/* * xHCI host controller driver * * Copyright (C) 2008 Intel Corp. * * Author: Sarah Sharp * Some code borrowed from the Linux EHCI driver. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifndef __LINUX_XHCI_HCD_H #define __LINUX_XHCI_HCD_H #include #include #include #include /* Code sharing between pci-quirks and xhci hcd */ #include "xhci-ext-caps.h" #include "pci-quirks.h" /* xHCI PCI Configuration Registers */ #define XHCI_SBRN_OFFSET (0x60) /* Max number of USB devices for any host controller - limit in section 6.1 */ #define MAX_HC_SLOTS 256 /* Section 5.3.3 - MaxPorts */ #define MAX_HC_PORTS 127 /* * xHCI register interface. * This corresponds to the eXtensible Host Controller Interface (xHCI) * Revision 0.95 specification */ /** * struct xhci_cap_regs - xHCI Host Controller Capability Registers. * @hc_capbase: length of the capabilities register and HC version number * @hcs_params1: HCSPARAMS1 - Structural Parameters 1 * @hcs_params2: HCSPARAMS2 - Structural Parameters 2 * @hcs_params3: HCSPARAMS3 - Structural Parameters 3 * @hcc_params: HCCPARAMS - Capability Parameters * @db_off: DBOFF - Doorbell array offset * @run_regs_off: RTSOFF - Runtime register space offset */ struct xhci_cap_regs { __le32 hc_capbase; __le32 hcs_params1; __le32 hcs_params2; __le32 hcs_params3; __le32 hcc_params; __le32 db_off; __le32 run_regs_off; /* Reserved up to (CAPLENGTH - 0x1C) */ }; /* hc_capbase bitmasks */ /* bits 7:0 - how long is the Capabilities register */ #define HC_LENGTH(p) XHCI_HC_LENGTH(p) /* bits 31:16 */ #define HC_VERSION(p) (((p) >> 16) & 0xffff) /* HCSPARAMS1 - hcs_params1 - bitmasks */ /* bits 0:7, Max Device Slots */ #define HCS_MAX_SLOTS(p) (((p) >> 0) & 0xff) #define HCS_SLOTS_MASK 0xff /* bits 8:18, Max Interrupters */ #define HCS_MAX_INTRS(p) (((p) >> 8) & 0x7ff) /* bits 24:31, Max Ports - max value is 0x7F = 127 ports */ #define HCS_MAX_PORTS(p) (((p) >> 24) & 0x7f) /* HCSPARAMS2 - hcs_params2 - bitmasks */ /* bits 0:3, frames or uframes that SW needs to queue transactions * ahead of the HW to meet periodic deadlines */ #define HCS_IST(p) (((p) >> 0) & 0xf) /* bits 4:7, max number of Event Ring segments */ #define HCS_ERST_MAX(p) (((p) >> 4) & 0xf) /* bit 26 Scratchpad restore - for save/restore HW state - not used yet */ /* bits 27:31 number of Scratchpad buffers SW must allocate for the HW */ #define HCS_MAX_SCRATCHPAD(p) (((p) >> 27) & 0x1f) /* HCSPARAMS3 - hcs_params3 - bitmasks */ /* bits 0:7, Max U1 to U0 latency for the roothub ports */ #define HCS_U1_LATENCY(p) (((p) >> 0) & 0xff) /* bits 16:31, Max U2 to U0 latency for the roothub ports */ #define HCS_U2_LATENCY(p) (((p) >> 16) & 0xffff) /* HCCPARAMS - hcc_params - bitmasks */ /* true: HC can use 64-bit address pointers */ #define HCC_64BIT_ADDR(p) ((p) & (1 << 0)) /* true: HC can do bandwidth negotiation */ #define HCC_BANDWIDTH_NEG(p) ((p) & (1 << 1)) /* true: HC uses 64-byte Device Context structures * FIXME 64-byte context structures aren't supported yet. */ #define HCC_64BYTE_CONTEXT(p) ((p) & (1 << 2)) /* true: HC has port power switches */ #define HCC_PPC(p) ((p) & (1 << 3)) /* true: HC has port indicators */ #define HCS_INDICATOR(p) ((p) & (1 << 4)) /* true: HC has Light HC Reset Capability */ #define HCC_LIGHT_RESET(p) ((p) & (1 << 5)) /* true: HC supports latency tolerance messaging */ #define HCC_LTC(p) ((p) & (1 << 6)) /* true: no secondary Stream ID Support */ #define HCC_NSS(p) ((p) & (1 << 7)) /* Max size for Primary Stream Arrays - 2^(n+1), where n is bits 12:15 */ #define HCC_MAX_PSA(p) (1 << ((((p) >> 12) & 0xf) + 1)) /* Extended Capabilities pointer from PCI base - section 5.3.6 */ #define HCC_EXT_CAPS(p) XHCI_HCC_EXT_CAPS(p) /* db_off bitmask - bits 0:1 reserved */ #define DBOFF_MASK (~0x3) /* run_regs_off bitmask - bits 0:4 reserved */ #define RTSOFF_MASK (~0x1f) /* Number of registers per port */ #define NUM_PORT_REGS 4 /** * struct xhci_op_regs - xHCI Host Controller Operational Registers. * @command: USBCMD - xHC command register * @status: USBSTS - xHC status register * @page_size: This indicates the page size that the host controller * supports. If bit n is set, the HC supports a page size * of 2^(n+12), up to a 128MB page size. * 4K is the minimum page size. * @cmd_ring: CRP - 64-bit Command Ring Pointer * @dcbaa_ptr: DCBAAP - 64-bit Device Context Base Address Array Pointer * @config_reg: CONFIG - Configure Register * @port_status_base: PORTSCn - base address for Port Status and Control * Each port has a Port Status and Control register, * followed by a Port Power Management Status and Control * register, a Port Link Info register, and a reserved * register. * @port_power_base: PORTPMSCn - base address for * Port Power Management Status and Control * @port_link_base: PORTLIn - base address for Port Link Info (current * Link PM state and control) for USB 2.1 and USB 3.0 * devices. */ struct xhci_op_regs { __le32 command; __le32 status; __le32 page_size; __le32 reserved1; __le32 reserved2; __le32 dev_notification; __le64 cmd_ring; /* rsvd: offset 0x20-2F */ __le32 reserved3[4]; __le64 dcbaa_ptr; __le32 config_reg; /* rsvd: offset 0x3C-3FF */ __le32 reserved4[241]; /* port 1 registers, which serve as a base address for other ports */ __le32 port_status_base; __le32 port_power_base; __le32 port_link_base; __le32 reserved5; /* registers for ports 2-255 */ __le32 reserved6[NUM_PORT_REGS*254]; }; /* USBCMD - USB command - command bitmasks */ /* start/stop HC execution - do not write unless HC is halted*/ #define CMD_RUN XHCI_CMD_RUN /* Reset HC - resets internal HC state machine and all registers (except * PCI config regs). HC does NOT drive a USB reset on the downstream ports. * The xHCI driver must reinitialize the xHC after setting this bit. */ #define CMD_RESET (1 << 1) /* Event Interrupt Enable - a '1' allows interrupts from the host controller */ #define CMD_EIE XHCI_CMD_EIE /* Host System Error Interrupt Enable - get out-of-band signal for HC errors */ #define CMD_HSEIE XHCI_CMD_HSEIE /* bits 4:6 are reserved (and should be preserved on writes). */ /* light reset (port status stays unchanged) - reset completed when this is 0 */ #define CMD_LRESET (1 << 7) /* host controller save/restore state. */ #define CMD_CSS (1 << 8) #define CMD_CRS (1 << 9) /* Enable Wrap Event - '1' means xHC generates an event when MFINDEX wraps. */ #define CMD_EWE XHCI_CMD_EWE /* MFINDEX power management - '1' means xHC can stop MFINDEX counter if all root * hubs are in U3 (selective suspend), disconnect, disabled, or powered-off. * '0' means the xHC can power it off if all ports are in the disconnect, * disabled, or powered-off state. */ #define CMD_PM_INDEX (1 << 11) /* bits 12:31 are reserved (and should be preserved on writes). */ /* IMAN - Interrupt Management Register */ #define IMAN_IP (1 << 1) #define IMAN_IE (1 << 0) /* USBSTS - USB status - status bitmasks */ /* HC not running - set to 1 when run/stop bit is cleared. */ #define STS_HALT XHCI_STS_HALT /* serious error, e.g. PCI parity error. The HC will clear the run/stop bit. */ #define STS_FATAL (1 << 2) /* event interrupt - clear this prior to clearing any IP flags in IR set*/ #define STS_EINT (1 << 3) /* port change detect */ #define STS_PORT (1 << 4) /* bits 5:7 reserved and zeroed */ /* save state status - '1' means xHC is saving state */ #define STS_SAVE (1 << 8) /* restore state status - '1' means xHC is restoring state */ #define STS_RESTORE (1 << 9) /* true: save or restore error */ #define STS_SRE (1 << 10) /* true: Controller Not Ready to accept doorbell or op reg writes after reset */ #define STS_CNR XHCI_STS_CNR /* true: internal Host Controller Error - SW needs to reset and reinitialize */ #define STS_HCE (1 << 12) /* bits 13:31 reserved and should be preserved */ /* * DNCTRL - Device Notification Control Register - dev_notification bitmasks * Generate a device notification event when the HC sees a transaction with a * notification type that matches a bit set in this bit field. */ #define DEV_NOTE_MASK (0xffff) #define ENABLE_DEV_NOTE(x) (1 << (x)) /* Most of the device notification types should only be used for debug. * SW does need to pay attention to function wake notifications. */ #define DEV_NOTE_FWAKE ENABLE_DEV_NOTE(1) /* CRCR - Command Ring Control Register - cmd_ring bitmasks */ /* bit 0 is the command ring cycle state */ /* stop ring operation after completion of the currently executing command */ #define CMD_RING_PAUSE (1 << 1) /* stop ring immediately - abort the currently executing command */ #define CMD_RING_ABORT (1 << 2) /* true: command ring is running */ #define CMD_RING_RUNNING (1 << 3) /* bits 4:5 reserved and should be preserved */ /* Command Ring pointer - bit mask for the lower 32 bits. */ #define CMD_RING_RSVD_BITS (0x3f) /* CONFIG - Configure Register - config_reg bitmasks */ /* bits 0:7 - maximum number of device slots enabled (NumSlotsEn) */ #define MAX_DEVS(p) ((p) & 0xff) /* bits 8:31 - reserved and should be preserved */ /* PORTSC - Port Status and Control Register - port_status_base bitmasks */ /* true: device connected */ #define PORT_CONNECT (1 << 0) /* true: port enabled */ #define PORT_PE (1 << 1) /* bit 2 reserved and zeroed */ /* true: port has an over-current condition */ #define PORT_OC (1 << 3) /* true: port reset signaling asserted */ #define PORT_RESET (1 << 4) /* Port Link State - bits 5:8 * A read gives the current link PM state of the port, * a write with Link State Write Strobe set sets the link state. */ #define PORT_PLS_MASK (0xf << 5) #define XDEV_U0 (0x0 << 5) #define XDEV_U3 (0x3 << 5) #define XDEV_RESUME (0xf << 5) /* true: port has power (see HCC_PPC) */ #define PORT_POWER (1 << 9) /* bits 10:13 indicate device speed: * 0 - undefined speed - port hasn't be initialized by a reset yet * 1 - full speed * 2 - low speed * 3 - high speed * 4 - super speed * 5-15 reserved */ #define DEV_SPEED_MASK (0xf << 10) #define XDEV_FS (0x1 << 10) #define XDEV_LS (0x2 << 10) #define XDEV_HS (0x3 << 10) #define XDEV_SS (0x4 << 10) #define DEV_UNDEFSPEED(p) (((p) & DEV_SPEED_MASK) == (0x0<<10)) #define DEV_FULLSPEED(p) (((p) & DEV_SPEED_MASK) == XDEV_FS) #define DEV_LOWSPEED(p) (((p) & DEV_SPEED_MASK) == XDEV_LS) #define DEV_HIGHSPEED(p) (((p) & DEV_SPEED_MASK) == XDEV_HS) #define DEV_SUPERSPEED(p) (((p) & DEV_SPEED_MASK) == XDEV_SS) /* Bits 20:23 in the Slot Context are the speed for the device */ #define SLOT_SPEED_FS (XDEV_FS << 10) #define SLOT_SPEED_LS (XDEV_LS << 10) #define SLOT_SPEED_HS (XDEV_HS << 10) #define SLOT_SPEED_SS (XDEV_SS << 10) /* Port Indicator Control */ #define PORT_LED_OFF (0 << 14) #define PORT_LED_AMBER (1 << 14) #define PORT_LED_GREEN (2 << 14) #define PORT_LED_MASK (3 << 14) /* Port Link State Write Strobe - set this when changing link state */ #define PORT_LINK_STROBE (1 << 16) /* true: connect status change */ #define PORT_CSC (1 << 17) /* true: port enable change */ #define PORT_PEC (1 << 18) /* true: warm reset for a USB 3.0 device is done. A "hot" reset puts the port * into an enabled state, and the device into the default state. A "warm" reset * also resets the link, forcing the device through the link training sequence. * SW can also look at the Port Reset register to see when warm reset is done. */ #define PORT_WRC (1 << 19) /* true: over-current change */ #define PORT_OCC (1 << 20) /* true: reset change - 1 to 0 transition of PORT_RESET */ #define PORT_RC (1 << 21) /* port link status change - set on some port link state transitions: * Transition Reason * ------------------------------------------------------------------------------ * - U3 to Resume Wakeup signaling from a device * - Resume to Recovery to U0 USB 3.0 device resume * - Resume to U0 USB 2.0 device resume * - U3 to Recovery to U0 Software resume of USB 3.0 device complete * - U3 to U0 Software resume of USB 2.0 device complete * - U2 to U0 L1 resume of USB 2.1 device complete * - U0 to U0 (???) L1 entry rejection by USB 2.1 device * - U0 to disabled L1 entry error with USB 2.1 device * - Any state to inactive Error on USB 3.0 port */ #define PORT_PLC (1 << 22) /* port configure error change - port failed to configure its link partner */ #define PORT_CEC (1 << 23) /* bit 24 reserved */ /* wake on connect (enable) */ #define PORT_WKCONN_E (1 << 25) /* wake on disconnect (enable) */ #define PORT_WKDISC_E (1 << 26) /* wake on over-current (enable) */ #define PORT_WKOC_E (1 << 27) /* bits 28:29 reserved */ /* true: device is removable - for USB 3.0 roothub emulation */ #define PORT_DEV_REMOVE (1 << 30) /* Initiate a warm port reset - complete when PORT_WRC is '1' */ #define PORT_WR (1 << 31) /* We mark duplicate entries with -1 */ #define DUPLICATE_ENTRY ((u8)(-1)) /* Port Power Management Status and Control - port_power_base bitmasks */ /* Inactivity timer value for transitions into U1, in microseconds. * Timeout can be up to 127us. 0xFF means an infinite timeout. */ #define PORT_U1_TIMEOUT(p) ((p) & 0xff) /* Inactivity timer value for transitions into U2 */ #define PORT_U2_TIMEOUT(p) (((p) & 0xff) << 8) /* Bits 24:31 for port testing */ /* USB2 Protocol PORTSPMSC */ #define PORT_RWE (1 << 0x3) /** * struct xhci_intr_reg - Interrupt Register Set * @irq_pending: IMAN - Interrupt Management Register. Used to enable * interrupts and check for pending interrupts. * @irq_control: IMOD - Interrupt Moderation Register. * Used to throttle interrupts. * @erst_size: Number of segments in the Event Ring Segment Table (ERST). * @erst_base: ERST base address. * @erst_dequeue: Event ring dequeue pointer. * * Each interrupter (defined by a MSI-X vector) has an event ring and an Event * Ring Segment Table (ERST) associated with it. The event ring is comprised of * multiple segments of the same size. The HC places events on the ring and * "updates the Cycle bit in the TRBs to indicate to software the current * position of the Enqueue Pointer." The HCD (Linux) processes those events and * updates the dequeue pointer. */ struct xhci_intr_reg { __le32 irq_pending; __le32 irq_control; __le32 erst_size; __le32 rsvd; __le64 erst_base; __le64 erst_dequeue; }; /* irq_pending bitmasks */ #define ER_IRQ_PENDING(p) ((p) & 0x1) /* bits 2:31 need to be preserved */ /* THIS IS BUGGY - FIXME - IP IS WRITE 1 TO CLEAR */ #define ER_IRQ_CLEAR(p) ((p) & 0xfffffffe) #define ER_IRQ_ENABLE(p) ((ER_IRQ_CLEAR(p)) | 0x2) #define ER_IRQ_DISABLE(p) ((ER_IRQ_CLEAR(p)) & ~(0x2)) /* irq_control bitmasks */ /* Minimum interval between interrupts (in 250ns intervals). The interval * between interrupts will be longer if there are no events on the event ring. * Default is 4000 (1 ms). */ #define ER_IRQ_INTERVAL_MASK (0xffff) /* Counter used to count down the time to the next interrupt - HW use only */ #define ER_IRQ_COUNTER_MASK (0xffff << 16) /* erst_size bitmasks */ /* Preserve bits 16:31 of erst_size */ #define ERST_SIZE_MASK (0xffff << 16) /* erst_dequeue bitmasks */ /* Dequeue ERST Segment Index (DESI) - Segment number (or alias) * where the current dequeue pointer lies. This is an optional HW hint. */ #define ERST_DESI_MASK (0x7) /* Event Handler Busy (EHB) - is the event ring scheduled to be serviced by * a work queue (or delayed service routine)? */ #define ERST_EHB (1 << 3) #define ERST_PTR_MASK (0xf) /** * struct xhci_run_regs * @microframe_index: * MFINDEX - current microframe number * * Section 5.5 Host Controller Runtime Registers: * "Software should read and write these registers using only Dword (32 bit) * or larger accesses" */ struct xhci_run_regs { __le32 microframe_index; __le32 rsvd[7]; struct xhci_intr_reg ir_set[128]; }; /** * struct doorbell_array * * Bits 0 - 7: Endpoint target * Bits 8 - 15: RsvdZ * Bits 16 - 31: Stream ID * * Section 5.6 */ struct xhci_doorbell_array { __le32 doorbell[256]; }; #define DB_VALUE(ep, stream) ((((ep) + 1) & 0xff) | ((stream) << 16)) #define DB_VALUE_HOST 0x00000000 /** * struct xhci_protocol_caps * @revision: major revision, minor revision, capability ID, * and next capability pointer. * @name_string: Four ASCII characters to say which spec this xHC * follows, typically "USB ". * @port_info: Port offset, count, and protocol-defined information. */ struct xhci_protocol_caps { u32 revision; u32 name_string; u32 port_info; }; #define XHCI_EXT_PORT_MAJOR(x) (((x) >> 24) & 0xff) #define XHCI_EXT_PORT_OFF(x) ((x) & 0xff) #define XHCI_EXT_PORT_COUNT(x) (((x) >> 8) & 0xff) /** * struct xhci_container_ctx * @type: Type of context. Used to calculated offsets to contained contexts. * @size: Size of the context data * @bytes: The raw context data given to HW * @dma: dma address of the bytes * * Represents either a Device or Input context. Holds a pointer to the raw * memory used for the context (bytes) and dma address of it (dma). */ struct xhci_container_ctx { unsigned type; #define XHCI_CTX_TYPE_DEVICE 0x1 #define XHCI_CTX_TYPE_INPUT 0x2 int size; u8 *bytes; dma_addr_t dma; }; /** * struct xhci_slot_ctx * @dev_info: Route string, device speed, hub info, and last valid endpoint * @dev_info2: Max exit latency for device number, root hub port number * @tt_info: tt_info is used to construct split transaction tokens * @dev_state: slot state and device address * * Slot Context - section 6.2.1.1. This assumes the HC uses 32-byte context * structures. If the HC uses 64-byte contexts, there is an additional 32 bytes * reserved at the end of the slot context for HC internal use. */ struct xhci_slot_ctx { __le32 dev_info; __le32 dev_info2; __le32 tt_info; __le32 dev_state; /* offset 0x10 to 0x1f reserved for HC internal use */ __le32 reserved[4]; }; /* dev_info bitmasks */ /* Route String - 0:19 */ #define ROUTE_STRING_MASK (0xfffff) /* Device speed - values defined by PORTSC Device Speed field - 20:23 */ #define DEV_SPEED (0xf << 20) /* bit 24 reserved */ /* Is this LS/FS device connected through a HS hub? - bit 25 */ #define DEV_MTT (0x1 << 25) /* Set if the device is a hub - bit 26 */ #define DEV_HUB (0x1 << 26) /* Index of the last valid endpoint context in this device context - 27:31 */ #define LAST_CTX_MASK (0x1f << 27) #define LAST_CTX(p) ((p) << 27) #define LAST_CTX_TO_EP_NUM(p) (((p) >> 27) - 1) #define SLOT_FLAG (1 << 0) #define EP0_FLAG (1 << 1) /* dev_info2 bitmasks */ /* Max Exit Latency (ms) - worst case time to wake up all links in dev path */ #define MAX_EXIT (0xffff) /* Root hub port number that is needed to access the USB device */ #define ROOT_HUB_PORT(p) (((p) & 0xff) << 16) #define DEVINFO_TO_ROOT_HUB_PORT(p) (((p) >> 16) & 0xff) /* Maximum number of ports under a hub device */ #define XHCI_MAX_PORTS(p) (((p) & 0xff) << 24) /* tt_info bitmasks */ /* * TT Hub Slot ID - for low or full speed devices attached to a high-speed hub * The Slot ID of the hub that isolates the high speed signaling from * this low or full-speed device. '0' if attached to root hub port. */ #define TT_SLOT (0xff) /* * The number of the downstream facing port of the high-speed hub * '0' if the device is not low or full speed. */ #define TT_PORT (0xff << 8) #define TT_THINK_TIME(p) (((p) & 0x3) << 16) /* dev_state bitmasks */ /* USB device address - assigned by the HC */ #define DEV_ADDR_MASK (0xff) /* bits 8:26 reserved */ /* Slot state */ #define SLOT_STATE (0x1f << 27) #define GET_SLOT_STATE(p) (((p) & (0x1f << 27)) >> 27) #define SLOT_STATE_DISABLED 0 #define SLOT_STATE_ENABLED SLOT_STATE_DISABLED #define SLOT_STATE_DEFAULT 1 #define SLOT_STATE_ADDRESSED 2 #define SLOT_STATE_CONFIGURED 3 /** * struct xhci_ep_ctx * @ep_info: endpoint state, streams, mult, and interval information. * @ep_info2: information on endpoint type, max packet size, max burst size, * error count, and whether the HC will force an event for all * transactions. * @deq: 64-bit ring dequeue pointer address. If the endpoint only * defines one stream, this points to the endpoint transfer ring. * Otherwise, it points to a stream context array, which has a * ring pointer for each flow. * @tx_info: * Average TRB lengths for the endpoint ring and * max payload within an Endpoint Service Interval Time (ESIT). * * Endpoint Context - section 6.2.1.2. This assumes the HC uses 32-byte context * structures. If the HC uses 64-byte contexts, there is an additional 32 bytes * reserved at the end of the endpoint context for HC internal use. */ struct xhci_ep_ctx { __le32 ep_info; __le32 ep_info2; __le64 deq; __le32 tx_info; /* offset 0x14 - 0x1f reserved for HC internal use */ __le32 reserved[3]; }; /* ep_info bitmasks */ /* * Endpoint State - bits 0:2 * 0 - disabled * 1 - running * 2 - halted due to halt condition - ok to manipulate endpoint ring * 3 - stopped * 4 - TRB error * 5-7 - reserved */ #define EP_STATE_MASK (0xf) #define EP_STATE_DISABLED 0 #define EP_STATE_RUNNING 1 #define EP_STATE_HALTED 2 #define EP_STATE_STOPPED 3 #define EP_STATE_ERROR 4 /* Mult - Max number of burtst within an interval, in EP companion desc. */ #define EP_MULT(p) (((p) & 0x3) << 8) /* bits 10:14 are Max Primary Streams */ /* bit 15 is Linear Stream Array */ /* Interval - period between requests to an endpoint - 125u increments. */ #define EP_INTERVAL(p) (((p) & 0xff) << 16) #define EP_INTERVAL_TO_UFRAMES(p) (1 << (((p) >> 16) & 0xff)) #define EP_MAXPSTREAMS_MASK (0x1f << 10) #define EP_MAXPSTREAMS(p) (((p) << 10) & EP_MAXPSTREAMS_MASK) /* Endpoint is set up with a Linear Stream Array (vs. Secondary Stream Array) */ #define EP_HAS_LSA (1 << 15) /* ep_info2 bitmasks */ /* * Force Event - generate transfer events for all TRBs for this endpoint * This will tell the HC to ignore the IOC and ISP flags (for debugging only). */ #define FORCE_EVENT (0x1) #define ERROR_COUNT(p) (((p) & 0x3) << 1) #define CTX_TO_EP_TYPE(p) (((p) >> 3) & 0x7) #define EP_TYPE(p) ((p) << 3) #define ISOC_OUT_EP 1 #define BULK_OUT_EP 2 #define INT_OUT_EP 3 #define CTRL_EP 4 #define ISOC_IN_EP 5 #define BULK_IN_EP 6 #define INT_IN_EP 7 /* bit 6 reserved */ /* bit 7 is Host Initiate Disable - for disabling stream selection */ #define MAX_BURST(p) (((p)&0xff) << 8) #define MAX_PACKET(p) (((p)&0xffff) << 16) #define MAX_PACKET_MASK (0xffff << 16) #define MAX_PACKET_DECODED(p) (((p) >> 16) & 0xffff) /* Get max packet size from ep desc. Bit 10..0 specify the max packet size. * USB2.0 spec 9.6.6. */ #define GET_MAX_PACKET(p) ((p) & 0x7ff) /* tx_info bitmasks */ #define AVG_TRB_LENGTH_FOR_EP(p) ((p) & 0xffff) #define MAX_ESIT_PAYLOAD_FOR_EP(p) (((p) & 0xffff) << 16) /* deq bitmasks */ #define EP_CTX_CYCLE_MASK (1 << 0) /** * struct xhci_input_control_context * Input control context; see section 6.2.5. * * @drop_context: set the bit of the endpoint context you want to disable * @add_context: set the bit of the endpoint context you want to enable */ struct xhci_input_control_ctx { __le32 drop_flags; __le32 add_flags; __le32 rsvd2[6]; }; /* Represents everything that is needed to issue a command on the command ring. * It's useful to pre-allocate these for commands that cannot fail due to * out-of-memory errors, like freeing streams. */ struct xhci_command { /* Input context for changing device state */ struct xhci_container_ctx *in_ctx; u32 status; /* If completion is null, no one is waiting on this command * and the structure can be freed after the command completes. */ struct completion *completion; union xhci_trb *command_trb; struct list_head cmd_list; }; /* drop context bitmasks */ #define DROP_EP(x) (0x1 << x) /* add context bitmasks */ #define ADD_EP(x) (0x1 << x) struct xhci_stream_ctx { /* 64-bit stream ring address, cycle state, and stream type */ __le64 stream_ring; /* offset 0x14 - 0x1f reserved for HC internal use */ __le32 reserved[2]; }; /* Stream Context Types (section 6.4.1) - bits 3:1 of stream ctx deq ptr */ #define SCT_FOR_CTX(p) (((p) << 1) & 0x7) /* Secondary stream array type, dequeue pointer is to a transfer ring */ #define SCT_SEC_TR 0 /* Primary stream array type, dequeue pointer is to a transfer ring */ #define SCT_PRI_TR 1 /* Dequeue pointer is for a secondary stream array (SSA) with 8 entries */ #define SCT_SSA_8 2 #define SCT_SSA_16 3 #define SCT_SSA_32 4 #define SCT_SSA_64 5 #define SCT_SSA_128 6 #define SCT_SSA_256 7 /* Assume no secondary streams for now */ struct xhci_stream_info { struct xhci_ring **stream_rings; /* Number of streams, including stream 0 (which drivers can't use) */ unsigned int num_streams; /* The stream context array may be bigger than * the number of streams the driver asked for */ struct xhci_stream_ctx *stream_ctx_array; unsigned int num_stream_ctxs; dma_addr_t ctx_array_dma; /* For mapping physical TRB addresses to segments in stream rings */ struct radix_tree_root trb_address_map; struct xhci_command *free_streams_command; }; #define SMALL_STREAM_ARRAY_SIZE 256 #define MEDIUM_STREAM_ARRAY_SIZE 1024 struct xhci_virt_ep { struct xhci_ring *ring; /* Related to endpoints that are configured to use stream IDs only */ struct xhci_stream_info *stream_info; /* Temporary storage in case the configure endpoint command fails and we * have to restore the device state to the previous state */ struct xhci_ring *new_ring; unsigned int ep_state; #define SET_DEQ_PENDING (1 << 0) #define EP_HALTED (1 << 1) /* For stall handling */ #define EP_HALT_PENDING (1 << 2) /* For URB cancellation */ /* Transitioning the endpoint to using streams, don't enqueue URBs */ #define EP_GETTING_STREAMS (1 << 3) #define EP_HAS_STREAMS (1 << 4) /* Transitioning the endpoint to not using streams, don't enqueue URBs */ #define EP_GETTING_NO_STREAMS (1 << 5) /* ---- Related to URB cancellation ---- */ struct list_head cancelled_td_list; /* The TRB that was last reported in a stopped endpoint ring */ union xhci_trb *stopped_trb; struct xhci_td *stopped_td; unsigned int stopped_stream; /* Watchdog timer for stop endpoint command to cancel URBs */ struct timer_list stop_cmd_timer; int stop_cmds_pending; struct xhci_hcd *xhci; /* Dequeue pointer and dequeue segment for a submitted Set TR Dequeue * command. We'll need to update the ring's dequeue segment and dequeue * pointer after the command completes. */ struct xhci_segment *queued_deq_seg; union xhci_trb *queued_deq_ptr; /* * Sometimes the xHC can not process isochronous endpoint ring quickly * enough, and it will miss some isoc tds on the ring and generate * a Missed Service Error Event. * Set skip flag when receive a Missed Service Error Event and * process the missed tds on the endpoint ring. */ bool skip; }; struct xhci_virt_device { struct usb_device *udev; /* * Commands to the hardware are passed an "input context" that * tells the hardware what to change in its data structures. * The hardware will return changes in an "output context" that * software must allocate for the hardware. We need to keep * track of input and output contexts separately because * these commands might fail and we don't trust the hardware. */ struct xhci_container_ctx *out_ctx; /* Used for addressing devices and configuration changes */ struct xhci_container_ctx *in_ctx; /* Rings saved to ensure old alt settings can be re-instated */ struct xhci_ring **ring_cache; int num_rings_cached; /* Store xHC assigned device address */ int address; #define XHCI_MAX_RINGS_CACHED 31 struct xhci_virt_ep eps[31]; struct completion cmd_completion; /* Status of the last command issued for this device */ u32 cmd_status; struct list_head cmd_list; u8 port; }; /** * struct xhci_device_context_array * @dev_context_ptr array of 64-bit DMA addresses for device contexts */ struct xhci_device_context_array { /* 64-bit device addresses; we only write 32-bit addresses */ __le64 dev_context_ptrs[MAX_HC_SLOTS]; /* private xHCD pointers */ dma_addr_t dma; }; /* TODO: write function to set the 64-bit device DMA address */ /* * TODO: change this to be dynamically sized at HC mem init time since the HC * might not be able to handle the maximum number of devices possible. */ struct xhci_transfer_event { /* 64-bit buffer address, or immediate data */ __le64 buffer; __le32 transfer_len; /* This field is interpreted differently based on the type of TRB */ __le32 flags; }; /** Transfer Event bit fields **/ #define TRB_TO_EP_ID(p) (((p) >> 16) & 0x1f) /* Completion Code - only applicable for some types of TRBs */ #define COMP_CODE_MASK (0xff << 24) #define GET_COMP_CODE(p) (((p) & COMP_CODE_MASK) >> 24) #define COMP_SUCCESS 1 /* Data Buffer Error */ #define COMP_DB_ERR 2 /* Babble Detected Error */ #define COMP_BABBLE 3 /* USB Transaction Error */ #define COMP_TX_ERR 4 /* TRB Error - some TRB field is invalid */ #define COMP_TRB_ERR 5 /* Stall Error - USB device is stalled */ #define COMP_STALL 6 /* Resource Error - HC doesn't have memory for that device configuration */ #define COMP_ENOMEM 7 /* Bandwidth Error - not enough room in schedule for this dev config */ #define COMP_BW_ERR 8 /* No Slots Available Error - HC ran out of device slots */ #define COMP_ENOSLOTS 9 /* Invalid Stream Type Error */ #define COMP_STREAM_ERR 10 /* Slot Not Enabled Error - doorbell rung for disabled device slot */ #define COMP_EBADSLT 11 /* Endpoint Not Enabled Error */ #define COMP_EBADEP 12 /* Short Packet */ #define COMP_SHORT_TX 13 /* Ring Underrun - doorbell rung for an empty isoc OUT ep ring */ #define COMP_UNDERRUN 14 /* Ring Overrun - isoc IN ep ring is empty when ep is scheduled to RX */ #define COMP_OVERRUN 15 /* Virtual Function Event Ring Full Error */ #define COMP_VF_FULL 16 /* Parameter Error - Context parameter is invalid */ #define COMP_EINVAL 17 /* Bandwidth Overrun Error - isoc ep exceeded its allocated bandwidth */ #define COMP_BW_OVER 18 /* Context State Error - illegal context state transition requested */ #define COMP_CTX_STATE 19 /* No Ping Response Error - HC didn't get PING_RESPONSE in time to TX */ #define COMP_PING_ERR 20 /* Event Ring is full */ #define COMP_ER_FULL 21 /* Incompatible Device Error */ #define COMP_DEV_ERR 22 /* Missed Service Error - HC couldn't service an isoc ep within interval */ #define COMP_MISSED_INT 23 /* Successfully stopped command ring */ #define COMP_CMD_STOP 24 /* Successfully aborted current command and stopped command ring */ #define COMP_CMD_ABORT 25 /* Stopped - transfer was terminated by a stop endpoint command */ #define COMP_STOP 26 /* Same as COMP_EP_STOPPED, but the transferred length in the event is invalid */ #define COMP_STOP_INVAL 27 /* Control Abort Error - Debug Capability - control pipe aborted */ #define COMP_DBG_ABORT 28 /* Max Exit Latency Too Large Error */ #define COMP_MEL_ERR 29 /* TRB type 30 reserved */ /* Isoc Buffer Overrun - an isoc IN ep sent more data than could fit in TD */ #define COMP_BUFF_OVER 31 /* Event Lost Error - xHC has an "internal event overrun condition" */ #define COMP_ISSUES 32 /* Undefined Error - reported when other error codes don't apply */ #define COMP_UNKNOWN 33 /* Invalid Stream ID Error */ #define COMP_STRID_ERR 34 /* Secondary Bandwidth Error - may be returned by a Configure Endpoint cmd */ #define COMP_2ND_BW_ERR 35 /* Split Transaction Error */ #define COMP_SPLIT_ERR 36 struct xhci_link_trb { /* 64-bit segment pointer*/ __le64 segment_ptr; __le32 intr_target; __le32 control; }; /* control bitfields */ #define LINK_TOGGLE (0x1<<1) /* Command completion event TRB */ struct xhci_event_cmd { /* Pointer to command TRB, or the value passed by the event data trb */ __le64 cmd_trb; __le32 status; __le32 flags; }; /* flags bitmasks */ /* bits 16:23 are the virtual function ID */ /* bits 24:31 are the slot ID */ #define TRB_TO_SLOT_ID(p) (((p) & (0xff<<24)) >> 24) #define SLOT_ID_FOR_TRB(p) (((p) & 0xff) << 24) /* Stop Endpoint TRB - ep_index to endpoint ID for this TRB */ #define TRB_TO_EP_INDEX(p) ((((p) & (0x1f << 16)) >> 16) - 1) #define EP_ID_FOR_TRB(p) ((((p) + 1) & 0x1f) << 16) #define SUSPEND_PORT_FOR_TRB(p) (((p) & 1) << 23) #define TRB_TO_SUSPEND_PORT(p) (((p) & (1 << 23)) >> 23) #define LAST_EP_INDEX 30 /* Set TR Dequeue Pointer command TRB fields */ #define TRB_TO_STREAM_ID(p) ((((p) & (0xffff << 16)) >> 16)) #define STREAM_ID_FOR_TRB(p) ((((p)) & 0xffff) << 16) /* Port Status Change Event TRB fields */ /* Port ID - bits 31:24 */ #define GET_PORT_ID(p) (((p) & (0xff << 24)) >> 24) /* Normal TRB fields */ /* transfer_len bitmasks - bits 0:16 */ #define TRB_LEN(p) ((p) & 0x1ffff) /* Interrupter Target - which MSI-X vector to target the completion event at */ #define TRB_INTR_TARGET(p) (((p) & 0x3ff) << 22) #define GET_INTR_TARGET(p) (((p) >> 22) & 0x3ff) #define TRB_TBC(p) (((p) & 0x3) << 7) #define TRB_TLBPC(p) (((p) & 0xf) << 16) /* Cycle bit - indicates TRB ownership by HC or HCD */ #define TRB_CYCLE (1<<0) /* * Force next event data TRB to be evaluated before task switch. * Used to pass OS data back after a TD completes. */ #define TRB_ENT (1<<1) /* Interrupt on short packet */ #define TRB_ISP (1<<2) /* Set PCIe no snoop attribute */ #define TRB_NO_SNOOP (1<<3) /* Chain multiple TRBs into a TD */ #define TRB_CHAIN (1<<4) /* Interrupt on completion */ #define TRB_IOC (1<<5) /* The buffer pointer contains immediate data */ #define TRB_IDT (1<<6) /* Block Event Interrupt */ #define TRB_BEI (1<<9) /* Control transfer TRB specific fields */ #define TRB_DIR_IN (1<<16) #define TRB_TX_TYPE(p) ((p) << 16) #define TRB_DATA_OUT 2 #define TRB_DATA_IN 3 /* Isochronous TRB specific fields */ #define TRB_SIA (1<<31) struct xhci_generic_trb { __le32 field[4]; }; union xhci_trb { struct xhci_link_trb link; struct xhci_transfer_event trans_event; struct xhci_event_cmd event_cmd; struct xhci_generic_trb generic; }; /* TRB bit mask */ #define TRB_TYPE_BITMASK (0xfc00) #define TRB_TYPE(p) ((p) << 10) #define TRB_FIELD_TO_TYPE(p) (((p) & TRB_TYPE_BITMASK) >> 10) /* TRB type IDs */ /* bulk, interrupt, isoc scatter/gather, and control data stage */ #define TRB_NORMAL 1 /* setup stage for control transfers */ #define TRB_SETUP 2 /* data stage for control transfers */ #define TRB_DATA 3 /* status stage for control transfers */ #define TRB_STATUS 4 /* isoc transfers */ #define TRB_ISOC 5 /* TRB for linking ring segments */ #define TRB_LINK 6 #define TRB_EVENT_DATA 7 /* Transfer Ring No-op (not for the command ring) */ #define TRB_TR_NOOP 8 /* Command TRBs */ /* Enable Slot Command */ #define TRB_ENABLE_SLOT 9 /* Disable Slot Command */ #define TRB_DISABLE_SLOT 10 /* Address Device Command */ #define TRB_ADDR_DEV 11 /* Configure Endpoint Command */ #define TRB_CONFIG_EP 12 /* Evaluate Context Command */ #define TRB_EVAL_CONTEXT 13 /* Reset Endpoint Command */ #define TRB_RESET_EP 14 /* Stop Transfer Ring Command */ #define TRB_STOP_RING 15 /* Set Transfer Ring Dequeue Pointer Command */ #define TRB_SET_DEQ 16 /* Reset Device Command */ #define TRB_RESET_DEV 17 /* Force Event Command (opt) */ #define TRB_FORCE_EVENT 18 /* Negotiate Bandwidth Command (opt) */ #define TRB_NEG_BANDWIDTH 19 /* Set Latency Tolerance Value Command (opt) */ #define TRB_SET_LT 20 /* Get port bandwidth Command */ #define TRB_GET_BW 21 /* Force Header Command - generate a transaction or link management packet */ #define TRB_FORCE_HEADER 22 /* No-op Command - not for transfer rings */ #define TRB_CMD_NOOP 23 /* TRB IDs 24-31 reserved */ /* Event TRBS */ /* Transfer Event */ #define TRB_TRANSFER 32 /* Command Completion Event */ #define TRB_COMPLETION 33 /* Port Status Change Event */ #define TRB_PORT_STATUS 34 /* Bandwidth Request Event (opt) */ #define TRB_BANDWIDTH_EVENT 35 /* Doorbell Event (opt) */ #define TRB_DOORBELL 36 /* Host Controller Event */ #define TRB_HC_EVENT 37 /* Device Notification Event - device sent function wake notification */ #define TRB_DEV_NOTE 38 /* MFINDEX Wrap Event - microframe counter wrapped */ #define TRB_MFINDEX_WRAP 39 /* TRB IDs 40-47 reserved, 48-63 is vendor-defined */ /* Nec vendor-specific command completion event. */ #define TRB_NEC_CMD_COMP 48 /* Get NEC firmware revision. */ #define TRB_NEC_GET_FW 49 #define NEC_FW_MINOR(p) (((p) >> 0) & 0xff) #define NEC_FW_MAJOR(p) (((p) >> 8) & 0xff) /* * TRBS_PER_SEGMENT must be a multiple of 4, * since the command ring is 64-byte aligned. * It must also be greater than 16. */ #define TRBS_PER_SEGMENT 64 /* Allow two commands + a link TRB, along with any reserved command TRBs */ #define MAX_RSVD_CMD_TRBS (TRBS_PER_SEGMENT - 3) #define SEGMENT_SIZE (TRBS_PER_SEGMENT*16) /* SEGMENT_SHIFT should be log2(SEGMENT_SIZE). * Change this if you change TRBS_PER_SEGMENT! */ #define SEGMENT_SHIFT 10 /* TRB buffer pointers can't cross 64KB boundaries */ #define TRB_MAX_BUFF_SHIFT 16 #define TRB_MAX_BUFF_SIZE (1 << TRB_MAX_BUFF_SHIFT) struct xhci_segment { union xhci_trb *trbs; /* private to HCD */ struct xhci_segment *next; dma_addr_t dma; }; struct xhci_td { struct list_head td_list; struct list_head cancelled_td_list; struct urb *urb; struct xhci_segment *start_seg; union xhci_trb *first_trb; union xhci_trb *last_trb; }; struct xhci_dequeue_state { struct xhci_segment *new_deq_seg; union xhci_trb *new_deq_ptr; int new_cycle_state; }; struct xhci_ring { struct xhci_segment *first_seg; union xhci_trb *enqueue; struct xhci_segment *enq_seg; unsigned int enq_updates; union xhci_trb *dequeue; struct xhci_segment *deq_seg; unsigned int deq_updates; struct list_head td_list; /* * Write the cycle state into the TRB cycle field to give ownership of * the TRB to the host controller (if we are the producer), or to check * if we own the TRB (if we are the consumer). See section 4.9.1. */ u32 cycle_state; unsigned int stream_id; bool last_td_was_short; }; struct xhci_erst_entry { /* 64-bit event ring segment address */ __le64 seg_addr; __le32 seg_size; /* Set to zero */ __le32 rsvd; }; struct xhci_erst { struct xhci_erst_entry *entries; unsigned int num_entries; /* xhci->event_ring keeps track of segment dma addresses */ dma_addr_t erst_dma_addr; /* Num entries the ERST can contain */ unsigned int erst_size; }; struct xhci_scratchpad { u64 *sp_array; dma_addr_t sp_dma; void **sp_buffers; dma_addr_t *sp_dma_buffers; }; struct urb_priv { int length; int td_cnt; struct xhci_td *td[0]; }; /* * Each segment table entry is 4*32bits long. 1K seems like an ok size: * (1K bytes * 8bytes/bit) / (4*32 bits) = 64 segment entries in the table, * meaning 64 ring segments. * Initial allocated size of the ERST, in number of entries */ #define ERST_NUM_SEGS 1 /* Initial allocated size of the ERST, in number of entries */ #define ERST_SIZE 64 /* Initial number of event segment rings allocated */ #define ERST_ENTRIES 1 /* Poll every 60 seconds */ #define POLL_TIMEOUT 60 /* Stop endpoint command timeout (secs) for URB cancellation watchdog timer */ #define XHCI_STOP_EP_CMD_TIMEOUT 5 /* XXX: Make these module parameters */ struct s3_save { u32 command; u32 dev_nt; u64 dcbaa_ptr; u32 config_reg; u32 irq_pending; u32 irq_control; u32 erst_size; u64 erst_base; u64 erst_dequeue; }; struct xhci_bus_state { unsigned long bus_suspended; unsigned long next_statechange; /* Port suspend arrays are indexed by the portnum of the fake roothub */ /* ports suspend status arrays - max 31 ports for USB2, 15 for USB3 */ u32 port_c_suspend; u32 suspended_ports; unsigned long resume_done[USB_MAXCHILDREN]; }; static inline unsigned int hcd_index(struct usb_hcd *hcd) { if (hcd->speed == HCD_USB3) return 0; else return 1; } /* There is one ehci_hci structure per controller */ struct xhci_hcd { struct usb_hcd *main_hcd; struct usb_hcd *shared_hcd; /* glue to PCI and HCD framework */ struct xhci_cap_regs __iomem *cap_regs; struct xhci_op_regs __iomem *op_regs; struct xhci_run_regs __iomem *run_regs; struct xhci_doorbell_array __iomem *dba; /* Our HCD's current interrupter register set */ struct xhci_intr_reg __iomem *ir_set; /* Cached register copies of read-only HC data */ __u32 hcs_params1; __u32 hcs_params2; __u32 hcs_params3; __u32 hcc_params; spinlock_t lock; /* packed release number */ u8 sbrn; u16 hci_version; u8 max_slots; u8 max_interrupters; u8 max_ports; u8 isoc_threshold; int event_ring_max; int addr_64; /* 4KB min, 128MB max */ int page_size; /* Valid values are 12 to 20, inclusive */ int page_shift; /* msi-x vectors */ int msix_count; struct msix_entry *msix_entries; /* data structures */ struct xhci_device_context_array *dcbaa; struct xhci_ring *cmd_ring; unsigned int cmd_ring_reserved_trbs; struct xhci_ring *event_ring; struct xhci_erst erst; /* Scratchpad */ struct xhci_scratchpad *scratchpad; /* slot enabling and address device helpers */ struct completion addr_dev; int slot_id; /* Internal mirror of the HW's dcbaa */ struct xhci_virt_device *devs[MAX_HC_SLOTS]; /* DMA pools */ struct dma_pool *device_pool; struct dma_pool *segment_pool; struct dma_pool *small_streams_pool; struct dma_pool *medium_streams_pool; #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING /* Poll the rings - for debugging */ struct timer_list event_ring_timer; int zombie; #endif /* Host controller watchdog timer structures */ unsigned int xhc_state; u32 command; struct s3_save s3; /* Host controller is dying - not responding to commands. "I'm not dead yet!" * * xHC interrupts have been disabled and a watchdog timer will (or has already) * halt the xHCI host, and complete all URBs with an -ESHUTDOWN code. Any code * that sees this status (other than the timer that set it) should stop touching * hardware immediately. Interrupt handlers should return immediately when * they see this status (any time they drop and re-acquire xhci->lock). * xhci_urb_dequeue() should call usb_hcd_check_unlink_urb() and return without * putting the TD on the canceled list, etc. * * There are no reports of xHCI host controllers that display this issue. */ #define XHCI_STATE_DYING (1 << 0) #define XHCI_STATE_HALTED (1 << 1) /* Statistics */ int error_bitmask; unsigned int quirks; #define XHCI_LINK_TRB_QUIRK (1 << 0) #define XHCI_RESET_EP_QUIRK (1 << 1) #define XHCI_NEC_HOST (1 << 2) #define XHCI_AMD_PLL_FIX (1 << 3) #define XHCI_SPURIOUS_SUCCESS (1 << 4) /* * Certain Intel host controllers have a limit to the number of endpoint * contexts they can handle. Ideally, they would signal that they can't handle * anymore endpoint contexts by returning a Resource Error for the Configure * Endpoint command, but they don't. Instead they expect software to keep track * of the number of active endpoints for them, across configure endpoint * commands, reset device commands, disable slot commands, and address device * commands. */ #define XHCI_EP_LIMIT_QUIRK (1 << 5) #define XHCI_BROKEN_MSI (1 << 6) #define XHCI_RESET_ON_RESUME (1 << 7) #define XHCI_AMD_0x96_HOST (1 << 9) #define XHCI_TRUST_TX_LENGTH (1 << 10) unsigned int num_active_eps; unsigned int limit_active_eps; /* There are two roothubs to keep track of bus suspend info for */ struct xhci_bus_state bus_state[2]; /* Is each xHCI roothub port a USB 3.0, USB 2.0, or USB 1.1 port? */ u8 *port_array; /* Array of pointers to USB 3.0 PORTSC registers */ __le32 __iomem **usb3_ports; unsigned int num_usb3_ports; /* Array of pointers to USB 2.0 PORTSC registers */ __le32 __iomem **usb2_ports; unsigned int num_usb2_ports; }; /* convert between an HCD pointer and the corresponding EHCI_HCD */ static inline struct xhci_hcd *hcd_to_xhci(struct usb_hcd *hcd) { return *((struct xhci_hcd **) (hcd->hcd_priv)); } static inline struct usb_hcd *xhci_to_hcd(struct xhci_hcd *xhci) { return xhci->main_hcd; } #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING #define XHCI_DEBUG 1 #else #define XHCI_DEBUG 0 #endif #define xhci_dbg(xhci, fmt, args...) \ do { if (XHCI_DEBUG) dev_dbg(xhci_to_hcd(xhci)->self.controller , fmt , ## args); } while (0) #define xhci_info(xhci, fmt, args...) \ do { if (XHCI_DEBUG) dev_info(xhci_to_hcd(xhci)->self.controller , fmt , ## args); } while (0) #define xhci_err(xhci, fmt, args...) \ dev_err(xhci_to_hcd(xhci)->self.controller , fmt , ## args) #define xhci_warn(xhci, fmt, args...) \ dev_warn(xhci_to_hcd(xhci)->self.controller , fmt , ## args) /* TODO: copied from ehci.h - can be refactored? */ /* xHCI spec says all registers are little endian */ static inline unsigned int xhci_readl(const struct xhci_hcd *xhci, __le32 __iomem *regs) { return readl(regs); } static inline void xhci_writel(struct xhci_hcd *xhci, const unsigned int val, __le32 __iomem *regs) { writel(val, regs); } /* * Registers should always be accessed with double word or quad word accesses. * * Some xHCI implementations may support 64-bit address pointers. Registers * with 64-bit address pointers should be written to with dword accesses by * writing the low dword first (ptr[0]), then the high dword (ptr[1]) second. * xHCI implementations that do not support 64-bit address pointers will ignore * the high dword, and write order is irrelevant. */ static inline u64 xhci_read_64(const struct xhci_hcd *xhci, __le64 __iomem *regs) { __u32 __iomem *ptr = (__u32 __iomem *) regs; u64 val_lo = readl(ptr); u64 val_hi = readl(ptr + 1); return val_lo + (val_hi << 32); } static inline void xhci_write_64(struct xhci_hcd *xhci, const u64 val, __le64 __iomem *regs) { __u32 __iomem *ptr = (__u32 __iomem *) regs; u32 val_lo = lower_32_bits(val); u32 val_hi = upper_32_bits(val); writel(val_lo, ptr); writel(val_hi, ptr + 1); } static inline int xhci_link_trb_quirk(struct xhci_hcd *xhci) { u32 temp = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); return ((HC_VERSION(temp) == 0x95) && (xhci->quirks & XHCI_LINK_TRB_QUIRK)); } /* xHCI debugging */ void xhci_print_ir_set(struct xhci_hcd *xhci, int set_num); void xhci_print_registers(struct xhci_hcd *xhci); void xhci_dbg_regs(struct xhci_hcd *xhci); void xhci_print_run_regs(struct xhci_hcd *xhci); void xhci_print_trb_offsets(struct xhci_hcd *xhci, union xhci_trb *trb); void xhci_debug_trb(struct xhci_hcd *xhci, union xhci_trb *trb); void xhci_debug_segment(struct xhci_hcd *xhci, struct xhci_segment *seg); void xhci_debug_ring(struct xhci_hcd *xhci, struct xhci_ring *ring); void xhci_dbg_erst(struct xhci_hcd *xhci, struct xhci_erst *erst); void xhci_dbg_cmd_ptrs(struct xhci_hcd *xhci); void xhci_dbg_ring_ptrs(struct xhci_hcd *xhci, struct xhci_ring *ring); void xhci_dbg_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx, unsigned int last_ep); char *xhci_get_slot_state(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx); void xhci_dbg_ep_rings(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, struct xhci_virt_ep *ep); /* xHCI memory management */ void xhci_mem_cleanup(struct xhci_hcd *xhci); int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags); void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id); int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, struct usb_device *udev, gfp_t flags); int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev); void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, struct usb_device *udev); unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc); unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc); unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index); unsigned int xhci_last_valid_endpoint(u32 added_ctxs); void xhci_endpoint_zero(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, struct usb_host_endpoint *ep); void xhci_endpoint_copy(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx, struct xhci_container_ctx *out_ctx, unsigned int ep_index); void xhci_slot_copy(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx, struct xhci_container_ctx *out_ctx); int xhci_endpoint_init(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, struct usb_device *udev, struct usb_host_endpoint *ep, gfp_t mem_flags); void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring); void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, unsigned int ep_index); struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, unsigned int num_stream_ctxs, unsigned int num_streams, gfp_t flags); void xhci_free_stream_info(struct xhci_hcd *xhci, struct xhci_stream_info *stream_info); void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, struct xhci_ep_ctx *ep_ctx, struct xhci_stream_info *stream_info); void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci, struct xhci_ep_ctx *ep_ctx, struct xhci_virt_ep *ep); void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, bool drop_control_ep); struct xhci_ring *xhci_dma_to_transfer_ring( struct xhci_virt_ep *ep, u64 address); struct xhci_ring *xhci_stream_id_to_ring( struct xhci_virt_device *dev, unsigned int ep_index, unsigned int stream_id); struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, bool allocate_in_ctx, bool allocate_completion, gfp_t mem_flags); void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv); void xhci_free_command(struct xhci_hcd *xhci, struct xhci_command *command); #ifdef CONFIG_PCI /* xHCI PCI glue */ int xhci_register_pci(void); void xhci_unregister_pci(void); #endif /* xHCI host controller glue */ void xhci_quiesce(struct xhci_hcd *xhci); int xhci_halt(struct xhci_hcd *xhci); int xhci_reset(struct xhci_hcd *xhci); int xhci_init(struct usb_hcd *hcd); int xhci_run(struct usb_hcd *hcd); void xhci_stop(struct usb_hcd *hcd); void xhci_shutdown(struct usb_hcd *hcd); #ifdef CONFIG_PM int xhci_suspend(struct xhci_hcd *xhci); int xhci_resume(struct xhci_hcd *xhci, bool hibernated); #else #define xhci_suspend NULL #define xhci_resume NULL #endif int xhci_get_frame(struct usb_hcd *hcd); irqreturn_t xhci_irq(struct usb_hcd *hcd); irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd); int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev); void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev); int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint **eps, unsigned int num_eps, unsigned int num_streams, gfp_t mem_flags); int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint **eps, unsigned int num_eps, gfp_t mem_flags); int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev); int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, struct usb_tt *tt, gfp_t mem_flags); int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags); int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status); int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep); int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep); void xhci_endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep); int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev); int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev); void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev); /* xHCI ring, segment, TRB, and TD functions */ dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, union xhci_trb *trb); struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, union xhci_trb *start_trb, union xhci_trb *end_trb, dma_addr_t suspect_dma); int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code); void xhci_ring_cmd_db(struct xhci_hcd *xhci); int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id); int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, u32 slot_id); int xhci_queue_vendor_command(struct xhci_hcd *xhci, u32 field1, u32 field2, u32 field3, u32 field4); int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, unsigned int ep_index, int suspend); int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index); int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index); int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index); int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index); int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed); int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, u32 slot_id); int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, unsigned int ep_index); int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id); void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id, struct xhci_td *cur_td, struct xhci_dequeue_state *state); void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id, struct xhci_dequeue_state *deq_state); void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, struct usb_device *udev, unsigned int ep_index); void xhci_queue_config_ep_quirk(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, struct xhci_dequeue_state *deq_state); void xhci_stop_endpoint_command_watchdog(unsigned long arg); void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id); /* xHCI roothub code */ void xhci_test_and_clear_bit(struct xhci_hcd *xhci, __le32 __iomem **port_array, int port_id, u32 port_bit); int xhci_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength); int xhci_hub_status_data(struct usb_hcd *hcd, char *buf); #ifdef CONFIG_PM int xhci_bus_suspend(struct usb_hcd *hcd); int xhci_bus_resume(struct usb_hcd *hcd); #else #define xhci_bus_suspend NULL #define xhci_bus_resume NULL #endif /* CONFIG_PM */ u32 xhci_port_state_to_neutral(u32 state); int xhci_find_slot_id_by_port(struct usb_hcd *hcd, struct xhci_hcd *xhci, u16 port); void xhci_ring_device(struct xhci_hcd *xhci, int slot_id); /* xHCI contexts */ struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx); struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx); struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx, unsigned int ep_index); #endif /* __LINUX_XHCI_HCD_H */