/* * xHCI host controller driver * * Copyright (C) 2008 Intel Corp. * * Author: Sarah Sharp * Some code borrowed from the Linux EHCI driver. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "xhci.h" #include "xhci-trace.h" /* * Allocates a generic ring segment from the ring pool, sets the dma address, * initializes the segment to zero, and sets the private next pointer to NULL. * * Section 4.11.1.1: * "All components of all Command and Transfer TRBs shall be initialized to '0'" */ static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, unsigned int cycle_state, gfp_t flags) { struct xhci_segment *seg; dma_addr_t dma; int i; seg = kzalloc(sizeof *seg, flags); if (!seg) return NULL; seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma); if (!seg->trbs) { kfree(seg); return NULL; } memset(seg->trbs, 0, TRB_SEGMENT_SIZE); /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ if (cycle_state == 0) { for (i = 0; i < TRBS_PER_SEGMENT; i++) seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); } seg->dma = dma; seg->next = NULL; return seg; } static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) { if (seg->trbs) { dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); seg->trbs = NULL; } kfree(seg); } static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, struct xhci_segment *first) { struct xhci_segment *seg; seg = first->next; while (seg != first) { struct xhci_segment *next = seg->next; xhci_segment_free(xhci, seg); seg = next; } xhci_segment_free(xhci, first); } /* * Make the prev segment point to the next segment. * * Change the last TRB in the prev segment to be a Link TRB which points to the * DMA address of the next segment. The caller needs to set any Link TRB * related flags, such as End TRB, Toggle Cycle, and no snoop. */ static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, struct xhci_segment *next, enum xhci_ring_type type) { u32 val; if (!prev || !next) return; prev->next = next; if (type != TYPE_EVENT) { prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = cpu_to_le64(next->dma); /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); val &= ~TRB_TYPE_BITMASK; val |= TRB_TYPE(TRB_LINK); /* Always set the chain bit with 0.95 hardware */ /* Set chain bit for isoc rings on AMD 0.96 host */ if (xhci_link_trb_quirk(xhci) || (type == TYPE_ISOC && (xhci->quirks & XHCI_AMD_0x96_HOST))) val |= TRB_CHAIN; prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); } } /* * Link the ring to the new segments. * Set Toggle Cycle for the new ring if needed. */ static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, struct xhci_segment *first, struct xhci_segment *last, unsigned int num_segs) { struct xhci_segment *next; if (!ring || !first || !last) return; next = ring->enq_seg->next; xhci_link_segments(xhci, ring->enq_seg, first, ring->type); xhci_link_segments(xhci, last, next, ring->type); ring->num_segs += num_segs; ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control &= ~cpu_to_le32(LINK_TOGGLE); last->trbs[TRBS_PER_SEGMENT-1].link.control |= cpu_to_le32(LINK_TOGGLE); ring->last_seg = last; } } /* XXX: Do we need the hcd structure in all these functions? */ void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) { if (!ring) return; if (ring->first_seg) xhci_free_segments_for_ring(xhci, ring->first_seg); kfree(ring); } static void xhci_initialize_ring_info(struct xhci_ring *ring, unsigned int cycle_state) { /* The ring is empty, so the enqueue pointer == dequeue pointer */ ring->enqueue = ring->first_seg->trbs; ring->enq_seg = ring->first_seg; ring->dequeue = ring->enqueue; ring->deq_seg = ring->first_seg; /* The ring is initialized to 0. The producer must write 1 to the cycle * bit to handover ownership of the TRB, so PCS = 1. The consumer must * compare CCS to the cycle bit to check ownership, so CCS = 1. * * New rings are initialized with cycle state equal to 1; if we are * handling ring expansion, set the cycle state equal to the old ring. */ ring->cycle_state = cycle_state; /* Not necessary for new rings, but needed for re-initialized rings */ ring->enq_updates = 0; ring->deq_updates = 0; /* * Each segment has a link TRB, and leave an extra TRB for SW * accounting purpose */ ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; } /* Allocate segments and link them for a ring */ static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, struct xhci_segment **first, struct xhci_segment **last, unsigned int num_segs, unsigned int cycle_state, enum xhci_ring_type type, gfp_t flags) { struct xhci_segment *prev; prev = xhci_segment_alloc(xhci, cycle_state, flags); if (!prev) return -ENOMEM; num_segs--; *first = prev; while (num_segs > 0) { struct xhci_segment *next; next = xhci_segment_alloc(xhci, cycle_state, flags); if (!next) { prev = *first; while (prev) { next = prev->next; xhci_segment_free(xhci, prev); prev = next; } return -ENOMEM; } xhci_link_segments(xhci, prev, next, type); prev = next; num_segs--; } xhci_link_segments(xhci, prev, *first, type); *last = prev; return 0; } /** * Create a new ring with zero or more segments. * * Link each segment together into a ring. * Set the end flag and the cycle toggle bit on the last segment. * See section 4.9.1 and figures 15 and 16. */ static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, unsigned int num_segs, unsigned int cycle_state, enum xhci_ring_type type, gfp_t flags) { struct xhci_ring *ring; int ret; ring = kzalloc(sizeof *(ring), flags); if (!ring) return NULL; ring->num_segs = num_segs; INIT_LIST_HEAD(&ring->td_list); ring->type = type; if (num_segs == 0) return ring; ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, &ring->last_seg, num_segs, cycle_state, type, flags); if (ret) goto fail; /* Only event ring does not use link TRB */ if (type != TYPE_EVENT) { /* See section 4.9.2.1 and 6.4.4.1 */ ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE); } xhci_initialize_ring_info(ring, cycle_state); return ring; fail: kfree(ring); return NULL; } void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, unsigned int ep_index) { int rings_cached; rings_cached = virt_dev->num_rings_cached; if (rings_cached < XHCI_MAX_RINGS_CACHED) { virt_dev->ring_cache[rings_cached] = virt_dev->eps[ep_index].ring; virt_dev->num_rings_cached++; xhci_dbg(xhci, "Cached old ring, " "%d ring%s cached\n", virt_dev->num_rings_cached, (virt_dev->num_rings_cached > 1) ? "s" : ""); } else { xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); xhci_dbg(xhci, "Ring cache full (%d rings), " "freeing ring\n", virt_dev->num_rings_cached); } virt_dev->eps[ep_index].ring = NULL; } /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue * pointers to the beginning of the ring. */ static void xhci_reinit_cached_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, unsigned int cycle_state, enum xhci_ring_type type) { struct xhci_segment *seg = ring->first_seg; int i; do { memset(seg->trbs, 0, sizeof(union xhci_trb)*TRBS_PER_SEGMENT); if (cycle_state == 0) { for (i = 0; i < TRBS_PER_SEGMENT; i++) seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); } /* All endpoint rings have link TRBs */ xhci_link_segments(xhci, seg, seg->next, type); seg = seg->next; } while (seg != ring->first_seg); ring->type = type; xhci_initialize_ring_info(ring, cycle_state); /* td list should be empty since all URBs have been cancelled, * but just in case... */ INIT_LIST_HEAD(&ring->td_list); } /* * Expand an existing ring. * Look for a cached ring or allocate a new ring which has same segment numbers * and link the two rings. */ int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, unsigned int num_trbs, gfp_t flags) { struct xhci_segment *first; struct xhci_segment *last; unsigned int num_segs; unsigned int num_segs_needed; int ret; num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / (TRBS_PER_SEGMENT - 1); /* Allocate number of segments we needed, or double the ring size */ num_segs = ring->num_segs > num_segs_needed ? ring->num_segs : num_segs_needed; ret = xhci_alloc_segments_for_ring(xhci, &first, &last, num_segs, ring->cycle_state, ring->type, flags); if (ret) return -ENOMEM; xhci_link_rings(xhci, ring, first, last, num_segs); xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, "ring expansion succeed, now has %d segments", ring->num_segs); return 0; } #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, int type, gfp_t flags) { struct xhci_container_ctx *ctx; if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) return NULL; ctx = kzalloc(sizeof(*ctx), flags); if (!ctx) return NULL; ctx->type = type; ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; if (type == XHCI_CTX_TYPE_INPUT) ctx->size += CTX_SIZE(xhci->hcc_params); ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma); if (!ctx->bytes) { kfree(ctx); return NULL; } memset(ctx->bytes, 0, ctx->size); return ctx; } static void xhci_free_container_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx) { if (!ctx) return; dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); kfree(ctx); } struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx) { if (ctx->type != XHCI_CTX_TYPE_INPUT) return NULL; return (struct xhci_input_control_ctx *)ctx->bytes; } struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx) { if (ctx->type == XHCI_CTX_TYPE_DEVICE) return (struct xhci_slot_ctx *)ctx->bytes; return (struct xhci_slot_ctx *) (ctx->bytes + CTX_SIZE(xhci->hcc_params)); } struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx, unsigned int ep_index) { /* increment ep index by offset of start of ep ctx array */ ep_index++; if (ctx->type == XHCI_CTX_TYPE_INPUT) ep_index++; return (struct xhci_ep_ctx *) (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); } /***************** Streams structures manipulation *************************/ static void xhci_free_stream_ctx(struct xhci_hcd *xhci, unsigned int num_stream_ctxs, struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) { struct device *dev = xhci_to_hcd(xhci)->self.controller; if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) dma_free_coherent(dev, sizeof(struct xhci_stream_ctx)*num_stream_ctxs, stream_ctx, dma); else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) return dma_pool_free(xhci->small_streams_pool, stream_ctx, dma); else return dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma); } /* * The stream context array for each endpoint with bulk streams enabled can * vary in size, based on: * - how many streams the endpoint supports, * - the maximum primary stream array size the host controller supports, * - and how many streams the device driver asks for. * * The stream context array must be a power of 2, and can be as small as * 64 bytes or as large as 1MB. */ static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, unsigned int num_stream_ctxs, dma_addr_t *dma, gfp_t mem_flags) { struct device *dev = xhci_to_hcd(xhci)->self.controller; if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) return dma_alloc_coherent(dev, sizeof(struct xhci_stream_ctx)*num_stream_ctxs, dma, mem_flags); else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) return dma_pool_alloc(xhci->small_streams_pool, mem_flags, dma); else return dma_pool_alloc(xhci->medium_streams_pool, mem_flags, dma); } struct xhci_ring *xhci_dma_to_transfer_ring( struct xhci_virt_ep *ep, u64 address) { if (ep->ep_state & EP_HAS_STREAMS) return radix_tree_lookup(&ep->stream_info->trb_address_map, address >> TRB_SEGMENT_SHIFT); return ep->ring; } struct xhci_ring *xhci_stream_id_to_ring( struct xhci_virt_device *dev, unsigned int ep_index, unsigned int stream_id) { struct xhci_virt_ep *ep = &dev->eps[ep_index]; if (stream_id == 0) return ep->ring; if (!ep->stream_info) return NULL; if (stream_id > ep->stream_info->num_streams) return NULL; return ep->stream_info->stream_rings[stream_id]; } /* * Change an endpoint's internal structure so it supports stream IDs. The * number of requested streams includes stream 0, which cannot be used by device * drivers. * * The number of stream contexts in the stream context array may be bigger than * the number of streams the driver wants to use. This is because the number of * stream context array entries must be a power of two. * * We need a radix tree for mapping physical addresses of TRBs to which stream * ID they belong to. We need to do this because the host controller won't tell * us which stream ring the TRB came from. We could store the stream ID in an * event data TRB, but that doesn't help us for the cancellation case, since the * endpoint may stop before it reaches that event data TRB. * * The radix tree maps the upper portion of the TRB DMA address to a ring * segment that has the same upper portion of DMA addresses. For example, say I * have segments of size 1KB, that are always 64-byte aligned. A segment may * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the * key to the stream ID is 0x43244. I can use the DMA address of the TRB to * pass the radix tree a key to get the right stream ID: * * 0x10c90fff >> 10 = 0x43243 * 0x10c912c0 >> 10 = 0x43244 * 0x10c91400 >> 10 = 0x43245 * * Obviously, only those TRBs with DMA addresses that are within the segment * will make the radix tree return the stream ID for that ring. * * Caveats for the radix tree: * * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit * extended systems (where the DMA address can be bigger than 32-bits), * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. */ struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, unsigned int num_stream_ctxs, unsigned int num_streams, gfp_t mem_flags) { struct xhci_stream_info *stream_info; u32 cur_stream; struct xhci_ring *cur_ring; unsigned long key; u64 addr; int ret; xhci_dbg(xhci, "Allocating %u streams and %u " "stream context array entries.\n", num_streams, num_stream_ctxs); if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); return NULL; } xhci->cmd_ring_reserved_trbs++; stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); if (!stream_info) goto cleanup_trbs; stream_info->num_streams = num_streams; stream_info->num_stream_ctxs = num_stream_ctxs; /* Initialize the array of virtual pointers to stream rings. */ stream_info->stream_rings = kzalloc( sizeof(struct xhci_ring *)*num_streams, mem_flags); if (!stream_info->stream_rings) goto cleanup_info; /* Initialize the array of DMA addresses for stream rings for the HW. */ stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, num_stream_ctxs, &stream_info->ctx_array_dma, mem_flags); if (!stream_info->stream_ctx_array) goto cleanup_ctx; memset(stream_info->stream_ctx_array, 0, sizeof(struct xhci_stream_ctx)*num_stream_ctxs); /* Allocate everything needed to free the stream rings later */ stream_info->free_streams_command = xhci_alloc_command(xhci, true, true, mem_flags); if (!stream_info->free_streams_command) goto cleanup_ctx; INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); /* Allocate rings for all the streams that the driver will use, * and add their segment DMA addresses to the radix tree. * Stream 0 is reserved. */ for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { stream_info->stream_rings[cur_stream] = xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags); cur_ring = stream_info->stream_rings[cur_stream]; if (!cur_ring) goto cleanup_rings; cur_ring->stream_id = cur_stream; /* Set deq ptr, cycle bit, and stream context type */ addr = cur_ring->first_seg->dma | SCT_FOR_CTX(SCT_PRI_TR) | cur_ring->cycle_state; stream_info->stream_ctx_array[cur_stream].stream_ring = cpu_to_le64(addr); xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, (unsigned long long) addr); key = (unsigned long) (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT); ret = radix_tree_insert(&stream_info->trb_address_map, key, cur_ring); if (ret) { xhci_ring_free(xhci, cur_ring); stream_info->stream_rings[cur_stream] = NULL; goto cleanup_rings; } } /* Leave the other unused stream ring pointers in the stream context * array initialized to zero. This will cause the xHC to give us an * error if the device asks for a stream ID we don't have setup (if it * was any other way, the host controller would assume the ring is * "empty" and wait forever for data to be queued to that stream ID). */ return stream_info; cleanup_rings: for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { cur_ring = stream_info->stream_rings[cur_stream]; if (cur_ring) { addr = cur_ring->first_seg->dma; radix_tree_delete(&stream_info->trb_address_map, addr >> TRB_SEGMENT_SHIFT); xhci_ring_free(xhci, cur_ring); stream_info->stream_rings[cur_stream] = NULL; } } xhci_free_command(xhci, stream_info->free_streams_command); cleanup_ctx: kfree(stream_info->stream_rings); cleanup_info: kfree(stream_info); cleanup_trbs: xhci->cmd_ring_reserved_trbs--; return NULL; } /* * Sets the MaxPStreams field and the Linear Stream Array field. * Sets the dequeue pointer to the stream context array. */ void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, struct xhci_ep_ctx *ep_ctx, struct xhci_stream_info *stream_info) { u32 max_primary_streams; /* MaxPStreams is the number of stream context array entries, not the * number we're actually using. Must be in 2^(MaxPstreams + 1) format. * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. */ max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, "Setting number of stream ctx array entries to %u", 1 << (max_primary_streams + 1)); ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) | EP_HAS_LSA); ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); } /* * Sets the MaxPStreams field and the Linear Stream Array field to 0. * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, * not at the beginning of the ring). */ void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci, struct xhci_ep_ctx *ep_ctx, struct xhci_virt_ep *ep) { dma_addr_t addr; ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); } /* Frees all stream contexts associated with the endpoint, * * Caller should fix the endpoint context streams fields. */ void xhci_free_stream_info(struct xhci_hcd *xhci, struct xhci_stream_info *stream_info) { int cur_stream; struct xhci_ring *cur_ring; dma_addr_t addr; if (!stream_info) return; for (cur_stream = 1; cur_stream < stream_info->num_streams; cur_stream++) { cur_ring = stream_info->stream_rings[cur_stream]; if (cur_ring) { addr = cur_ring->first_seg->dma; radix_tree_delete(&stream_info->trb_address_map, addr >> TRB_SEGMENT_SHIFT); xhci_ring_free(xhci, cur_ring); stream_info->stream_rings[cur_stream] = NULL; } } xhci_free_command(xhci, stream_info->free_streams_command); xhci->cmd_ring_reserved_trbs--; if (stream_info->stream_ctx_array) xhci_free_stream_ctx(xhci, stream_info->num_stream_ctxs, stream_info->stream_ctx_array, stream_info->ctx_array_dma); kfree(stream_info->stream_rings); kfree(stream_info); } /***************** Device context manipulation *************************/ static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, struct xhci_virt_ep *ep) { init_timer(&ep->stop_cmd_timer); ep->stop_cmd_timer.data = (unsigned long) ep; ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog; ep->xhci = xhci; } static void xhci_free_tt_info(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, int slot_id) { struct list_head *tt_list_head; struct xhci_tt_bw_info *tt_info, *next; bool slot_found = false; /* If the device never made it past the Set Address stage, * it may not have the real_port set correctly. */ if (virt_dev->real_port == 0 || virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { xhci_dbg(xhci, "Bad real port.\n"); return; } tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { /* Multi-TT hubs will have more than one entry */ if (tt_info->slot_id == slot_id) { slot_found = true; list_del(&tt_info->tt_list); kfree(tt_info); } else if (slot_found) { break; } } } int xhci_alloc_tt_info(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, struct usb_device *hdev, struct usb_tt *tt, gfp_t mem_flags) { struct xhci_tt_bw_info *tt_info; unsigned int num_ports; int i, j; if (!tt->multi) num_ports = 1; else num_ports = hdev->maxchild; for (i = 0; i < num_ports; i++, tt_info++) { struct xhci_interval_bw_table *bw_table; tt_info = kzalloc(sizeof(*tt_info), mem_flags); if (!tt_info) goto free_tts; INIT_LIST_HEAD(&tt_info->tt_list); list_add(&tt_info->tt_list, &xhci->rh_bw[virt_dev->real_port - 1].tts); tt_info->slot_id = virt_dev->udev->slot_id; if (tt->multi) tt_info->ttport = i+1; bw_table = &tt_info->bw_table; for (j = 0; j < XHCI_MAX_INTERVAL; j++) INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); } return 0; free_tts: xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); return -ENOMEM; } /* All the xhci_tds in the ring's TD list should be freed at this point. * Should be called with xhci->lock held if there is any chance the TT lists * will be manipulated by the configure endpoint, allocate device, or update * hub functions while this function is removing the TT entries from the list. */ void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) { struct xhci_virt_device *dev; int i; int old_active_eps = 0; /* Slot ID 0 is reserved */ if (slot_id == 0 || !xhci->devs[slot_id]) return; dev = xhci->devs[slot_id]; xhci->dcbaa->dev_context_ptrs[slot_id] = 0; if (!dev) return; if (dev->tt_info) old_active_eps = dev->tt_info->active_eps; for (i = 0; i < 31; ++i) { if (dev->eps[i].ring) xhci_ring_free(xhci, dev->eps[i].ring); if (dev->eps[i].stream_info) xhci_free_stream_info(xhci, dev->eps[i].stream_info); /* Endpoints on the TT/root port lists should have been removed * when usb_disable_device() was called for the device. * We can't drop them anyway, because the udev might have gone * away by this point, and we can't tell what speed it was. */ if (!list_empty(&dev->eps[i].bw_endpoint_list)) xhci_warn(xhci, "Slot %u endpoint %u " "not removed from BW list!\n", slot_id, i); } /* If this is a hub, free the TT(s) from the TT list */ xhci_free_tt_info(xhci, dev, slot_id); /* If necessary, update the number of active TTs on this root port */ xhci_update_tt_active_eps(xhci, dev, old_active_eps); if (dev->ring_cache) { for (i = 0; i < dev->num_rings_cached; i++) xhci_ring_free(xhci, dev->ring_cache[i]); kfree(dev->ring_cache); } if (dev->in_ctx) xhci_free_container_ctx(xhci, dev->in_ctx); if (dev->out_ctx) xhci_free_container_ctx(xhci, dev->out_ctx); kfree(xhci->devs[slot_id]); xhci->devs[slot_id] = NULL; } int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, struct usb_device *udev, gfp_t flags) { struct xhci_virt_device *dev; int i; /* Slot ID 0 is reserved */ if (slot_id == 0 || xhci->devs[slot_id]) { xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); return 0; } xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); if (!xhci->devs[slot_id]) return 0; dev = xhci->devs[slot_id]; /* Allocate the (output) device context that will be used in the HC. */ dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); if (!dev->out_ctx) goto fail; xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, (unsigned long long)dev->out_ctx->dma); /* Allocate the (input) device context for address device command */ dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); if (!dev->in_ctx) goto fail; xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, (unsigned long long)dev->in_ctx->dma); /* Initialize the cancellation list and watchdog timers for each ep */ for (i = 0; i < 31; i++) { xhci_init_endpoint_timer(xhci, &dev->eps[i]); INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); } /* Allocate endpoint 0 ring */ dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags); if (!dev->eps[0].ring) goto fail; /* Allocate pointers to the ring cache */ dev->ring_cache = kzalloc( sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED, flags); if (!dev->ring_cache) goto fail; dev->num_rings_cached = 0; init_completion(&dev->cmd_completion); INIT_LIST_HEAD(&dev->cmd_list); dev->udev = udev; /* Point to output device context in dcbaa. */ xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", slot_id, &xhci->dcbaa->dev_context_ptrs[slot_id], le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); return 1; fail: xhci_free_virt_device(xhci, slot_id); return 0; } void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, struct usb_device *udev) { struct xhci_virt_device *virt_dev; struct xhci_ep_ctx *ep0_ctx; struct xhci_ring *ep_ring; virt_dev = xhci->devs[udev->slot_id]; ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); ep_ring = virt_dev->eps[0].ring; /* * FIXME we don't keep track of the dequeue pointer very well after a * Set TR dequeue pointer, so we're setting the dequeue pointer of the * host to our enqueue pointer. This should only be called after a * configured device has reset, so all control transfers should have * been completed or cancelled before the reset. */ ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue) | ep_ring->cycle_state); } /* * The xHCI roothub may have ports of differing speeds in any order in the port * status registers. xhci->port_array provides an array of the port speed for * each offset into the port status registers. * * The xHCI hardware wants to know the roothub port number that the USB device * is attached to (or the roothub port its ancestor hub is attached to). All we * know is the index of that port under either the USB 2.0 or the USB 3.0 * roothub, but that doesn't give us the real index into the HW port status * registers. Call xhci_find_raw_port_number() to get real index. */ static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, struct usb_device *udev) { struct usb_device *top_dev; struct usb_hcd *hcd; if (udev->speed == USB_SPEED_SUPER) hcd = xhci->shared_hcd; else hcd = xhci->main_hcd; for (top_dev = udev; top_dev->parent && top_dev->parent->parent; top_dev = top_dev->parent) /* Found device below root hub */; return xhci_find_raw_port_number(hcd, top_dev->portnum); } /* Setup an xHCI virtual device for a Set Address command */ int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) { struct xhci_virt_device *dev; struct xhci_ep_ctx *ep0_ctx; struct xhci_slot_ctx *slot_ctx; u32 port_num; u32 max_packets; struct usb_device *top_dev; dev = xhci->devs[udev->slot_id]; /* Slot ID 0 is reserved */ if (udev->slot_id == 0 || !dev) { xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", udev->slot_id); return -EINVAL; } ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); /* 3) Only the control endpoint is valid - one endpoint context */ slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); switch (udev->speed) { case USB_SPEED_SUPER: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); max_packets = MAX_PACKET(512); break; case USB_SPEED_HIGH: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); max_packets = MAX_PACKET(64); break; /* USB core guesses at a 64-byte max packet first for FS devices */ case USB_SPEED_FULL: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); max_packets = MAX_PACKET(64); break; case USB_SPEED_LOW: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); max_packets = MAX_PACKET(8); break; case USB_SPEED_WIRELESS: xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); return -EINVAL; break; default: /* Speed was set earlier, this shouldn't happen. */ return -EINVAL; } /* Find the root hub port this device is under */ port_num = xhci_find_real_port_number(xhci, udev); if (!port_num) return -EINVAL; slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); /* Set the port number in the virtual_device to the faked port number */ for (top_dev = udev; top_dev->parent && top_dev->parent->parent; top_dev = top_dev->parent) /* Found device below root hub */; dev->fake_port = top_dev->portnum; dev->real_port = port_num; xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); /* Find the right bandwidth table that this device will be a part of. * If this is a full speed device attached directly to a root port (or a * decendent of one), it counts as a primary bandwidth domain, not a * secondary bandwidth domain under a TT. An xhci_tt_info structure * will never be created for the HS root hub. */ if (!udev->tt || !udev->tt->hub->parent) { dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; } else { struct xhci_root_port_bw_info *rh_bw; struct xhci_tt_bw_info *tt_bw; rh_bw = &xhci->rh_bw[port_num - 1]; /* Find the right TT. */ list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { if (tt_bw->slot_id != udev->tt->hub->slot_id) continue; if (!dev->udev->tt->multi || (udev->tt->multi && tt_bw->ttport == dev->udev->ttport)) { dev->bw_table = &tt_bw->bw_table; dev->tt_info = tt_bw; break; } } if (!dev->tt_info) xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); } /* Is this a LS/FS device under an external HS hub? */ if (udev->tt && udev->tt->hub->parent) { slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | (udev->ttport << 8)); if (udev->tt->multi) slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); } xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); /* Step 4 - ring already allocated */ /* Step 5 */ ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | max_packets); ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | dev->eps[0].ring->cycle_state); /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ return 0; } /* * Convert interval expressed as 2^(bInterval - 1) == interval into * straight exponent value 2^n == interval. * */ static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, struct usb_host_endpoint *ep) { unsigned int interval; interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; if (interval != ep->desc.bInterval - 1) dev_warn(&udev->dev, "ep %#x - rounding interval to %d %sframes\n", ep->desc.bEndpointAddress, 1 << interval, udev->speed == USB_SPEED_FULL ? "" : "micro"); if (udev->speed == USB_SPEED_FULL) { /* * Full speed isoc endpoints specify interval in frames, * not microframes. We are using microframes everywhere, * so adjust accordingly. */ interval += 3; /* 1 frame = 2^3 uframes */ } return interval; } /* * Convert bInterval expressed in microframes (in 1-255 range) to exponent of * microframes, rounded down to nearest power of 2. */ static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, struct usb_host_endpoint *ep, unsigned int desc_interval, unsigned int min_exponent, unsigned int max_exponent) { unsigned int interval; interval = fls(desc_interval) - 1; interval = clamp_val(interval, min_exponent, max_exponent); if ((1 << interval) != desc_interval) dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", ep->desc.bEndpointAddress, 1 << interval, desc_interval); return interval; } static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, struct usb_host_endpoint *ep) { if (ep->desc.bInterval == 0) return 0; return xhci_microframes_to_exponent(udev, ep, ep->desc.bInterval, 0, 15); } static unsigned int xhci_parse_frame_interval(struct usb_device *udev, struct usb_host_endpoint *ep) { return xhci_microframes_to_exponent(udev, ep, ep->desc.bInterval * 8, 3, 10); } /* Return the polling or NAK interval. * * The polling interval is expressed in "microframes". If xHCI's Interval field * is set to N, it will service the endpoint every 2^(Interval)*125us. * * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval * is set to 0. */ static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, struct usb_host_endpoint *ep) { unsigned int interval = 0; switch (udev->speed) { case USB_SPEED_HIGH: /* Max NAK rate */ if (usb_endpoint_xfer_control(&ep->desc) || usb_endpoint_xfer_bulk(&ep->desc)) { interval = xhci_parse_microframe_interval(udev, ep); break; } /* Fall through - SS and HS isoc/int have same decoding */ case USB_SPEED_SUPER: if (usb_endpoint_xfer_int(&ep->desc) || usb_endpoint_xfer_isoc(&ep->desc)) { interval = xhci_parse_exponent_interval(udev, ep); } break; case USB_SPEED_FULL: if (usb_endpoint_xfer_isoc(&ep->desc)) { interval = xhci_parse_exponent_interval(udev, ep); break; } /* * Fall through for interrupt endpoint interval decoding * since it uses the same rules as low speed interrupt * endpoints. */ case USB_SPEED_LOW: if (usb_endpoint_xfer_int(&ep->desc) || usb_endpoint_xfer_isoc(&ep->desc)) { interval = xhci_parse_frame_interval(udev, ep); } break; default: BUG(); } return EP_INTERVAL(interval); } /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. * High speed endpoint descriptors can define "the number of additional * transaction opportunities per microframe", but that goes in the Max Burst * endpoint context field. */ static u32 xhci_get_endpoint_mult(struct usb_device *udev, struct usb_host_endpoint *ep) { if (udev->speed != USB_SPEED_SUPER || !usb_endpoint_xfer_isoc(&ep->desc)) return 0; return ep->ss_ep_comp.bmAttributes; } static u32 xhci_get_endpoint_type(struct usb_device *udev, struct usb_host_endpoint *ep) { int in; u32 type; in = usb_endpoint_dir_in(&ep->desc); if (usb_endpoint_xfer_control(&ep->desc)) { type = EP_TYPE(CTRL_EP); } else if (usb_endpoint_xfer_bulk(&ep->desc)) { if (in) type = EP_TYPE(BULK_IN_EP); else type = EP_TYPE(BULK_OUT_EP); } else if (usb_endpoint_xfer_isoc(&ep->desc)) { if (in) type = EP_TYPE(ISOC_IN_EP); else type = EP_TYPE(ISOC_OUT_EP); } else if (usb_endpoint_xfer_int(&ep->desc)) { if (in) type = EP_TYPE(INT_IN_EP); else type = EP_TYPE(INT_OUT_EP); } else { type = 0; } return type; } /* Return the maximum endpoint service interval time (ESIT) payload. * Basically, this is the maxpacket size, multiplied by the burst size * and mult size. */ static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci, struct usb_device *udev, struct usb_host_endpoint *ep) { int max_burst; int max_packet; /* Only applies for interrupt or isochronous endpoints */ if (usb_endpoint_xfer_control(&ep->desc) || usb_endpoint_xfer_bulk(&ep->desc)) return 0; if (udev->speed == USB_SPEED_SUPER) return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11; /* A 0 in max burst means 1 transfer per ESIT */ return max_packet * (max_burst + 1); } /* Set up an endpoint with one ring segment. Do not allocate stream rings. * Drivers will have to call usb_alloc_streams() to do that. */ int xhci_endpoint_init(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, struct usb_device *udev, struct usb_host_endpoint *ep, gfp_t mem_flags) { unsigned int ep_index; struct xhci_ep_ctx *ep_ctx; struct xhci_ring *ep_ring; unsigned int max_packet; unsigned int max_burst; enum xhci_ring_type type; u32 max_esit_payload; u32 endpoint_type; ep_index = xhci_get_endpoint_index(&ep->desc); ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); endpoint_type = xhci_get_endpoint_type(udev, ep); if (!endpoint_type) return -EINVAL; ep_ctx->ep_info2 = cpu_to_le32(endpoint_type); type = usb_endpoint_type(&ep->desc); /* Set up the endpoint ring */ virt_dev->eps[ep_index].new_ring = xhci_ring_alloc(xhci, 2, 1, type, mem_flags); if (!virt_dev->eps[ep_index].new_ring) { /* Attempt to use the ring cache */ if (virt_dev->num_rings_cached == 0) return -ENOMEM; virt_dev->eps[ep_index].new_ring = virt_dev->ring_cache[virt_dev->num_rings_cached]; virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL; virt_dev->num_rings_cached--; xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring, 1, type); } virt_dev->eps[ep_index].skip = false; ep_ring = virt_dev->eps[ep_index].new_ring; ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state); ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep) | EP_MULT(xhci_get_endpoint_mult(udev, ep))); /* FIXME dig Mult and streams info out of ep companion desc */ /* Allow 3 retries for everything but isoc; * CErr shall be set to 0 for Isoch endpoints. */ if (!usb_endpoint_xfer_isoc(&ep->desc)) ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3)); else ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0)); /* Set the max packet size and max burst */ max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); max_burst = 0; switch (udev->speed) { case USB_SPEED_SUPER: /* dig out max burst from ep companion desc */ max_burst = ep->ss_ep_comp.bMaxBurst; break; case USB_SPEED_HIGH: /* Some devices get this wrong */ if (usb_endpoint_xfer_bulk(&ep->desc)) max_packet = 512; /* bits 11:12 specify the number of additional transaction * opportunities per microframe (USB 2.0, section 9.6.6) */ if (usb_endpoint_xfer_isoc(&ep->desc) || usb_endpoint_xfer_int(&ep->desc)) { max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11; } break; case USB_SPEED_FULL: case USB_SPEED_LOW: break; default: BUG(); } ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) | MAX_BURST(max_burst)); max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep); ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload)); /* * XXX no idea how to calculate the average TRB buffer length for bulk * endpoints, as the driver gives us no clue how big each scatter gather * list entry (or buffer) is going to be. * * For isochronous and interrupt endpoints, we set it to the max * available, until we have new API in the USB core to allow drivers to * declare how much bandwidth they actually need. * * Normally, it would be calculated by taking the total of the buffer * lengths in the TD and then dividing by the number of TRBs in a TD, * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't * use Event Data TRBs, and we don't chain in a link TRB on short * transfers, we're basically dividing by 1. * * xHCI 1.0 specification indicates that the Average TRB Length should * be set to 8 for control endpoints. */ if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100) ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8)); else ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload)); /* FIXME Debug endpoint context */ return 0; } void xhci_endpoint_zero(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, struct usb_host_endpoint *ep) { unsigned int ep_index; struct xhci_ep_ctx *ep_ctx; ep_index = xhci_get_endpoint_index(&ep->desc); ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); ep_ctx->ep_info = 0; ep_ctx->ep_info2 = 0; ep_ctx->deq = 0; ep_ctx->tx_info = 0; /* Don't free the endpoint ring until the set interface or configuration * request succeeds. */ } void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) { bw_info->ep_interval = 0; bw_info->mult = 0; bw_info->num_packets = 0; bw_info->max_packet_size = 0; bw_info->type = 0; bw_info->max_esit_payload = 0; } void xhci_update_bw_info(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx, struct xhci_input_control_ctx *ctrl_ctx, struct xhci_virt_device *virt_dev) { struct xhci_bw_info *bw_info; struct xhci_ep_ctx *ep_ctx; unsigned int ep_type; int i; for (i = 1; i < 31; ++i) { bw_info = &virt_dev->eps[i].bw_info; /* We can't tell what endpoint type is being dropped, but * unconditionally clearing the bandwidth info for non-periodic * endpoints should be harmless because the info will never be * set in the first place. */ if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { /* Dropped endpoint */ xhci_clear_endpoint_bw_info(bw_info); continue; } if (EP_IS_ADDED(ctrl_ctx, i)) { ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); /* Ignore non-periodic endpoints */ if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && ep_type != ISOC_IN_EP && ep_type != INT_IN_EP) continue; /* Added or changed endpoint */ bw_info->ep_interval = CTX_TO_EP_INTERVAL( le32_to_cpu(ep_ctx->ep_info)); /* Number of packets and mult are zero-based in the * input context, but we want one-based for the * interval table. */ bw_info->mult = CTX_TO_EP_MULT( le32_to_cpu(ep_ctx->ep_info)) + 1; bw_info->num_packets = CTX_TO_MAX_BURST( le32_to_cpu(ep_ctx->ep_info2)) + 1; bw_info->max_packet_size = MAX_PACKET_DECODED( le32_to_cpu(ep_ctx->ep_info2)); bw_info->type = ep_type; bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( le32_to_cpu(ep_ctx->tx_info)); } } } /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. * Useful when you want to change one particular aspect of the endpoint and then * issue a configure endpoint command. */ void xhci_endpoint_copy(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx, struct xhci_container_ctx *out_ctx, unsigned int ep_index) { struct xhci_ep_ctx *out_ep_ctx; struct xhci_ep_ctx *in_ep_ctx; out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); in_ep_ctx->ep_info = out_ep_ctx->ep_info; in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; in_ep_ctx->deq = out_ep_ctx->deq; in_ep_ctx->tx_info = out_ep_ctx->tx_info; } /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. * Useful when you want to change one particular aspect of the endpoint and then * issue a configure endpoint command. Only the context entries field matters, * but we'll copy the whole thing anyway. */ void xhci_slot_copy(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx, struct xhci_container_ctx *out_ctx) { struct xhci_slot_ctx *in_slot_ctx; struct xhci_slot_ctx *out_slot_ctx; in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); in_slot_ctx->dev_info = out_slot_ctx->dev_info; in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; in_slot_ctx->tt_info = out_slot_ctx->tt_info; in_slot_ctx->dev_state = out_slot_ctx->dev_state; } /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) { int i; struct device *dev = xhci_to_hcd(xhci)->self.controller; int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Allocating %d scratchpad buffers", num_sp); if (!num_sp) return 0; xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); if (!xhci->scratchpad) goto fail_sp; xhci->scratchpad->sp_array = dma_alloc_coherent(dev, num_sp * sizeof(u64), &xhci->scratchpad->sp_dma, flags); if (!xhci->scratchpad->sp_array) goto fail_sp2; xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); if (!xhci->scratchpad->sp_buffers) goto fail_sp3; xhci->scratchpad->sp_dma_buffers = kzalloc(sizeof(dma_addr_t) * num_sp, flags); if (!xhci->scratchpad->sp_dma_buffers) goto fail_sp4; xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); for (i = 0; i < num_sp; i++) { dma_addr_t dma; void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, flags); if (!buf) goto fail_sp5; xhci->scratchpad->sp_array[i] = dma; xhci->scratchpad->sp_buffers[i] = buf; xhci->scratchpad->sp_dma_buffers[i] = dma; } return 0; fail_sp5: for (i = i - 1; i >= 0; i--) { dma_free_coherent(dev, xhci->page_size, xhci->scratchpad->sp_buffers[i], xhci->scratchpad->sp_dma_buffers[i]); } kfree(xhci->scratchpad->sp_dma_buffers); fail_sp4: kfree(xhci->scratchpad->sp_buffers); fail_sp3: dma_free_coherent(dev, num_sp * sizeof(u64), xhci->scratchpad->sp_array, xhci->scratchpad->sp_dma); fail_sp2: kfree(xhci->scratchpad); xhci->scratchpad = NULL; fail_sp: return -ENOMEM; } static void scratchpad_free(struct xhci_hcd *xhci) { int num_sp; int i; struct device *dev = xhci_to_hcd(xhci)->self.controller; if (!xhci->scratchpad) return; num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); for (i = 0; i < num_sp; i++) { dma_free_coherent(dev, xhci->page_size, xhci->scratchpad->sp_buffers[i], xhci->scratchpad->sp_dma_buffers[i]); } kfree(xhci->scratchpad->sp_dma_buffers); kfree(xhci->scratchpad->sp_buffers); dma_free_coherent(dev, num_sp * sizeof(u64), xhci->scratchpad->sp_array, xhci->scratchpad->sp_dma); kfree(xhci->scratchpad); xhci->scratchpad = NULL; } struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, bool allocate_in_ctx, bool allocate_completion, gfp_t mem_flags) { struct xhci_command *command; command = kzalloc(sizeof(*command), mem_flags); if (!command) return NULL; if (allocate_in_ctx) { command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, mem_flags); if (!command->in_ctx) { kfree(command); return NULL; } } if (allocate_completion) { command->completion = kzalloc(sizeof(struct completion), mem_flags); if (!command->completion) { xhci_free_container_ctx(xhci, command->in_ctx); kfree(command); return NULL; } init_completion(command->completion); } command->status = 0; INIT_LIST_HEAD(&command->cmd_list); return command; } void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv) { if (urb_priv) { kfree(urb_priv->td[0]); kfree(urb_priv); } } void xhci_free_command(struct xhci_hcd *xhci, struct xhci_command *command) { xhci_free_container_ctx(xhci, command->in_ctx); kfree(command->completion); kfree(command); } void xhci_mem_cleanup(struct xhci_hcd *xhci) { struct device *dev = xhci_to_hcd(xhci)->self.controller; struct xhci_cd *cur_cd, *next_cd; int size; int i, j, num_ports; /* Free the Event Ring Segment Table and the actual Event Ring */ size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); if (xhci->erst.entries) dma_free_coherent(dev, size, xhci->erst.entries, xhci->erst.erst_dma_addr); xhci->erst.entries = NULL; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST"); if (xhci->event_ring) xhci_ring_free(xhci, xhci->event_ring); xhci->event_ring = NULL; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring"); if (xhci->lpm_command) xhci_free_command(xhci, xhci->lpm_command); xhci->cmd_ring_reserved_trbs = 0; if (xhci->cmd_ring) xhci_ring_free(xhci, xhci->cmd_ring); xhci->cmd_ring = NULL; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); list_for_each_entry_safe(cur_cd, next_cd, &xhci->cancel_cmd_list, cancel_cmd_list) { list_del(&cur_cd->cancel_cmd_list); kfree(cur_cd); } for (i = 1; i < MAX_HC_SLOTS; ++i) xhci_free_virt_device(xhci, i); if (xhci->segment_pool) dma_pool_destroy(xhci->segment_pool); xhci->segment_pool = NULL; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); if (xhci->device_pool) dma_pool_destroy(xhci->device_pool); xhci->device_pool = NULL; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); if (xhci->small_streams_pool) dma_pool_destroy(xhci->small_streams_pool); xhci->small_streams_pool = NULL; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed small stream array pool"); if (xhci->medium_streams_pool) dma_pool_destroy(xhci->medium_streams_pool); xhci->medium_streams_pool = NULL; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed medium stream array pool"); if (xhci->dcbaa) dma_free_coherent(dev, sizeof(*xhci->dcbaa), xhci->dcbaa, xhci->dcbaa->dma); xhci->dcbaa = NULL; scratchpad_free(xhci); if (!xhci->rh_bw) goto no_bw; num_ports = HCS_MAX_PORTS(xhci->hcs_params1); for (i = 0; i < num_ports; i++) { struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; for (j = 0; j < XHCI_MAX_INTERVAL; j++) { struct list_head *ep = &bwt->interval_bw[j].endpoints; while (!list_empty(ep)) list_del_init(ep->next); } } for (i = 0; i < num_ports; i++) { struct xhci_tt_bw_info *tt, *n; list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { list_del(&tt->tt_list); kfree(tt); } } no_bw: xhci->num_usb2_ports = 0; xhci->num_usb3_ports = 0; xhci->num_active_eps = 0; kfree(xhci->usb2_ports); kfree(xhci->usb3_ports); kfree(xhci->port_array); kfree(xhci->rh_bw); kfree(xhci->ext_caps); xhci->page_size = 0; xhci->page_shift = 0; xhci->bus_state[0].bus_suspended = 0; xhci->bus_state[1].bus_suspended = 0; } static int xhci_test_trb_in_td(struct xhci_hcd *xhci, struct xhci_segment *input_seg, union xhci_trb *start_trb, union xhci_trb *end_trb, dma_addr_t input_dma, struct xhci_segment *result_seg, char *test_name, int test_number) { unsigned long long start_dma; unsigned long long end_dma; struct xhci_segment *seg; start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); seg = trb_in_td(input_seg, start_trb, end_trb, input_dma); if (seg != result_seg) { xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", test_name, test_number); xhci_warn(xhci, "Tested TRB math w/ seg %p and " "input DMA 0x%llx\n", input_seg, (unsigned long long) input_dma); xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " "ending TRB %p (0x%llx DMA)\n", start_trb, start_dma, end_trb, end_dma); xhci_warn(xhci, "Expected seg %p, got seg %p\n", result_seg, seg); return -1; } return 0; } /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags) { struct { dma_addr_t input_dma; struct xhci_segment *result_seg; } simple_test_vector [] = { /* A zeroed DMA field should fail */ { 0, NULL }, /* One TRB before the ring start should fail */ { xhci->event_ring->first_seg->dma - 16, NULL }, /* One byte before the ring start should fail */ { xhci->event_ring->first_seg->dma - 1, NULL }, /* Starting TRB should succeed */ { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, /* Ending TRB should succeed */ { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, xhci->event_ring->first_seg }, /* One byte after the ring end should fail */ { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, /* One TRB after the ring end should fail */ { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, /* An address of all ones should fail */ { (dma_addr_t) (~0), NULL }, }; struct { struct xhci_segment *input_seg; union xhci_trb *start_trb; union xhci_trb *end_trb; dma_addr_t input_dma; struct xhci_segment *result_seg; } complex_test_vector [] = { /* Test feeding a valid DMA address from a different ring */ { .input_seg = xhci->event_ring->first_seg, .start_trb = xhci->event_ring->first_seg->trbs, .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], .input_dma = xhci->cmd_ring->first_seg->dma, .result_seg = NULL, }, /* Test feeding a valid end TRB from a different ring */ { .input_seg = xhci->event_ring->first_seg, .start_trb = xhci->event_ring->first_seg->trbs, .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], .input_dma = xhci->cmd_ring->first_seg->dma, .result_seg = NULL, }, /* Test feeding a valid start and end TRB from a different ring */ { .input_seg = xhci->event_ring->first_seg, .start_trb = xhci->cmd_ring->first_seg->trbs, .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], .input_dma = xhci->cmd_ring->first_seg->dma, .result_seg = NULL, }, /* TRB in this ring, but after this TD */ { .input_seg = xhci->event_ring->first_seg, .start_trb = &xhci->event_ring->first_seg->trbs[0], .end_trb = &xhci->event_ring->first_seg->trbs[3], .input_dma = xhci->event_ring->first_seg->dma + 4*16, .result_seg = NULL, }, /* TRB in this ring, but before this TD */ { .input_seg = xhci->event_ring->first_seg, .start_trb = &xhci->event_ring->first_seg->trbs[3], .end_trb = &xhci->event_ring->first_seg->trbs[6], .input_dma = xhci->event_ring->first_seg->dma + 2*16, .result_seg = NULL, }, /* TRB in this ring, but after this wrapped TD */ { .input_seg = xhci->event_ring->first_seg, .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], .end_trb = &xhci->event_ring->first_seg->trbs[1], .input_dma = xhci->event_ring->first_seg->dma + 2*16, .result_seg = NULL, }, /* TRB in this ring, but before this wrapped TD */ { .input_seg = xhci->event_ring->first_seg, .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], .end_trb = &xhci->event_ring->first_seg->trbs[1], .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, .result_seg = NULL, }, /* TRB not in this ring, and we have a wrapped TD */ { .input_seg = xhci->event_ring->first_seg, .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], .end_trb = &xhci->event_ring->first_seg->trbs[1], .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, .result_seg = NULL, }, }; unsigned int num_tests; int i, ret; num_tests = ARRAY_SIZE(simple_test_vector); for (i = 0; i < num_tests; i++) { ret = xhci_test_trb_in_td(xhci, xhci->event_ring->first_seg, xhci->event_ring->first_seg->trbs, &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], simple_test_vector[i].input_dma, simple_test_vector[i].result_seg, "Simple", i); if (ret < 0) return ret; } num_tests = ARRAY_SIZE(complex_test_vector); for (i = 0; i < num_tests; i++) { ret = xhci_test_trb_in_td(xhci, complex_test_vector[i].input_seg, complex_test_vector[i].start_trb, complex_test_vector[i].end_trb, complex_test_vector[i].input_dma, complex_test_vector[i].result_seg, "Complex", i); if (ret < 0) return ret; } xhci_dbg(xhci, "TRB math tests passed.\n"); return 0; } static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) { u64 temp; dma_addr_t deq; deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, xhci->event_ring->dequeue); if (deq == 0 && !in_interrupt()) xhci_warn(xhci, "WARN something wrong with SW event ring " "dequeue ptr.\n"); /* Update HC event ring dequeue pointer */ temp = readq(&xhci->ir_set->erst_dequeue); temp &= ERST_PTR_MASK; /* Don't clear the EHB bit (which is RW1C) because * there might be more events to service. */ temp &= ~ERST_EHB; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Write event ring dequeue pointer, " "preserving EHB bit"); writeq(((u64) deq & (u64) ~ERST_PTR_MASK) | temp, &xhci->ir_set->erst_dequeue); } static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, __le32 __iomem *addr, u8 major_revision, int max_caps) { u32 temp, port_offset, port_count; int i; if (major_revision > 0x03) { xhci_warn(xhci, "Ignoring unknown port speed, " "Ext Cap %p, revision = 0x%x\n", addr, major_revision); /* Ignoring port protocol we can't understand. FIXME */ return; } /* Port offset and count in the third dword, see section 7.2 */ temp = readl(addr + 2); port_offset = XHCI_EXT_PORT_OFF(temp); port_count = XHCI_EXT_PORT_COUNT(temp); xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Ext Cap %p, port offset = %u, " "count = %u, revision = 0x%x", addr, port_offset, port_count, major_revision); /* Port count includes the current port offset */ if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) /* WTF? "Valid values are ‘1’ to MaxPorts" */ return; /* cache usb2 port capabilities */ if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) xhci->ext_caps[xhci->num_ext_caps++] = temp; /* Check the host's USB2 LPM capability */ if ((xhci->hci_version == 0x96) && (major_revision != 0x03) && (temp & XHCI_L1C)) { xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xHCI 0.96: support USB2 software lpm"); xhci->sw_lpm_support = 1; } if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) { xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xHCI 1.0: support USB2 software lpm"); xhci->sw_lpm_support = 1; if (temp & XHCI_HLC) { xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xHCI 1.0: support USB2 hardware lpm"); xhci->hw_lpm_support = 1; } } port_offset--; for (i = port_offset; i < (port_offset + port_count); i++) { /* Duplicate entry. Ignore the port if the revisions differ. */ if (xhci->port_array[i] != 0) { xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," " port %u\n", addr, i); xhci_warn(xhci, "Port was marked as USB %u, " "duplicated as USB %u\n", xhci->port_array[i], major_revision); /* Only adjust the roothub port counts if we haven't * found a similar duplicate. */ if (xhci->port_array[i] != major_revision && xhci->port_array[i] != DUPLICATE_ENTRY) { if (xhci->port_array[i] == 0x03) xhci->num_usb3_ports--; else xhci->num_usb2_ports--; xhci->port_array[i] = DUPLICATE_ENTRY; } /* FIXME: Should we disable the port? */ continue; } xhci->port_array[i] = major_revision; if (major_revision == 0x03) xhci->num_usb3_ports++; else xhci->num_usb2_ports++; } /* FIXME: Should we disable ports not in the Extended Capabilities? */ } /* * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that * specify what speeds each port is supposed to be. We can't count on the port * speed bits in the PORTSC register being correct until a device is connected, * but we need to set up the two fake roothubs with the correct number of USB * 3.0 and USB 2.0 ports at host controller initialization time. */ static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) { __le32 __iomem *addr, *tmp_addr; u32 offset, tmp_offset; unsigned int num_ports; int i, j, port_index; int cap_count = 0; addr = &xhci->cap_regs->hcc_params; offset = XHCI_HCC_EXT_CAPS(readl(addr)); if (offset == 0) { xhci_err(xhci, "No Extended Capability registers, " "unable to set up roothub.\n"); return -ENODEV; } num_ports = HCS_MAX_PORTS(xhci->hcs_params1); xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags); if (!xhci->port_array) return -ENOMEM; xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags); if (!xhci->rh_bw) return -ENOMEM; for (i = 0; i < num_ports; i++) { struct xhci_interval_bw_table *bw_table; INIT_LIST_HEAD(&xhci->rh_bw[i].tts); bw_table = &xhci->rh_bw[i].bw_table; for (j = 0; j < XHCI_MAX_INTERVAL; j++) INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); } /* * For whatever reason, the first capability offset is from the * capability register base, not from the HCCPARAMS register. * See section 5.3.6 for offset calculation. */ addr = &xhci->cap_regs->hc_capbase + offset; tmp_addr = addr; tmp_offset = offset; /* count extended protocol capability entries for later caching */ do { u32 cap_id; cap_id = readl(tmp_addr); if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL) cap_count++; tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id); tmp_addr += tmp_offset; } while (tmp_offset); xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags); if (!xhci->ext_caps) return -ENOMEM; while (1) { u32 cap_id; cap_id = readl(addr); if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL) xhci_add_in_port(xhci, num_ports, addr, (u8) XHCI_EXT_PORT_MAJOR(cap_id), cap_count); offset = XHCI_EXT_CAPS_NEXT(cap_id); if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports) == num_ports) break; /* * Once you're into the Extended Capabilities, the offset is * always relative to the register holding the offset. */ addr += offset; } if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) { xhci_warn(xhci, "No ports on the roothubs?\n"); return -ENODEV; } xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Found %u USB 2.0 ports and %u USB 3.0 ports.", xhci->num_usb2_ports, xhci->num_usb3_ports); /* Place limits on the number of roothub ports so that the hub * descriptors aren't longer than the USB core will allocate. */ if (xhci->num_usb3_ports > 15) { xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Limiting USB 3.0 roothub ports to 15."); xhci->num_usb3_ports = 15; } if (xhci->num_usb2_ports > USB_MAXCHILDREN) { xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Limiting USB 2.0 roothub ports to %u.", USB_MAXCHILDREN); xhci->num_usb2_ports = USB_MAXCHILDREN; } /* * Note we could have all USB 3.0 ports, or all USB 2.0 ports. * Not sure how the USB core will handle a hub with no ports... */ if (xhci->num_usb2_ports) { xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)* xhci->num_usb2_ports, flags); if (!xhci->usb2_ports) return -ENOMEM; port_index = 0; for (i = 0; i < num_ports; i++) { if (xhci->port_array[i] == 0x03 || xhci->port_array[i] == 0 || xhci->port_array[i] == DUPLICATE_ENTRY) continue; xhci->usb2_ports[port_index] = &xhci->op_regs->port_status_base + NUM_PORT_REGS*i; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "USB 2.0 port at index %u, " "addr = %p", i, xhci->usb2_ports[port_index]); port_index++; if (port_index == xhci->num_usb2_ports) break; } } if (xhci->num_usb3_ports) { xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)* xhci->num_usb3_ports, flags); if (!xhci->usb3_ports) return -ENOMEM; port_index = 0; for (i = 0; i < num_ports; i++) if (xhci->port_array[i] == 0x03) { xhci->usb3_ports[port_index] = &xhci->op_regs->port_status_base + NUM_PORT_REGS*i; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "USB 3.0 port at index %u, " "addr = %p", i, xhci->usb3_ports[port_index]); port_index++; if (port_index == xhci->num_usb3_ports) break; } } return 0; } int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) { dma_addr_t dma; struct device *dev = xhci_to_hcd(xhci)->self.controller; unsigned int val, val2; u64 val_64; struct xhci_segment *seg; u32 page_size, temp; int i; INIT_LIST_HEAD(&xhci->cancel_cmd_list); page_size = readl(&xhci->op_regs->page_size); xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Supported page size register = 0x%x", page_size); for (i = 0; i < 16; i++) { if ((0x1 & page_size) != 0) break; page_size = page_size >> 1; } if (i < 16) xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Supported page size of %iK", (1 << (i+12)) / 1024); else xhci_warn(xhci, "WARN: no supported page size\n"); /* Use 4K pages, since that's common and the minimum the HC supports */ xhci->page_shift = 12; xhci->page_size = 1 << xhci->page_shift; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "HCD page size set to %iK", xhci->page_size / 1024); /* * Program the Number of Device Slots Enabled field in the CONFIG * register with the max value of slots the HC can handle. */ val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// xHC can handle at most %d device slots.", val); val2 = readl(&xhci->op_regs->config_reg); val |= (val2 & ~HCS_SLOTS_MASK); xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Setting Max device slots reg = 0x%x.", val); writel(val, &xhci->op_regs->config_reg); /* * Section 5.4.8 - doorbell array must be * "physically contiguous and 64-byte (cache line) aligned". */ xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, GFP_KERNEL); if (!xhci->dcbaa) goto fail; memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); xhci->dcbaa->dma = dma; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Device context base array address = 0x%llx (DMA), %p (virt)", (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); writeq(dma, &xhci->op_regs->dcbaa_ptr); /* * Initialize the ring segment pool. The ring must be a contiguous * structure comprised of TRBs. The TRBs must be 16 byte aligned, * however, the command ring segment needs 64-byte aligned segments, * so we pick the greater alignment need. */ xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, TRB_SEGMENT_SIZE, 64, xhci->page_size); /* See Table 46 and Note on Figure 55 */ xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2112, 64, xhci->page_size); if (!xhci->segment_pool || !xhci->device_pool) goto fail; /* Linear stream context arrays don't have any boundary restrictions, * and only need to be 16-byte aligned. */ xhci->small_streams_pool = dma_pool_create("xHCI 256 byte stream ctx arrays", dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); xhci->medium_streams_pool = dma_pool_create("xHCI 1KB stream ctx arrays", dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE * will be allocated with dma_alloc_coherent() */ if (!xhci->small_streams_pool || !xhci->medium_streams_pool) goto fail; /* Set up the command ring to have one segments for now. */ xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags); if (!xhci->cmd_ring) goto fail; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Allocated command ring at %p", xhci->cmd_ring); xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx", (unsigned long long)xhci->cmd_ring->first_seg->dma); /* Set the address in the Command Ring Control register */ val_64 = readq(&xhci->op_regs->cmd_ring); val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | xhci->cmd_ring->cycle_state; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Setting command ring address to 0x%x", val); writeq(val_64, &xhci->op_regs->cmd_ring); xhci_dbg_cmd_ptrs(xhci); xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags); if (!xhci->lpm_command) goto fail; /* Reserve one command ring TRB for disabling LPM. * Since the USB core grabs the shared usb_bus bandwidth mutex before * disabling LPM, we only need to reserve one TRB for all devices. */ xhci->cmd_ring_reserved_trbs++; val = readl(&xhci->cap_regs->db_off); val &= DBOFF_MASK; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Doorbell array is located at offset 0x%x" " from cap regs base addr", val); xhci->dba = (void __iomem *) xhci->cap_regs + val; xhci_dbg_regs(xhci); xhci_print_run_regs(xhci); /* Set ir_set to interrupt register set 0 */ xhci->ir_set = &xhci->run_regs->ir_set[0]; /* * Event ring setup: Allocate a normal ring, but also setup * the event ring segment table (ERST). Section 4.9.3. */ xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring"); xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, flags); if (!xhci->event_ring) goto fail; if (xhci_check_trb_in_td_math(xhci, flags) < 0) goto fail; xhci->erst.entries = dma_alloc_coherent(dev, sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma, GFP_KERNEL); if (!xhci->erst.entries) goto fail; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocated event ring segment table at 0x%llx", (unsigned long long)dma); memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); xhci->erst.num_entries = ERST_NUM_SEGS; xhci->erst.erst_dma_addr = dma; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx", xhci->erst.num_entries, xhci->erst.entries, (unsigned long long)xhci->erst.erst_dma_addr); /* set ring base address and size for each segment table entry */ for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { struct xhci_erst_entry *entry = &xhci->erst.entries[val]; entry->seg_addr = cpu_to_le64(seg->dma); entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); entry->rsvd = 0; seg = seg->next; } /* set ERST count with the number of entries in the segment table */ val = readl(&xhci->ir_set->erst_size); val &= ERST_SIZE_MASK; val |= ERST_NUM_SEGS; xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Write ERST size = %i to ir_set 0 (some bits preserved)", val); writel(val, &xhci->ir_set->erst_size); xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Set ERST entries to point to event ring."); /* set the segment table base address */ xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Set ERST base address for ir_set 0 = 0x%llx", (unsigned long long)xhci->erst.erst_dma_addr); val_64 = readq(&xhci->ir_set->erst_base); val_64 &= ERST_PTR_MASK; val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); writeq(val_64, &xhci->ir_set->erst_base); /* Set the event ring dequeue address */ xhci_set_hc_event_deq(xhci); xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Wrote ERST address to ir_set 0."); xhci_print_ir_set(xhci, 0); /* * XXX: Might need to set the Interrupter Moderation Register to * something other than the default (~1ms minimum between interrupts). * See section 5.5.1.2. */ init_completion(&xhci->addr_dev); for (i = 0; i < MAX_HC_SLOTS; ++i) xhci->devs[i] = NULL; for (i = 0; i < USB_MAXCHILDREN; ++i) { xhci->bus_state[0].resume_done[i] = 0; xhci->bus_state[1].resume_done[i] = 0; /* Only the USB 2.0 completions will ever be used. */ init_completion(&xhci->bus_state[1].rexit_done[i]); } if (scratchpad_alloc(xhci, flags)) goto fail; if (xhci_setup_port_arrays(xhci, flags)) goto fail; /* Enable USB 3.0 device notifications for function remote wake, which * is necessary for allowing USB 3.0 devices to do remote wakeup from * U3 (device suspend). */ temp = readl(&xhci->op_regs->dev_notification); temp &= ~DEV_NOTE_MASK; temp |= DEV_NOTE_FWAKE; writel(temp, &xhci->op_regs->dev_notification); return 0; fail: xhci_warn(xhci, "Couldn't initialize memory\n"); xhci_halt(xhci); xhci_reset(xhci); xhci_mem_cleanup(xhci); return -ENOMEM; }