx_empty_count*4) - 1)/4 + 1; for (count = 0; count < max_n_32bit; ++count) { x = 0; for (i = 0; (i < 4) && nbytes; i++, nbytes--) x |= (*tx_buf++) << (i*8); spi_tegra_writel(tspi, x, SLINK_TX_FIFO); } written_words = min(max_n_32bit * tspi->words_per_32bit, tspi->curr_dma_words); } else { max_n_32bit = min(tspi->curr_dma_words, tx_empty_count); nbytes = max_n_32bit * tspi->bytes_per_word; for (count = 0; count < max_n_32bit; ++count) { x = 0; for (i = 0; nbytes && (i < tspi->bytes_per_word); ++i, nbytes--) x |= ((*tx_buf++) << i*8); spi_tegra_writel(tspi, x, SLINK_TX_FIFO); } written_words = max_n_32bit; } tspi->cur_tx_pos += written_words * tspi->bytes_per_word; return written_words; } static unsigned int spi_tegra_read_rx_fifo_to_client_rxbuf( struct spi_tegra_data *tspi, struct spi_transfer *t) { unsigned rx_full_count; unsigned long fifo_status; u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos; unsigned i, count; unsigned long x; unsigned int read_words = 0; unsigned len; fifo_status = spi_tegra_readl(tspi, SLINK_STATUS2); rx_full_count = SLINK_RX_FIFO_FULL_COUNT(fifo_status); dev_dbg(&tspi->pdev->dev, "Rx fifo count %d\n", rx_full_count); if (tspi->is_packed) { len = tspi->curr_dma_words * tspi->bytes_per_word; for (count = 0; count < rx_full_count; ++count) { x = spi_tegra_readl(tspi, SLINK_RX_FIFO); for (i = 0; len && (i < 4); ++i, len--) *rx_buf++ = (x >> i*8) & 0xFF; } tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word; read_words += tspi->curr_dma_words; } else { unsigned int rx_mask, bits_per_word; bits_per_word = t->bits_per_word ? t->bits_per_word : tspi->cur_spi->bits_per_word; rx_mask = (1 << bits_per_word) -1; for (count = 0; count < rx_full_count; ++count) { x = spi_tegra_readl(tspi, SLINK_RX_FIFO); x &= rx_mask; for (i = 0; (i < tspi->bytes_per_word); ++i) *rx_buf++ = (x >> (i*8)) & 0xFF; } tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word; read_words += rx_full_count; } return read_words; } static void spi_tegra_copy_client_txbuf_to_spi_txbuf( struct spi_tegra_data *tspi, struct spi_transfer *t) { unsigned len; if (tspi->is_packed) { len = tspi->curr_dma_words * tspi->bytes_per_word; memcpy(tspi->tx_buf, t->tx_buf + tspi->cur_pos, len); } else { unsigned int i; unsigned int count; u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos; unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word; unsigned int x; for (count = 0; count < tspi->curr_dma_words; ++count) { x = 0; for (i = 0; consume && (i < tspi->bytes_per_word); ++i, consume--) x |= ((*tx_buf++) << i*8); tspi->tx_buf[count] = x; } } tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word; } static void spi_tegra_copy_spi_rxbuf_to_client_rxbuf( struct spi_tegra_data *tspi, struct spi_transfer *t) { unsigned len; if (tspi->is_packed) { len = tspi->curr_dma_words * tspi->bytes_per_word; memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_buf, len); } else { unsigned int i; unsigned int count; unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos; unsigned int x; unsigned int rx_mask, bits_per_word; bits_per_word = t->bits_per_word ? t->bits_per_word : tspi->cur_spi->bits_per_word; rx_mask = (1 << bits_per_word) -1; for (count = 0; count < tspi->curr_dma_words; ++count) { x = tspi->rx_buf[count]; x &= rx_mask; for (i = 0; (i < tspi->bytes_per_word); ++i) *rx_buf++ = (x >> (i*8)) & 0xFF; } } tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word; } static int spi_tegra_start_dma_based_transfer( struct spi_tegra_data *tspi, struct spi_transfer *t) { unsigned long val; unsigned long test_val; unsigned int len; int ret = 0; INIT_COMPLETION(tspi->rx_dma_complete); INIT_COMPLETION(tspi->tx_dma_complete); val = SLINK_DMA_BLOCK_SIZE(tspi->curr_dma_words - 1); val |= tspi->packed_size; if (tspi->is_packed) len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word, 4) * 4; else len = tspi->curr_dma_words * 4; if (len & 0xF) val |= SLINK_TX_TRIG_1 | SLINK_RX_TRIG_1; else if (((len) >> 4) & 0x1) val |= SLINK_TX_TRIG_4 | SLINK_RX_TRIG_4; else val |= SLINK_TX_TRIG_8 | SLINK_RX_TRIG_8; if (tspi->cur_direction & DATA_DIR_TX) val |= SLINK_IE_TXC; if (tspi->cur_direction & DATA_DIR_RX) val |= SLINK_IE_RXC; spi_tegra_writel(tspi, val, SLINK_DMA_CTL); tspi->dma_control_reg = val; if (tspi->cur_direction & DATA_DIR_TX) { spi_tegra_copy_client_txbuf_to_spi_txbuf(tspi, t); wmb(); tspi->tx_dma_req.size = len; ret = tegra_dma_enqueue_req(tspi->tx_dma, &tspi->tx_dma_req); if (ret < 0) { dev_err(&tspi->pdev->dev, "Error in starting tx dma " " error = %d\n", ret); return ret; } /* Wait for tx fifo to be fill before starting slink */ test_val = spi_tegra_readl(tspi, SLINK_STATUS); while (!(test_val & SLINK_TX_FULL)) test_val = spi_tegra_readl(tspi, SLINK_STATUS); } if (tspi->cur_direction & DATA_DIR_RX) { tspi->rx_dma_req.size = len; ret = tegra_dma_enqueue_req(tspi->rx_dma, &tspi->rx_dma_req); if (ret < 0) { dev_err(&tspi->pdev->dev, "Error in starting rx dma " " error = %d\n", ret); if (tspi->cur_direction & DATA_DIR_TX) tegra_dma_dequeue_req(tspi->tx_dma, &tspi->tx_dma_req); return ret; } } tspi->is_curr_dma_xfer = true; if (tspi->is_packed) { val |= SLINK_PACKED; spi_tegra_writel(tspi, val, SLINK_DMA_CTL); udelay(1); wmb(); } val |= SLINK_DMA_EN; spi_tegra_writel(tspi, val, SLINK_DMA_CTL); return ret; } static int spi_tegra_start_cpu_based_transfer( struct spi_tegra_data *tspi, struct spi_transfer *t) { unsigned long val; unsigned curr_words; val = tspi->packed_size; if (tspi->cur_direction & DATA_DIR_TX) val |= SLINK_IE_TXC; if (tspi->cur_direction & DATA_DIR_RX) val |= SLINK_IE_RXC; spi_tegra_writel(tspi, val, SLINK_DMA_CTL); tspi->dma_control_reg = val; if (tspi->cur_direction & DATA_DIR_TX) curr_words = spi_tegra_fill_tx_fifo_from_client_txbuf(tspi, t); else curr_words = tspi->curr_dma_words; val |= SLINK_DMA_BLOCK_SIZE(curr_words - 1); spi_tegra_writel(tspi, val, SLINK_DMA_CTL); tspi->dma_control_reg = val; tspi->is_curr_dma_xfer = false; if (tspi->is_packed) { val |= SLINK_PACKED; spi_tegra_writel(tspi, val, SLINK_DMA_CTL); udelay(1); wmb(); } val |= SLINK_DMA_EN; spi_tegra_writel(tspi, val, SLINK_DMA_CTL); return 0; } static void set_best_clk_source(struct spi_tegra_data *tspi, unsigned long speed) { long new_rate; unsigned long err_rate; int rate = speed * 4; unsigned int fin_err = speed * 4; int final_index = -1; int count; int ret; struct clk *pclk; unsigned long prate, crate, nrate; unsigned long cdiv; if (!tspi->parent_clk_count || !tspi->parent_clk_list) return; /* make sure divisor is more than min_div */ pclk = clk_get_parent(tspi->clk); prate = clk_get_rate(pclk); crate = clk_get_rate(tspi->clk); cdiv = DIV_ROUND_UP(prate, crate); if (cdiv < tspi->min_div) { nrate = DIV_ROUND_UP(prate, tspi->min_div); clk_set_rate(tspi->clk, nrate); } for (count = 0; count < tspi->parent_clk_count; ++count) { if (!tspi->parent_clk_list[count].parent_clk) continue; ret = clk_set_parent(tspi->clk, tspi->parent_clk_list[count].parent_clk); if (ret < 0) { dev_warn(&tspi->pdev->dev, "Error in setting parent " " clk src %s\n", tspi->parent_clk_list[count].name); continue; } new_rate = clk_round_rate(tspi->clk, rate); if (new_rate < 0) continue; err_rate = abs(new_rate - rate); if (err_rate < fin_err) { final_index = count; fin_err = err_rate; } } if (final_index >= 0) { dev_info(&tspi->pdev->dev, "Setting clk_src %s\n", tspi->parent_clk_list[final_index].name); clk_set_parent(tspi->clk, tspi->parent_clk_list[final_index].parent_clk); } } static void spi_tegra_start_transfer(struct spi_device *spi, struct spi_transfer *t, bool is_first_of_msg, bool is_single_xfer) { struct spi_tegra_data *tspi = spi_master_get_devdata(spi->master); u32 speed; u8 bits_per_word; unsigned total_fifo_words; int ret; struct tegra_spi_device_controller_data *cdata = spi->controller_data; unsigned long command; unsigned long command2; #ifndef CONFIG_ARCH_TEGRA_2x_SOC unsigned long status2; #endif int cs_setup_count; int cs_hold_count; unsigned int cs_pol_bit[] = { SLINK_CS_POLARITY, SLINK_CS_POLARITY1, SLINK_CS_POLARITY2, SLINK_CS_POLARITY3, }; bits_per_word = t->bits_per_word ? t->bits_per_word : spi->bits_per_word; speed = t->speed_hz ? t->speed_hz : spi->max_speed_hz; if (speed != tspi->cur_speed) { set_best_clk_source(tspi, speed); clk_set_rate(tspi->clk, speed * 4); tspi->cur_speed = speed; } tspi->cur = t; tspi->cur_spi = spi; tspi->cur_pos = 0; tspi->cur_rx_pos = 0; tspi->cur_tx_pos = 0; tspi->rx_complete = 0; tspi->tx_complete = 0; total_fifo_words = spi_tegra_calculate_curr_xfer_param(spi, tspi, t); command2 = tspi->def_command2_reg; if (is_first_of_msg) { if (!tspi->is_clkon_always) { if (!tspi->clk_state) { clk_enable(tspi->clk); tspi->clk_state = 1; } } spi_tegra_clear_status(tspi); command = tspi->def_command_reg; command |= SLINK_BIT_LENGTH(bits_per_word - 1); /* possibly use the hw based chip select */ tspi->is_hw_based_cs = false; if (cdata && cdata->is_hw_based_cs && is_single_xfer) { if ((tspi->curr_dma_words * tspi->bytes_per_word) == (t->len - tspi->cur_pos)) { cs_setup_count = cdata->cs_setup_clk_count >> 1; if (cs_setup_count > 3) cs_setup_count = 3; cs_hold_count = cdata->cs_hold_clk_count; if (cs_hold_count > 0xF) cs_hold_count = 0xF; tspi->is_hw_based_cs = true; command &= ~SLINK_CS_SW; command2 &= ~SLINK_SS_SETUP(3); command2 |= SLINK_SS_SETUP(cs_setup_count); #ifndef CONFIG_ARCH_TEGRA_2x_SOC status2 = spi_tegra_readl(tspi, SLINK_STATUS2); status2 &= ~SLINK_SS_HOLD_TIME(0xF); status2 |= SLINK_SS_HOLD_TIME(cs_hold_count); spi_tegra_writel(tspi, status2, SLINK_STATUS2); #endif } } if (!tspi->is_hw_based_cs) { command |= SLINK_CS_SW; command ^= cs_pol_bit[spi->chip_select]; } command &= ~SLINK_IDLE_SCLK_MASK & ~SLINK_CK_SDA; if (spi->mode & SPI_CPHA) command |= SLINK_CK_SDA; if (spi->mode & SPI_CPOL) command |= SLINK_IDLE_SCLK_DRIVE_HIGH; else command |= SLINK_IDLE_SCLK_DRIVE_LOW; } else { command = tspi->command_reg; command &= ~SLINK_BIT_LENGTH(~0); command |= SLINK_BIT_LENGTH(bits_per_word - 1); } spi_tegra_writel(tspi, command, SLINK_COMMAND); tspi->command_reg = command; dev_dbg(&tspi->pdev->dev, "The def 0x%x and written 0x%lx\n", tspi->def_command_reg, command); command2 &= ~(SLINK_SS_EN_CS(~0) | SLINK_RXEN | SLINK_TXEN); tspi->cur_direction = 0; if (t->rx_buf) { command2 |= SLINK_RXEN; tspi->cur_direction |= DATA_DIR_RX; } if (t->tx_buf) { command2 |= SLINK_TXEN; tspi->cur_direction |= DATA_DIR_TX; } command2 |= SLINK_SS_EN_CS(spi->chip_select); spi_tegra_writel(tspi, command2, SLINK_COMMAND2); tspi->command2_reg = command2; if (total_fifo_words > SPI_FIFO_DEPTH) ret = spi_tegra_start_dma_based_transfer(tspi, t); else ret = spi_tegra_start_cpu_based_transfer(tspi, t); WARN_ON(ret < 0); } static int spi_tegra_setup(struct spi_device *spi) { struct spi_tegra_data *tspi = spi_master_get_devdata(spi->master); unsigned long cs_bit; unsigned long val; unsigned long flags; dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n", spi->bits_per_word, spi->mode & SPI_CPOL ? "" : "~", spi->mode & SPI_CPHA ? "" : "~", spi->max_speed_hz); BUG_ON(spi->chip_select >= MAX_CHIP_SELECT); switch (spi->chip_select) { case 0: cs_bit = SLINK_CS_POLARITY; break; case 1: cs_bit = SLINK_CS_POLARITY1; break; case 2: cs_bit = SLINK_CS_POLARITY2; break; case 3: cs_bit = SLINK_CS_POLARITY3; break; default: return -EINVAL; } spin_lock_irqsave(&tspi->lock, flags); val = tspi->def_command_reg; if (spi->mode & SPI_CS_HIGH) val |= cs_bit; else val &= ~cs_bit; tspi->def_command_reg |= val; if (!tspi->is_clkon_always && !tspi->clk_state) { spin_unlock_irqrestore(&tspi->lock, flags); clk_enable(tspi->clk); spin_lock_irqsave(&tspi->lock, flags); tspi->clk_state = 1; } spi_tegra_writel(tspi, tspi->def_command_reg, SLINK_COMMAND); if (!tspi->is_clkon_always && tspi->clk_state) { tspi->clk_state = 0; spin_unlock_irqrestore(&tspi->lock, flags); clk_disable(tspi->clk); } else spin_unlock_irqrestore(&tspi->lock, flags); return 0; } static void tegra_spi_transfer_work(struct work_struct *work) { struct spi_tegra_data *tspi; struct spi_device *spi; struct spi_message *m; struct spi_transfer *t; int single_xfer = 0; unsigned long flags; tspi = container_of(work, struct spi_tegra_data, spi_transfer_work); spin_lock_irqsave(&tspi->lock, flags); if (tspi->is_transfer_in_progress || tspi->is_suspended) { spin_unlock_irqrestore(&tspi->lock, flags); return; } if (list_empty(&tspi->queue)) { spin_unlock_irqrestore(&tspi->lock, flags); return; } m = list_first_entry(&tspi->queue, struct spi_message, queue); spi = m->state; single_xfer = list_is_singular(&m->transfers); m->actual_length = 0; m->status = 0; t = list_first_entry(&m->transfers, struct spi_transfer, transfer_list); tspi->is_transfer_in_progress = true; spin_unlock_irqrestore(&tspi->lock, flags); spi_tegra_start_transfer(spi, t, true, single_xfer); } static int spi_tegra_transfer(struct spi_device *spi, struct spi_message *m) { struct spi_tegra_data *tspi = spi_master_get_devdata(spi->master); struct spi_transfer *t; unsigned long flags; int was_empty; int bytes_per_word; if (list_empty(&m->transfers) || !m->complete) return -EINVAL; list_for_each_entry(t, &m->transfers, transfer_list) { if (t->bits_per_word < 0 || t->bits_per_word > 32) return -EINVAL; if (t->len == 0) return -EINVAL; /* Check that the all words are available */ if (t->bits_per_word) bytes_per_word = (t->bits_per_word + 7)/8; else bytes_per_word = (spi->bits_per_word + 7)/8; if (t->len % bytes_per_word != 0) return -EINVAL; if (!t->rx_buf && !t->tx_buf) return -EINVAL; } spin_lock_irqsave(&tspi->lock, flags); if (WARN_ON(tspi->is_suspended)) { spin_unlock_irqrestore(&tspi->lock, flags); return -EBUSY; } m->state = spi; was_empty = list_empty(&tspi->queue); list_add_tail(&m->queue, &tspi->queue); if (was_empty) queue_work(tspi->spi_workqueue, &tspi->spi_transfer_work); spin_unlock_irqrestore(&tspi->lock, flags); return 0; } static void spi_tegra_curr_transfer_complete(struct spi_tegra_data *tspi, unsigned err, unsigned cur_xfer_size, unsigned long *irq_flags) { struct spi_message *m; struct spi_device *spi; struct spi_transfer *t; int single_xfer = 0; /* Check if CS need to be toggele here */ if (tspi->cur && tspi->cur->cs_change && tspi->cur->delay_usecs) { udelay(tspi->cur->delay_usecs); } m = list_first_entry(&tspi->queue, struct spi_message, queue); if (err) m->status = -EIO; spi = m->state; m->actual_length += cur_xfer_size; if (!list_is_last(&tspi->cur->transfer_list, &m->transfers)) { tspi->cur = list_first_entry(&tspi->cur->transfer_list, struct spi_transfer, transfer_list); spin_unlock_irqrestore(&tspi->lock, *irq_flags); spi_tegra_start_transfer(spi, tspi->cur, false, 0); spin_lock_irqsave(&tspi->lock, *irq_flags); } else { list_del(&m->queue); m->complete(m->context); if (!list_empty(&tspi->queue)) { if (tspi->is_suspended) { spi_tegra_writel(tspi, tspi->def_command_reg, SLINK_COMMAND); spi_tegra_writel(tspi, tspi->def_command2_reg, SLINK_COMMAND2); tspi->is_transfer_in_progress = false; return; } m = list_first_entry(&tspi->queue, struct spi_message, queue); spi = m->state; single_xfer = list_is_singular(&m->transfers); m->actual_length = 0; m->status = 0; t = list_first_entry(&m->transfers, struct spi_transfer, transfer_list); spin_unlock_irqrestore(&tspi->lock, *irq_flags); spi_tegra_start_transfer(spi, t, true, single_xfer); spin_lock_irqsave(&tspi->lock, *irq_flags); } else { spi_tegra_writel(tspi, tspi->def_command_reg, SLINK_COMMAND); spi_tegra_writel(tspi, tspi->def_command2_reg, SLINK_COMMAND2); if (!tspi->is_clkon_always) { if (tspi->clk_state) { /* Provide delay to stablize the signal state */ spin_unlock_irqrestore(&tspi->lock, *irq_flags); udelay(10); clk_disable(tspi->clk); spin_lock_irqsave(&tspi->lock, *irq_flags); tspi->clk_state = 0; } } tspi->is_transfer_in_progress = false; /* Check if any new request has come between * clock disable */ queue_work(tspi->spi_workqueue, &tspi->spi_transfer_work); } } return; } static void tegra_spi_tx_dma_complete(struct tegra_dma_req *req) { struct spi_tegra_data *tspi = req->dev; complete(&tspi->tx_dma_complete); } static void tegra_spi_rx_dma_complete(struct tegra_dma_req *req) { struct spi_tegra_data *tspi = req->dev; complete(&tspi->rx_dma_complete); } static void handle_cpu_based_xfer(void *context_data) { struct spi_tegra_data *tspi = context_data; struct spi_transfer *t = tspi->cur; unsigned long flags; spin_lock_irqsave(&tspi->lock, flags); if (tspi->tx_status || tspi->rx_status || (tspi->status_reg & SLINK_BSY)) { dev_err(&tspi->pdev->dev, "%s ERROR bit set 0x%x\n", __func__, tspi->status_reg); tegra_periph_reset_assert(tspi->clk); udelay(2); tegra_periph_reset_deassert(tspi->clk); WARN_ON(1); spi_tegra_curr_transfer_complete(tspi, tspi->tx_status || tspi->rx_status, t->len, &flags); goto exit; } dev_vdbg(&tspi->pdev->dev, " Current direction %x\n", tspi->cur_direction); if (tspi->cur_direction & DATA_DIR_RX) spi_tegra_read_rx_fifo_to_client_rxbuf(tspi, t); if (tspi->cur_direction & DATA_DIR_TX) tspi->cur_pos = tspi->cur_tx_pos; else if (tspi->cur_direction & DATA_DIR_RX) tspi->cur_pos = tspi->cur_rx_pos; else WARN_ON(1); dev_vdbg(&tspi->pdev->dev, "current position %d and length of the " "transfer %d\n", tspi->cur_pos, t->len); if (tspi->cur_pos == t->len) { spi_tegra_curr_transfer_complete(tspi, tspi->tx_status || tspi->rx_status, t->len, &flags); goto exit; } spi_tegra_calculate_curr_xfer_param(tspi->cur_spi, tspi, t); spi_tegra_start_cpu_based_transfer(tspi, t); exit: spin_unlock_irqrestore(&tspi->lock, flags); return; } static irqreturn_t spi_tegra_isr_thread(int irq, void *context_data) { struct spi_tegra_data *tspi = context_data; struct spi_transfer *t = tspi->cur; long wait_status; int err = 0; unsigned total_fifo_words; unsigned long flags; if (!tspi->is_curr_dma_xfer) { handle_cpu_based_xfer(context_data); return IRQ_HANDLED; } /* Abort dmas if any error */ if (tspi->cur_direction & DATA_DIR_TX) { if (tspi->tx_status) { tegra_dma_dequeue(tspi->tx_dma); err += 1; } else { wait_status = wait_for_completion_interruptible_timeout( &tspi->tx_dma_complete, SLINK_DMA_TIMEOUT); if (wait_status <= 0) { tegra_dma_dequeue(tspi->tx_dma); dev_err(&tspi->pdev->dev, "Error in Dma Tx " "transfer\n"); err += 1; } } } if (tspi->cur_direction & DATA_DIR_RX) { if (tspi->rx_status) { tegra_dma_dequeue(tspi->rx_dma); err += 2; } else { wait_status = wait_for_completion_interruptible_timeout( &tspi->rx_dma_complete, SLINK_DMA_TIMEOUT); if (wait_status <= 0) { tegra_dma_dequeue(tspi->rx_dma); dev_err(&tspi->pdev->dev, "Error in Dma Rx " "transfer\n"); err += 2; } } } spin_lock_irqsave(&tspi->lock, flags); if (err) { dev_err(&tspi->pdev->dev, "%s ERROR bit set 0x%x\n", __func__, tspi->status_reg); tegra_periph_reset_assert(tspi->clk); udelay(2); tegra_periph_reset_deassert(tspi->clk); WARN_ON(1); spi_tegra_curr_transfer_complete(tspi, err, t->len, &flags); spin_unlock_irqrestore(&tspi->lock, flags); return IRQ_HANDLED; } if (tspi->cur_direction & DATA_DIR_RX) spi_tegra_copy_spi_rxbuf_to_client_rxbuf(tspi, t); if (tspi->cur_direction & DATA_DIR_TX) tspi->cur_pos = tspi->cur_tx_pos; else if (tspi->cur_direction & DATA_DIR_RX) tspi->cur_pos = tspi->cur_rx_pos; else WARN_ON(1); if (tspi->cur_pos == t->len) { spi_tegra_curr_transfer_complete(tspi, tspi->tx_status || tspi->rx_status, t->len, &flags); spin_unlock_irqrestore(&tspi->lock, flags); return IRQ_HANDLED; } /* Continue transfer in current message */ total_fifo_words = spi_tegra_calculate_curr_xfer_param(tspi->cur_spi, tspi, t); if (total_fifo_words > SPI_FIFO_DEPTH) err = spi_tegra_start_dma_based_transfer(tspi, t); else err = spi_tegra_start_cpu_based_transfer(tspi, t); spin_unlock_irqrestore(&tspi->lock, flags); WARN_ON(err < 0); return IRQ_HANDLED; } static irqreturn_t spi_tegra_isr(int irq, void *context_data) { struct spi_tegra_data *tspi = context_data; tspi->status_reg = spi_tegra_readl(tspi, SLINK_STATUS); if (tspi->cur_direction & DATA_DIR_TX) tspi->tx_status = tspi->status_reg & (SLINK_TX_OVF | SLINK_TX_UNF); if (tspi->cur_direction & DATA_DIR_RX) tspi->rx_status = tspi->status_reg & (SLINK_RX_OVF | SLINK_RX_UNF); spi_tegra_clear_status(tspi); return IRQ_WAKE_THREAD; } static int __init spi_tegra_probe(struct platform_device *pdev) { struct spi_master *master; struct spi_tegra_data *tspi; struct resource *r; struct tegra_spi_platform_data *pdata = pdev->dev.platform_data; int ret, spi_irq; int i; char spi_wq_name[20]; master = spi_alloc_master(&pdev->dev, sizeof *tspi); if (master == NULL) { dev_err(&pdev->dev, "master allocation failed\n"); return -ENOMEM; } /* the spi->mode bits understood by this driver: */ master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; if (pdev->id != -1) master->bus_num = pdev->id; master->setup = spi_tegra_setup; master->transfer = spi_tegra_transfer; master->num_chipselect = MAX_CHIP_SELECT; dev_set_drvdata(&pdev->dev, master); tspi = spi_master_get_devdata(master); tspi->master = master; tspi->pdev = pdev; tspi->is_transfer_in_progress = false; tspi->is_suspended = false; spin_lock_init(&tspi->lock); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (r == NULL) { ret = -ENODEV; goto fail_no_mem; } if (!request_mem_region(r->start, resource_size(r), dev_name(&pdev->dev))) { ret = -EBUSY; goto fail_no_mem; } tspi->phys = r->start; tspi->base = ioremap(r->start, resource_size(r)); if (!tspi->base) { dev_err(&pdev->dev, "can't ioremap iomem\n"); ret = -ENOMEM; goto fail_io_map; } spi_irq = platform_get_irq(pdev, 0); if (unlikely(spi_irq < 0)) { dev_err(&pdev->dev, "can't find irq resource\n"); ret = -ENXIO; goto fail_irq_req; } tspi->irq = spi_irq; sprintf(tspi->port_name, "tegra_spi_%d", pdev->id); ret = request_threaded_irq(tspi->irq, spi_tegra_isr, spi_tegra_isr_thread, IRQF_DISABLED, tspi->port_name, tspi); if (ret < 0) { dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n", tspi->irq); goto fail_irq_req; } tspi->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(tspi->clk)) { dev_err(&pdev->dev, "can not get clock\n"); ret = PTR_ERR(tspi->clk); goto fail_clk_get; } INIT_LIST_HEAD(&tspi->queue); if (pdata) { tspi->is_clkon_always = pdata->is_clkon_always; tspi->is_dma_allowed = pdata->is_dma_based; tspi->dma_buf_size = (pdata->max_dma_buffer) ? pdata->max_dma_buffer : DEFAULT_SPI_DMA_BUF_LEN; tspi->parent_clk_count = pdata->parent_clk_count; tspi->parent_clk_list = pdata->parent_clk_list; tspi->max_rate = pdata->max_rate; } else { tspi->is_clkon_always = false; tspi->is_dma_allowed = true; tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN; tspi->parent_clk_count = 0; tspi->parent_clk_list = NULL; tspi->max_rate = 0; } tspi->max_parent_rate = 0; tspi->min_div = 0; if (tspi->parent_clk_count) { tspi->max_parent_rate = tspi->parent_clk_list[0].fixed_clk_rate; for (i = 1; i < tspi->parent_clk_count; ++i) { tspi->max_parent_rate = max(tspi->max_parent_rate, tspi->parent_clk_list[i].fixed_clk_rate); } if (tspi->max_rate) tspi->min_div = DIV_ROUND_UP(tspi->max_parent_rate, tspi->max_rate); } tspi->max_buf_size = SLINK_FIFO_DEPTH << 2; if (!tspi->is_dma_allowed) goto skip_dma_alloc; init_completion(&tspi->tx_dma_complete); init_completion(&tspi->rx_dma_complete); tspi->rx_dma = tegra_dma_allocate_channel(TEGRA_DMA_MODE_ONESHOT, "spi_rx_%d", pdev->id); if (!tspi->rx_dma) { dev_err(&pdev->dev, "can not allocate rx dma channel\n"); ret = -ENODEV; goto fail_rx_dma_alloc; } tspi->rx_buf = dma_alloc_coherent(&pdev->dev, tspi->dma_buf_size, &tspi->rx_buf_phys, GFP_KERNEL); if (!tspi->rx_buf) { dev_err(&pdev->dev, "can not allocate rx bounce buffer\n"); ret = -ENOMEM; goto fail_rx_buf_alloc; } memset(&tspi->rx_dma_req, 0, sizeof(struct tegra_dma_req)); tspi->rx_dma_req.complete = tegra_spi_rx_dma_complete; tspi->rx_dma_req.to_memory = 1; tspi->rx_dma_req.dest_addr = tspi->rx_buf_phys; tspi->rx_dma_req.virt_addr = tspi->rx_buf; tspi->rx_dma_req.dest_bus_width = 32; tspi->rx_dma_req.source_addr = tspi->phys + SLINK_RX_FIFO; tspi->rx_dma_req.source_bus_width = 32; tspi->rx_dma_req.source_wrap = 4; tspi->rx_dma_req.dest_wrap = 0; tspi->rx_dma_req.req_sel = spi_tegra_req_sels[pdev->id]; tspi->rx_dma_req.dev = tspi; tspi->tx_dma = tegra_dma_allocate_channel(TEGRA_DMA_MODE_ONESHOT, "spi_tx_%d", pdev->id); if (!tspi->tx_dma) { dev_err(&pdev->dev, "can not allocate tx dma channel\n"); ret = -ENODEV; goto fail_tx_dma_alloc; } tspi->tx_buf = dma_alloc_coherent(&pdev->dev, tspi->dma_buf_size, &tspi->tx_buf_phys, GFP_KERNEL); if (!tspi->tx_buf) { dev_err(&pdev->dev, "can not allocate tx bounce buffer\n"); ret = -ENOMEM; goto fail_tx_buf_alloc; } memset(&tspi->tx_dma_req, 0, sizeof(struct tegra_dma_req)); tspi->tx_dma_req.complete = tegra_spi_tx_dma_complete; tspi->tx_dma_req.to_memory = 0; tspi->tx_dma_req.dest_addr = tspi->phys + SLINK_TX_FIFO; tspi->tx_dma_req.virt_addr = tspi->tx_buf; tspi->tx_dma_req.dest_bus_width = 32; tspi->tx_dma_req.dest_wrap = 4; tspi->tx_dma_req.source_wrap = 0; tspi->tx_dma_req.source_addr = tspi->tx_buf_phys; tspi->tx_dma_req.source_bus_width = 32; tspi->tx_dma_req.req_sel = spi_tegra_req_sels[pdev->id]; tspi->tx_dma_req.dev = tspi; tspi->max_buf_size = tspi->dma_buf_size; tspi->def_command_reg = SLINK_CS_SW | SLINK_M_S; tspi->def_command2_reg = SLINK_CS_ACTIVE_BETWEEN; skip_dma_alloc: clk_enable(tspi->clk); tspi->clk_state = 1; master->dev.of_node = pdev->dev.of_node; ret = spi_register_master(master); if (!tspi->is_clkon_always) { if (tspi->clk_state) { clk_disable(tspi->clk); tspi->clk_state = 0; } } if (ret < 0) { dev_err(&pdev->dev, "can not register to master err %d\n", ret); goto fail_master_register; } /* create the workqueue for the kbc path */ snprintf(spi_wq_name, sizeof(spi_wq_name), "spi_tegra-%d", pdev->id); tspi->spi_workqueue = create_singlethread_workqueue(spi_wq_name); if (!tspi->spi_workqueue) { dev_err(&pdev->dev, "Failed to create work queue\n"); ret = -ENODEV; goto fail_workqueue; } INIT_WORK(&tspi->spi_transfer_work, tegra_spi_transfer_work); return ret; fail_workqueue: spi_unregister_master(master); fail_master_register: if (tspi->tx_buf) dma_free_coherent(&pdev->dev, tspi->dma_buf_size, tspi->tx_buf, tspi->tx_buf_phys); fail_tx_buf_alloc: if (tspi->tx_dma) tegra_dma_free_channel(tspi->tx_dma); fail_tx_dma_alloc: if (tspi->rx_buf) dma_free_coherent(&pdev->dev, tspi->dma_buf_size, tspi->rx_buf, tspi->rx_buf_phys); fail_rx_buf_alloc: if (tspi->rx_dma) tegra_dma_free_channel(tspi->rx_dma); fail_rx_dma_alloc: clk_put(tspi->clk); fail_clk_get: free_irq(tspi->irq, tspi); fail_irq_req: iounmap(tspi->base); fail_io_map: release_mem_region(r->start, resource_size(r)); fail_no_mem: spi_master_put(master); return ret; } static int __devexit spi_tegra_remove(struct platform_device *pdev) { struct spi_master *master; struct spi_tegra_data *tspi; struct resource *r; master = dev_get_drvdata(&pdev->dev); tspi = spi_master_get_devdata(master); spi_unregister_master(master); if (tspi->tx_buf) dma_free_coherent(&pdev->dev, tspi->dma_buf_size, tspi->tx_buf, tspi->tx_buf_phys); if (tspi->tx_dma) tegra_dma_free_channel(tspi->tx_dma); if (tspi->rx_buf) dma_free_coherent(&pdev->dev, tspi->dma_buf_size, tspi->rx_buf, tspi->rx_buf_phys); if (tspi->rx_dma) tegra_dma_free_channel(tspi->rx_dma); if (tspi->is_clkon_always) { clk_disable(tspi->clk); tspi->clk_state = 0; } clk_put(tspi->clk); iounmap(tspi->base); destroy_workqueue(tspi->spi_workqueue); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(r->start, resource_size(r)); return 0; } #ifdef CONFIG_PM static int spi_tegra_suspend(struct platform_device *pdev, pm_message_t state) { struct spi_master *master; struct spi_tegra_data *tspi; unsigned limit = 50; unsigned long flags; master = dev_get_drvdata(&pdev->dev); tspi = spi_master_get_devdata(master); spin_lock_irqsave(&tspi->lock, flags); /* Wait for all transfer completes */ if (!list_empty(&tspi->queue)) dev_warn(&pdev->dev, "The transfer list is not empty " "Waiting for time %d ms to complete transfer\n", limit * 20); while (!list_empty(&tspi->queue) && limit--) { spin_unlock_irqrestore(&tspi->lock, flags); msleep(20); spin_lock_irqsave(&tspi->lock, flags); } /* Wait for current transfer completes only */ tspi->is_suspended = true; if (!list_empty(&tspi->queue)) { limit = 50; dev_err(&pdev->dev, "All transfer has not completed, " "Waiting for %d ms current transfer to complete\n", limit * 20); while (tspi->is_transfer_in_progress && limit--) { spin_unlock_irqrestore(&tspi->lock, flags); msleep(20); spin_lock_irqsave(&tspi->lock, flags); } } if (tspi->is_transfer_in_progress) { dev_err(&pdev->dev, "Spi transfer is in progress " "Avoiding suspend\n"); tspi->is_suspended = false; spin_unlock_irqrestore(&tspi->lock, flags); return -EBUSY; } spin_unlock_irqrestore(&tspi->lock, flags); if (tspi->is_clkon_always) { clk_disable(tspi->clk); tspi->clk_state = 0; } return 0; } static int spi_tegra_resume(struct platform_device *pdev) { struct spi_master *master; struct spi_tegra_data *tspi; struct spi_message *m; struct spi_device *spi; struct spi_transfer *t = NULL; int single_xfer = 0; unsigned long flags; master = dev_get_drvdata(&pdev->dev); tspi = spi_master_get_devdata(master); clk_enable(tspi->clk); tspi->clk_state = 1; spi_tegra_writel(tspi, tspi->command_reg, SLINK_COMMAND); if (!tspi->is_clkon_always) { clk_disable(tspi->clk); tspi->clk_state = 0; } spin_lock_irqsave(&tspi->lock, flags); tspi->cur_speed = 0; tspi->is_suspended = false; if (!list_empty(&tspi->queue)) { m = list_first_entry(&tspi->queue, struct spi_message, queue); spi = m->state; single_xfer = list_is_singular(&m->transfers); m->actual_length = 0; m->status = 0; t = list_first_entry(&m->transfers, struct spi_transfer, transfer_list); tspi->is_transfer_in_progress = true; } spin_unlock_irqrestore(&tspi->lock, flags); if (t) spi_tegra_start_transfer(spi, t, true, single_xfer); return 0; } #endif MODULE_ALIAS("platform:spi_tegra"); #ifdef CONFIG_OF static struct of_device_id spi_tegra_of_match_table[] __devinitdata = { { .compatible = "nvidia,tegra20-spi", }, {} }; MODULE_DEVICE_TABLE(of, spi_tegra_of_match_table); #else /* CONFIG_OF */ #define spi_tegra_of_match_table NULL #endif /* CONFIG_OF */ static struct platform_driver spi_tegra_driver = { .driver = { .name = "spi_tegra", .owner = THIS_MODULE, .of_match_table = spi_tegra_of_match_table, }, .remove = __devexit_p(spi_tegra_remove), #ifdef CONFIG_PM .suspend = spi_tegra_suspend, .resume = spi_tegra_resume, #endif }; static int __init spi_tegra_init(void) { return platform_driver_probe(&spi_tegra_driver, spi_tegra_probe); } subsys_initcall(spi_tegra_init); static void __exit spi_tegra_exit(void) { platform_driver_unregister(&spi_tegra_driver); } module_exit(spi_tegra_exit); MODULE_LICENSE("GPL");