/* * A framebuffer driver for VBE 2.0+ compliant video cards * * (c) 2007 Michal Januszewski <spock@gentoo.org> * Loosely based upon the vesafb driver. * */ #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/skbuff.h> #include <linux/timer.h> #include <linux/completion.h> #include <linux/connector.h> #include <linux/random.h> #include <linux/platform_device.h> #include <linux/limits.h> #include <linux/fb.h> #include <linux/io.h> #include <linux/mutex.h> #include <linux/slab.h> #include <video/edid.h> #include <video/uvesafb.h> #ifdef CONFIG_X86 #include <video/vga.h> #endif #include "edid.h" static struct cb_id uvesafb_cn_id = { .idx = CN_IDX_V86D, .val = CN_VAL_V86D_UVESAFB }; static char v86d_path[PATH_MAX] = "/sbin/v86d"; static char v86d_started; /* has v86d been started by uvesafb? */ static struct fb_fix_screeninfo uvesafb_fix = { .id = "VESA VGA", .type = FB_TYPE_PACKED_PIXELS, .accel = FB_ACCEL_NONE, .visual = FB_VISUAL_TRUECOLOR, }; static int mtrr = 3; /* enable mtrr by default */ static bool blank = 1; /* enable blanking by default */ static int ypan = 1; /* 0: scroll, 1: ypan, 2: ywrap */ static bool pmi_setpal = true; /* use PMI for palette changes */ static bool nocrtc; /* ignore CRTC settings */ static bool noedid; /* don't try DDC transfers */ static int vram_remap; /* set amt. of memory to be used */ static int vram_total; /* set total amount of memory */ static u16 maxclk; /* maximum pixel clock */ static u16 maxvf; /* maximum vertical frequency */ static u16 maxhf; /* maximum horizontal frequency */ static u16 vbemode; /* force use of a specific VBE mode */ static char *mode_option; static u8 dac_width = 6; static struct uvesafb_ktask *uvfb_tasks[UVESAFB_TASKS_MAX]; static DEFINE_MUTEX(uvfb_lock); /* * A handler for replies from userspace. * * Make sure each message passes consistency checks and if it does, * find the kernel part of the task struct, copy the registers and * the buffer contents and then complete the task. */ static void uvesafb_cn_callback(struct cn_msg *msg, struct netlink_skb_parms *nsp) { struct uvesafb_task *utask; struct uvesafb_ktask *task; if (!capable(CAP_SYS_ADMIN)) return; if (msg->seq >= UVESAFB_TASKS_MAX) return; mutex_lock(&uvfb_lock); task = uvfb_tasks[msg->seq]; if (!task || msg->ack != task->ack) { mutex_unlock(&uvfb_lock); return; } utask = (struct uvesafb_task *)msg->data; /* Sanity checks for the buffer length. */ if (task->t.buf_len < utask->buf_len || utask->buf_len > msg->len - sizeof(*utask)) { mutex_unlock(&uvfb_lock); return; } uvfb_tasks[msg->seq] = NULL; mutex_unlock(&uvfb_lock); memcpy(&task->t, utask, sizeof(*utask)); if (task->t.buf_len && task->buf) memcpy(task->buf, utask + 1, task->t.buf_len); complete(task->done); return; } static int uvesafb_helper_start(void) { char *envp[] = { "HOME=/", "PATH=/sbin:/bin", NULL, }; char *argv[] = { v86d_path, NULL, }; return call_usermodehelper(v86d_path, argv, envp, UMH_WAIT_PROC); } /* * Execute a uvesafb task. * * Returns 0 if the task is executed successfully. * * A message sent to the userspace consists of the uvesafb_task * struct and (optionally) a buffer. The uvesafb_task struct is * a simplified version of uvesafb_ktask (its kernel counterpart) * containing only the register values, flags and the length of * the buffer. * * Each message is assigned a sequence number (increased linearly) * and a random ack number. The sequence number is used as a key * for the uvfb_tasks array which holds pointers to uvesafb_ktask * structs for all requests. */ static int uvesafb_exec(struct uvesafb_ktask *task) { static int seq; struct cn_msg *m; int err; int len = sizeof(task->t) + task->t.buf_len; /* * Check whether the message isn't longer than the maximum * allowed by connector. */ if (sizeof(*m) + len > CONNECTOR_MAX_MSG_SIZE) { printk(KERN_WARNING "uvesafb: message too long (%d), " "can't execute task\n", (int)(sizeof(*m) + len)); return -E2BIG; } m = kzalloc(sizeof(*m) + len, GFP_KERNEL); if (!m) return -ENOMEM; init_completion(task->done); memcpy(&m->id, &uvesafb_cn_id, sizeof(m->id)); m->seq = seq; m->len = len; m->ack = prandom_u32(); /* uvesafb_task structure */ memcpy(m + 1, &task->t, sizeof(task->t)); /* Buffer */ memcpy((u8 *)(m + 1) + sizeof(task->t), task->buf, task->t.buf_len); /* * Save the message ack number so that we can find the kernel * part of this task when a reply is received from userspace. */ task->ack = m->ack; mutex_lock(&uvfb_lock); /* If all slots are taken -- bail out. */ if (uvfb_tasks[seq]) { mutex_unlock(&uvfb_lock); err = -EBUSY; goto out; } /* Save a pointer to the kernel part of the task struct. */ uvfb_tasks[seq] = task; mutex_unlock(&uvfb_lock); err = cn_netlink_send(m, 0, GFP_KERNEL); if (err == -ESRCH) { /* * Try to start the userspace helper if sending * the request failed the first time. */ err = uvesafb_helper_start(); if (err) { printk(KERN_ERR "uvesafb: failed to execute %s\n", v86d_path); printk(KERN_ERR "uvesafb: make sure that the v86d " "helper is installed and executable\n"); } else { v86d_started = 1; err = cn_netlink_send(m, 0, gfp_any()); if (err == -ENOBUFS) err = 0; } } else if (err == -ENOBUFS) err = 0; if (!err && !(task->t.flags & TF_EXIT)) err = !wait_for_completion_timeout(task->done, msecs_to_jiffies(UVESAFB_TIMEOUT)); mutex_lock(&uvfb_lock); uvfb_tasks[seq] = NULL; mutex_unlock(&uvfb_lock); seq++; if (seq >= UVESAFB_TASKS_MAX) seq = 0; out: kfree(m); return err; } /* * Free a uvesafb_ktask struct. */ static void uvesafb_free(struct uvesafb_ktask *task) { if (task) { kfree(task->done); kfree(task); } } /* * Prepare a uvesafb_ktask struct to be used again. */ static void uvesafb_reset(struct uvesafb_ktask *task) { struct completion *cpl = task->done; memset(task, 0, sizeof(*task)); task->done = cpl; } /* * Allocate and prepare a uvesafb_ktask struct. */ static struct uvesafb_ktask *uvesafb_prep(void) { struct uvesafb_ktask *task; task = kzalloc(sizeof(*task), GFP_KERNEL); if (task) { task->done = kzalloc(sizeof(*task->done), GFP_KERNEL); if (!task->done) { kfree(task); task = NULL; } } return task; } static void uvesafb_setup_var(struct fb_var_screeninfo *var, struct fb_info *info, struct vbe_mode_ib *mode) { struct uvesafb_par *par = info->par; var->vmode = FB_VMODE_NONINTERLACED; var->sync = FB_SYNC_VERT_HIGH_ACT; var->xres = mode->x_res; var->yres = mode->y_res; var->xres_virtual = mode->x_res; var->yres_virtual = (par->ypan) ? info->fix.smem_len / mode->bytes_per_scan_line : mode->y_res; var->xoffset = 0; var->yoffset = 0; var->bits_per_pixel = mode->bits_per_pixel; if (var->bits_per_pixel == 15) var->bits_per_pixel = 16; if (var->bits_per_pixel > 8) { var->red.offset = mode->red_off; var->red.length = mode->red_len; var->green.offset = mode->green_off; var->green.length = mode->green_len; var->blue.offset = mode->blue_off; var->blue.length = mode->blue_len; var->transp.offset = mode->rsvd_off; var->transp.length = mode->rsvd_len; } else { var->red.offset = 0; var->green.offset = 0; var->blue.offset = 0; var->transp.offset = 0; var->red.length = 8; var->green.length = 8; var->blue.length = 8; var->transp.length = 0; } } static int uvesafb_vbe_find_mode(struct uvesafb_par *par, int xres, int yres, int depth, unsigned char flags) { int i, match = -1, h = 0, d = 0x7fffffff; for (i = 0; i < par->vbe_modes_cnt; i++) { h = abs(par->vbe_modes[i].x_res - xres) + abs(par->vbe_modes[i].y_res - yres) + abs(depth - par->vbe_modes[i].depth); /* * We have an exact match in terms of resolution * and depth. */ if (h == 0) return i; if (h < d || (h == d && par->vbe_modes[i].depth > depth)) { d = h; match = i; } } i = 1; if (flags & UVESAFB_EXACT_DEPTH && par->vbe_modes[match].depth != depth) i = 0; if (flags & UVESAFB_EXACT_RES && d > 24) i = 0; if (i != 0) return match; else return -1; } static u8 *uvesafb_vbe_state_save(struct uvesafb_par *par) { struct uvesafb_ktask *task; u8 *state; int err; if (!par->vbe_state_size) return NULL; state = kmalloc(par->vbe_state_size, GFP_KERNEL); if (!state) return ERR_PTR(-ENOMEM); task = uvesafb_prep(); if (!task) { kfree(state); return NULL; } task->t.regs.eax = 0x4f04; task->t.regs.ecx = 0x000f; task->t.regs.edx = 0x0001; task->t.flags = TF_BUF_RET | TF_BUF_ESBX; task->t.buf_len = par->vbe_state_size; task->buf = state; err = uvesafb_exec(task); if (err || (task->t.regs.eax & 0xffff) != 0x004f) { printk(KERN_WARNING "uvesafb: VBE get state call " "failed (eax=0x%x, err=%d)\n", task->t.regs.eax, err); kfree(state); state = NULL; } uvesafb_free(task); return state; } static void uvesafb_vbe_state_restore(struct uvesafb_par *par, u8 *state_buf) { struct uvesafb_ktask *task; int err; if (!state_buf) return; task = uvesafb_prep(); if (!task) return; task->t.regs.eax = 0x4f04; task->t.regs.ecx = 0x000f; task->t.regs.edx = 0x0002; task->t.buf_len = par->vbe_state_size; task->t.flags = TF_BUF_ESBX; task->buf = state_buf; err = uvesafb_exec(task); if (err || (task->t.regs.eax & 0xffff) != 0x004f) printk(KERN_WARNING "uvesafb: VBE state restore call " "failed (eax=0x%x, err=%d)\n", task->t.regs.eax, err); uvesafb_free(task); } static int uvesafb_vbe_getinfo(struct uvesafb_ktask *task, struct uvesafb_par *par) { int err; task->t.regs.eax = 0x4f00; task->t.flags = TF_VBEIB; task->t.buf_len = sizeof(struct vbe_ib); task->buf = &par->vbe_ib; strncpy(par->vbe_ib.vbe_signature, "VBE2", 4); err = uvesafb_exec(task); if (err || (task->t.regs.eax & 0xffff) != 0x004f) { printk(KERN_ERR "uvesafb: Getting VBE info block failed " "(eax=0x%x, err=%d)\n", (u32)task->t.regs.eax, err); return -EINVAL; } if (par->vbe_ib.vbe_version < 0x0200) { printk(KERN_ERR "uvesafb: Sorry, pre-VBE 2.0 cards are " "not supported.\n"); return -EINVAL; } if (!par->vbe_ib.mode_list_ptr) { printk(KERN_ERR "uvesafb: Missing mode list!\n"); return -EINVAL; } printk(KERN_INFO "uvesafb: "); /* * Convert string pointers and the mode list pointer into * usable addresses. Print informational messages about the * video adapter and its vendor. */ if (par->vbe_ib.oem_vendor_name_ptr) printk("%s, ", ((char *)task->buf) + par->vbe_ib.oem_vendor_name_ptr); if (par->vbe_ib.oem_product_name_ptr) printk("%s, ", ((char *)task->buf) + par->vbe_ib.oem_product_name_ptr); if (par->vbe_ib.oem_product_rev_ptr) printk("%s, ", ((char *)task->buf) + par->vbe_ib.oem_product_rev_ptr); if (par->vbe_ib.oem_string_ptr) printk("OEM: %s, ", ((char *)task->buf) + par->vbe_ib.oem_string_ptr); printk("VBE v%d.%d\n", ((par->vbe_ib.vbe_version & 0xff00) >> 8), par->vbe_ib.vbe_version & 0xff); return 0; } static int uvesafb_vbe_getmodes(struct uvesafb_ktask *task, struct uvesafb_par *par) { int off = 0, err; u16 *mode; par->vbe_modes_cnt = 0; /* Count available modes. */ mode = (u16 *) (((u8 *)&par->vbe_ib) + par->vbe_ib.mode_list_ptr); while (*mode != 0xffff) { par->vbe_modes_cnt++; mode++; } par->vbe_modes = kzalloc(sizeof(struct vbe_mode_ib) * par->vbe_modes_cnt, GFP_KERNEL); if (!par->vbe_modes) return -ENOMEM; /* Get info about all available modes. */ mode = (u16 *) (((u8 *)&par->vbe_ib) + par->vbe_ib.mode_list_ptr); while (*mode != 0xffff) { struct vbe_mode_ib *mib; uvesafb_reset(task); task->t.regs.eax = 0x4f01; task->t.regs.ecx = (u32) *mode; task->t.flags = TF_BUF_RET | TF_BUF_ESDI; task->t.buf_len = sizeof(struct vbe_mode_ib); task->buf = par->vbe_modes + off; err = uvesafb_exec(task); if (err || (task->t.regs.eax & 0xffff) != 0x004f) { printk(KERN_WARNING "uvesafb: Getting mode info block " "for mode 0x%x failed (eax=0x%x, err=%d)\n", *mode, (u32)task->t.regs.eax, err); mode++; par->vbe_modes_cnt--; continue; } mib = task->buf; mib->mode_id = *mode; /* * We only want modes that are supported with the current * hardware configuration, color, graphics and that have * support for the LFB. */ if ((mib->mode_attr & VBE_MODE_MASK) == VBE_MODE_MASK && mib->bits_per_pixel >= 8) off++; else par->vbe_modes_cnt--; mode++; mib->depth = mib->red_len + mib->green_len + mib->blue_len; /* * Handle 8bpp modes and modes with broken color component * lengths. */ if (mib->depth == 0 || (mib->depth == 24 && mib->bits_per_pixel == 32)) mib->depth = mib->bits_per_pixel; } if (par->vbe_modes_cnt > 0) return 0; else return -EINVAL; } /* * The Protected Mode Interface is 32-bit x86 code, so we only run it on * x86 and not x86_64. */ #ifdef CONFIG_X86_32 static int uvesafb_vbe_getpmi(struct uvesafb_ktask *task, struct uvesafb_par *par) { int i, err; uvesafb_reset(task); task->t.regs.eax = 0x4f0a; task->t.regs.ebx = 0x0; err = uvesafb_exec(task); if ((task->t.regs.eax & 0xffff) != 0x4f || task->t.regs.es < 0xc000) { par->pmi_setpal = par->ypan = 0; } else { par->pmi_base = (u16 *)phys_to_virt(((u32)task->t.regs.es << 4) + task->t.regs.edi); par->pmi_start = (u8 *)par->pmi_base + par->pmi_base[1]; par->pmi_pal = (u8 *)par->pmi_base + par->pmi_base[2]; printk(KERN_INFO "uvesafb: protected mode interface info at " "%04x:%04x\n", (u16)task->t.regs.es, (u16)task->t.regs.edi); printk(KERN_INFO "uvesafb: pmi: set display start = %p, " "set palette = %p\n", par->pmi_start, par->pmi_pal); if (par->pmi_base[3]) { printk(KERN_INFO "uvesafb: pmi: ports = "); for (i = par->pmi_base[3]/2; par->pmi_base[i] != 0xffff; i++) printk("%x ", par->pmi_base[i]); printk("\n"); if (par->pmi_base[i] != 0xffff) { printk(KERN_INFO "uvesafb: can't handle memory" " requests, pmi disabled\n"); par->ypan = par->pmi_setpal = 0; } } } return 0; } #endif /* CONFIG_X86_32 */ /* * Check whether a video mode is supported by the Video BIOS and is * compatible with the monitor limits. */ static int uvesafb_is_valid_mode(struct fb_videomode *mode, struct fb_info *info) { if (info->monspecs.gtf) { fb_videomode_to_var(&info->var, mode); if (fb_validate_mode(&info->var, info)) return 0; } if (uvesafb_vbe_find_mode(info->par, mode->xres, mode->yres, 8, UVESAFB_EXACT_RES) == -1) return 0; return 1; } static int uvesafb_vbe_getedid(struct uvesafb_ktask *task, struct fb_info *info) { struct uvesafb_par *par = info->par; int err = 0; if (noedid || par->vbe_ib.vbe_version < 0x0300) return -EINVAL; task->t.regs.eax = 0x4f15; task->t.regs.ebx = 0; task->t.regs.ecx = 0; task->t.buf_len = 0; task->t.flags = 0; err = uvesafb_exec(task); if ((task->t.regs.eax & 0xffff) != 0x004f || err) return -EINVAL; if ((task->t.regs.ebx & 0x3) == 3) { printk(KERN_INFO "uvesafb: VBIOS/hardware supports both " "DDC1 and DDC2 transfers\n"); } else if ((task->t.regs.ebx & 0x3) == 2) { printk(KERN_INFO "uvesafb: VBIOS/hardware supports DDC2 " "transfers\n"); } else if ((task->t.regs.ebx & 0x3) == 1) { printk(KERN_INFO "uvesafb: VBIOS/hardware supports DDC1 " "transfers\n"); } else { printk(KERN_INFO "uvesafb: VBIOS/hardware doesn't support " "DDC transfers\n"); return -EINVAL; } task->t.regs.eax = 0x4f15; task->t.regs.ebx = 1; task->t.regs.ecx = task->t.regs.edx = 0; task->t.flags = TF_BUF_RET | TF_BUF_ESDI; task->t.buf_len = EDID_LENGTH; task->buf = kzalloc(EDID_LENGTH, GFP_KERNEL); if (!task->buf) return -ENOMEM; err = uvesafb_exec(task); if ((task->t.regs.eax & 0xffff) == 0x004f && !err) { fb_edid_to_monspecs(task->buf, &info->monspecs); if (info->monspecs.vfmax && info->monspecs.hfmax) { /* * If the maximum pixel clock wasn't specified in * the EDID block, set it to 300 MHz. */ if (info->monspecs.dclkmax == 0) info->monspecs.dclkmax = 300 * 1000000; info->monspecs.gtf = 1; } } else { err = -EINVAL; } kfree(task->buf); return err; } static void uvesafb_vbe_getmonspecs(struct uvesafb_ktask *task, struct fb_info *info) { struct uvesafb_par *par = info->par; int i; memset(&info->monspecs, 0, sizeof(info->monspecs)); /* * If we don't get all necessary data from the EDID block, * mark it as incompatible with the GTF and set nocrtc so * that we always use the default BIOS refresh rate. */ if (uvesafb_vbe_getedid(task, info)) { info->monspecs.gtf = 0; par->nocrtc = 1; } /* Kernel command line overrides. */ if (maxclk) info->monspecs.dclkmax = maxclk * 1000000; if (maxvf) info->monspecs.vfmax = maxvf; if (maxhf) info->monspecs.hfmax = maxhf * 1000; /* * In case DDC transfers are not supported, the user can provide * monitor limits manually. Lower limits are set to "safe" values. */ if (info->monspecs.gtf == 0 && maxclk && maxvf && maxhf) { info->monspecs.dclkmin = 0; info->monspecs.vfmin = 60; info->monspecs.hfmin = 29000; info->monspecs.gtf = 1; par->nocrtc = 0; } if (info->monspecs.gtf) printk(KERN_INFO "uvesafb: monitor limits: vf = %d Hz, hf = %d kHz, " "clk = %d MHz\n", info->monspecs.vfmax, (int)(info->monspecs.hfmax / 1000), (int)(info->monspecs.dclkmax / 1000000)); else printk(KERN_INFO "uvesafb: no monitor limits have been set, " "default refresh rate will be used\n"); /* Add VBE modes to the modelist. */ for (i = 0; i < par->vbe_modes_cnt; i++) { struct fb_var_screeninfo var; struct vbe_mode_ib *mode; struct fb_videomode vmode; mode = &par->vbe_modes[i]; memset(&var, 0, sizeof(var)); var.xres = mode->x_res; var.yres = mode->y_res; fb_get_mode(FB_VSYNCTIMINGS | FB_IGNOREMON, 60, &var, info); fb_var_to_videomode(&vmode, &var); fb_add_videomode(&vmode, &info->modelist); } /* Add valid VESA modes to our modelist. */ for (i = 0; i < VESA_MODEDB_SIZE; i++) { if (uvesafb_is_valid_mode((struct fb_videomode *) &vesa_modes[i], info)) fb_add_videomode(&vesa_modes[i], &info->modelist); } for (i = 0; i < info->monspecs.modedb_len; i++) { if (uvesafb_is_valid_mode(&info->monspecs.modedb[i], info)) fb_add_videomode(&info->monspecs.modedb[i], &info->modelist); } return; } static void uvesafb_vbe_getstatesize(struct uvesafb_ktask *task, struct uvesafb_par *par) { int err; uvesafb_reset(task); /* * Get the VBE state buffer size. We want all available * hardware state data (CL = 0x0f). */ task->t.regs.eax = 0x4f04; task->t.regs.ecx = 0x000f; task->t.regs.edx = 0x0000; task->t.flags = 0; err = uvesafb_exec(task); if (err || (task->t.regs.eax & 0xffff) != 0x004f) { printk(KERN_WARNING "uvesafb: VBE state buffer size " "cannot be determined (eax=0x%x, err=%d)\n", task->t.regs.eax, err); par->vbe_state_size = 0; return; } par->vbe_state_size = 64 * (task->t.regs.ebx & 0xffff); } static int uvesafb_vbe_init(struct fb_info *info) { struct uvesafb_ktask *task = NULL; struct uvesafb_par *par = info->par; int err; task = uvesafb_prep(); if (!task) return -ENOMEM; err = uvesafb_vbe_getinfo(task, par); if (err) goto out; err = uvesafb_vbe_getmodes(task, par); if (err) goto out; par->nocrtc = nocrtc; #ifdef CONFIG_X86_32 par->pmi_setpal = pmi_setpal; par->ypan = ypan; if (par->pmi_setpal || par->ypan) { if (__supported_pte_mask & _PAGE_NX) { par->pmi_setpal = par->ypan = 0; printk(KERN_WARNING "uvesafb: NX protection is active, " "better not use the PMI.\n"); } else { uvesafb_vbe_getpmi(task, par); } } #else /* The protected mode interface is not available on non-x86. */ par->pmi_setpal = par->ypan = 0; #endif INIT_LIST_HEAD(&info->modelist); uvesafb_vbe_getmonspecs(task, info); uvesafb_vbe_getstatesize(task, par); out: uvesafb_free(task); return err; } static int uvesafb_vbe_init_mode(struct fb_info *info) { struct list_head *pos; struct fb_modelist *modelist; struct fb_videomode *mode; struct uvesafb_par *par = info->par; int i, modeid; /* Has the user requested a specific VESA mode? */ if (vbemode) { for (i = 0; i < par->vbe_modes_cnt; i++) { if (par->vbe_modes[i].mode_id == vbemode) { modeid = i; uvesafb_setup_var(&info->var, info, &par->vbe_modes[modeid]); fb_get_mode(FB_VSYNCTIMINGS | FB_IGNOREMON, 60, &info->var, info); /* * With pixclock set to 0, the default BIOS * timings will be used in set_par(). */ info->var.pixclock = 0; goto gotmode; } } printk(KERN_INFO "uvesafb: requested VBE mode 0x%x is " "unavailable\n", vbemode); vbemode = 0; } /* Count the modes in the modelist */ i = 0; list_for_each(pos, &info->modelist) i++; /* * Convert the modelist into a modedb so that we can use it with * fb_find_mode(). */ mode = kzalloc(i * sizeof(*mode), GFP_KERNEL); if (mode) { i = 0; list_for_each(pos, &info->modelist) { modelist = list_entry(pos, struct fb_modelist, list); mode[i] = modelist->mode; i++; } if (!mode_option) mode_option = UVESAFB_DEFAULT_MODE; i = fb_find_mode(&info->var, info, mode_option, mode, i, NULL, 8); kfree(mode); } /* fb_find_mode() failed */ if (i == 0) { info->var.xres = 640; info->var.yres = 480; mode = (struct fb_videomode *) fb_find_best_mode(&info->var, &info->modelist); if (mode) { fb_videomode_to_var(&info->var, mode); } else { modeid = par->vbe_modes[0].mode_id; uvesafb_setup_var(&info->var, info, &par->vbe_modes[modeid]); fb_get_mode(FB_VSYNCTIMINGS | FB_IGNOREMON, 60, &info->var, info); goto gotmode; } } /* Look for a matching VBE mode. */ modeid = uvesafb_vbe_find_mode(par, info->var.xres, info->var.yres, info->var.bits_per_pixel, UVESAFB_EXACT_RES); if (modeid == -1) return -EINVAL; uvesafb_setup_var(&info->var, info, &par->vbe_modes[modeid]); gotmode: /* * If we are not VBE3.0+ compliant, we're done -- the BIOS will * ignore our timings anyway. */ if (par->vbe_ib.vbe_version < 0x0300 || par->nocrtc) fb_get_mode(FB_VSYNCTIMINGS | FB_IGNOREMON, 60, &info->var, info); return modeid; } static int uvesafb_setpalette(struct uvesafb_pal_entry *entries, int count, int start, struct fb_info *info) { struct uvesafb_ktask *task; #ifdef CONFIG_X86 struct uvesafb_par *par = info->par; int i = par->mode_idx; #endif int err = 0; /* * We support palette modifications for 8 bpp modes only, so * there can never be more than 256 entries. */ if (start + count > 256) return -EINVAL; #ifdef CONFIG_X86 /* Use VGA registers if mode is VGA-compatible. */ if (i >= 0 && i < par->vbe_modes_cnt && par->vbe_modes[i].mode_attr & VBE_MODE_VGACOMPAT) { for (i = 0; i < count; i++) { outb_p(start + i, dac_reg); outb_p(entries[i].red, dac_val); outb_p(entries[i].green, dac_val); outb_p(entries[i].blue, dac_val); } } #ifdef CONFIG_X86_32 else if (par->pmi_setpal) { __asm__ __volatile__( "call *(%%esi)" : /* no return value */ : "a" (0x4f09), /* EAX */ "b" (0), /* EBX */ "c" (count), /* ECX */ "d" (start), /* EDX */ "D" (entries), /* EDI */ "S" (&par->pmi_pal)); /* ESI */ } #endif /* CONFIG_X86_32 */ else #endif /* CONFIG_X86 */ { task = uvesafb_prep(); if (!task) return -ENOMEM; task->t.regs.eax = 0x4f09; task->t.regs.ebx = 0x0; task->t.regs.ecx = count; task->t.regs.edx = start; task->t.flags = TF_BUF_ESDI; task->t.buf_len = sizeof(struct uvesafb_pal_entry) * count; task->buf = entries; err = uvesafb_exec(task); if ((task->t.regs.eax & 0xffff) != 0x004f) err = 1; uvesafb_free(task); } return err; } static int uvesafb_setcolreg(unsigned regno, unsigned red, unsigned green, unsigned blue, unsigned transp, struct fb_info *info) { struct uvesafb_pal_entry entry; int shift = 16 - dac_width; int err = 0; if (regno >= info->cmap.len) return -EINVAL; if (info->var.bits_per_pixel == 8) { entry.red = red >> shift; entry.green = green >> shift; entry.blue = blue >> shift; entry.pad = 0; err = uvesafb_setpalette(&entry, 1, regno, info); } else if (regno < 16) { switch (info->var.bits_per_pixel) { case 16: if (info->var.red.offset == 10) { /* 1:5:5:5 */ ((u32 *) (info->pseudo_palette))[regno] = ((red & 0xf800) >> 1) | ((green & 0xf800) >> 6) | ((blue & 0xf800) >> 11); } else { /* 0:5:6:5 */ ((u32 *) (info->pseudo_palette))[regno] = ((red & 0xf800) ) | ((green & 0xfc00) >> 5) | ((blue & 0xf800) >> 11); } break; case 24: case 32: red >>= 8; green >>= 8; blue >>= 8; ((u32 *)(info->pseudo_palette))[regno] = (red << info->var.red.offset) | (green << info->var.green.offset) | (blue << info->var.blue.offset); break; } } return err; } static int uvesafb_setcmap(struct fb_cmap *cmap, struct fb_info *info) { struct uvesafb_pal_entry *entries; int shift = 16 - dac_width; int i, err = 0; if (info->var.bits_per_pixel == 8) { if (cmap->start + cmap->len > info->cmap.start + info->cmap.len || cmap->start < info->cmap.start) return -EINVAL; entries = kmalloc(sizeof(*entries) * cmap->len, GFP_KERNEL); if (!entries) return -ENOMEM; for (i = 0; i < cmap->len; i++) { entries[i].red = cmap->red[i] >> shift; entries[i].green = cmap->green[i] >> shift; entries[i].blue = cmap->blue[i] >> shift; entries[i].pad = 0; } err = uvesafb_setpalette(entries, cmap->len, cmap->start, info); kfree(entries); } else { /* * For modes with bpp > 8, we only set the pseudo palette in * the fb_info struct. We rely on uvesafb_setcolreg to do all * sanity checking. */ for (i = 0; i < cmap->len; i++) { err |= uvesafb_setcolreg(cmap->start + i, cmap->red[i], cmap->green[i], cmap->blue[i], 0, info); } } return err; } static int uvesafb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) { #ifdef CONFIG_X86_32 int offset; struct uvesafb_par *par = info->par; offset = (var->yoffset * info->fix.line_length + var->xoffset) / 4; /* * It turns out it's not the best idea to do panning via vm86, * so we only allow it if we have a PMI. */ if (par->pmi_start) { __asm__ __volatile__( "call *(%%edi)" : /* no return value */ : "a" (0x4f07), /* EAX */ "b" (0), /* EBX */ "c" (offset), /* ECX */ "d" (offset >> 16), /* EDX */ "D" (&par->pmi_start)); /* EDI */ } #endif return 0; } static int uvesafb_blank(int blank, struct fb_info *info) { struct uvesafb_ktask *task; int err = 1; #ifdef CONFIG_X86 struct uvesafb_par *par = info->par; if (par->vbe_ib.capabilities & VBE_CAP_VGACOMPAT) { int loop = 10000; u8 seq = 0, crtc17 = 0; if (blank == FB_BLANK_POWERDOWN) { seq = 0x20; crtc17 = 0x00; err = 0; } else { seq = 0x00; crtc17 = 0x80; err = (blank == FB_BLANK_UNBLANK) ? 0 : -EINVAL; } vga_wseq(NULL, 0x00, 0x01); seq |= vga_rseq(NULL, 0x01) & ~0x20; vga_wseq(NULL, 0x00, seq); crtc17 |= vga_rcrt(NULL, 0x17) & ~0x80; while (loop--); vga_wcrt(NULL, 0x17, crtc17); vga_wseq(NULL, 0x00, 0x03); } else #endif /* CONFIG_X86 */ { task = uvesafb_prep(); if (!task) return -ENOMEM; task->t.regs.eax = 0x4f10; switch (blank) { case FB_BLANK_UNBLANK: task->t.regs.ebx = 0x0001; break; case FB_BLANK_NORMAL: task->t.regs.ebx = 0x0101; /* standby */ break; case FB_BLANK_POWERDOWN: task->t.regs.ebx = 0x0401; /* powerdown */ break; default: goto out; } err = uvesafb_exec(task); if (err || (task->t.regs.eax & 0xffff) != 0x004f) err = 1; out: uvesafb_free(task); } return err; } static int uvesafb_open(struct fb_info *info, int user) { struct uvesafb_par *par = info->par; int cnt = atomic_read(&par->ref_count); u8 *buf = NULL; if (!cnt && par->vbe_state_size) { buf = uvesafb_vbe_state_save(par); if (IS_ERR(buf)) { printk(KERN_WARNING "uvesafb: save hardware state" "failed, error code is %ld!\n", PTR_ERR(buf)); } else { par->vbe_state_orig = buf; } } atomic_inc(&par->ref_count); return 0; } static int uvesafb_release(struct fb_info *info, int user) { struct uvesafb_ktask *task = NULL; struct uvesafb_par *par = info->par; int cnt = atomic_read(&par->ref_count); if (!cnt) return -EINVAL; if (cnt != 1) goto out; task = uvesafb_prep(); if (!task) goto out; /* First, try to set the standard 80x25 text mode. */ task->t.regs.eax = 0x0003; uvesafb_exec(task); /* * Now try to restore whatever hardware state we might have * saved when the fb device was first opened. */ uvesafb_vbe_state_restore(par, par->vbe_state_orig); out: atomic_dec(&par->ref_count); if (task) uvesafb_free(task); return 0; } static int uvesafb_set_par(struct fb_info *info) { struct uvesafb_par *par = info->par; struct uvesafb_ktask *task = NULL; struct vbe_crtc_ib *crtc = NULL; struct vbe_mode_ib *mode = NULL; int i, err = 0, depth = info->var.bits_per_pixel; if (depth > 8 && depth != 32) depth = info->var.red.length + info->var.green.length + info->var.blue.length; i = uvesafb_vbe_find_mode(par, info->var.xres, info->var.yres, depth, UVESAFB_EXACT_RES | UVESAFB_EXACT_DEPTH); if (i >= 0) mode = &par->vbe_modes[i]; else return -EINVAL; task = uvesafb_prep(); if (!task) return -ENOMEM; setmode: task->t.regs.eax = 0x4f02; task->t.regs.ebx = mode->mode_id | 0x4000; /* use LFB */ if (par->vbe_ib.vbe_version >= 0x0300 && !par->nocrtc && info->var.pixclock != 0) { task->t.regs.ebx |= 0x0800; /* use CRTC data */ task->t.flags = TF_BUF_ESDI; crtc = kzalloc(sizeof(struct vbe_crtc_ib), GFP_KERNEL); if (!crtc) { err = -ENOMEM; goto out; } crtc->horiz_start = info->var.xres + info->var.right_margin; crtc->horiz_end = crtc->horiz_start + info->var.hsync_len; crtc->horiz_total = crtc->horiz_end + info->var.left_margin; crtc->vert_start = info->var.yres + info->var.lower_margin; crtc->vert_end = crtc->vert_start + info->var.vsync_len; crtc->vert_total = crtc->vert_end + info->var.upper_margin; crtc->pixel_clock = PICOS2KHZ(info->var.pixclock) * 1000; crtc->refresh_rate = (u16)(100 * (crtc->pixel_clock / (crtc->vert_total * crtc->horiz_total))); if (info->var.vmode & FB_VMODE_DOUBLE) crtc->flags |= 0x1; if (info->var.vmode & FB_VMODE_INTERLACED) crtc->flags |= 0x2; if (!(info->var.sync & FB_SYNC_HOR_HIGH_ACT)) crtc->flags |= 0x4; if (!(info->var.sync & FB_SYNC_VERT_HIGH_ACT)) crtc->flags |= 0x8; memcpy(&par->crtc, crtc, sizeof(*crtc)); } else { memset(&par->crtc, 0, sizeof(*crtc)); } task->t.buf_len = sizeof(struct vbe_crtc_ib); task->buf = &par->crtc; err = uvesafb_exec(task); if (err || (task->t.regs.eax & 0xffff) != 0x004f) { /* * The mode switch might have failed because we tried to * use our own timings. Try again with the default timings. */ if (crtc != NULL) { printk(KERN_WARNING "uvesafb: mode switch failed " "(eax=0x%x, err=%d). Trying again with " "default timings.\n", task->t.regs.eax, err); uvesafb_reset(task); kfree(crtc); crtc = NULL; info->var.pixclock = 0; goto setmode; } else { printk(KERN_ERR "uvesafb: mode switch failed (eax=" "0x%x, err=%d)\n", task->t.regs.eax, err); err = -EINVAL; goto out; } } par->mode_idx = i; /* For 8bpp modes, always try to set the DAC to 8 bits. */ if (par->vbe_ib.capabilities & VBE_CAP_CAN_SWITCH_DAC && mode->bits_per_pixel <= 8) { uvesafb_reset(task); task->t.regs.eax = 0x4f08; task->t.regs.ebx = 0x0800; err = uvesafb_exec(task); if (err || (task->t.regs.eax & 0xffff) != 0x004f || ((task->t.regs.ebx & 0xff00) >> 8) != 8) { dac_width = 6; } else { dac_width = 8; } } info->fix.visual = (info->var.bits_per_pixel == 8) ? FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR; info->fix.line_length = mode->bytes_per_scan_line; out: kfree(crtc); uvesafb_free(task); return err; } static void uvesafb_check_limits(struct fb_var_screeninfo *var, struct fb_info *info) { const struct fb_videomode *mode; struct uvesafb_par *par = info->par; /* * If pixclock is set to 0, then we're using default BIOS timings * and thus don't have to perform any checks here. */ if (!var->pixclock) return; if (par->vbe_ib.vbe_version < 0x0300) { fb_get_mode(FB_VSYNCTIMINGS | FB_IGNOREMON, 60, var, info); return; } if (!fb_validate_mode(var, info)) return; mode = fb_find_best_mode(var, &info->modelist); if (mode) { if (mode->xres == var->xres && mode->yres == var->yres && !(mode->vmode & (FB_VMODE_INTERLACED | FB_VMODE_DOUBLE))) { fb_videomode_to_var(var, mode); return; } } if (info->monspecs.gtf && !fb_get_mode(FB_MAXTIMINGS, 0, var, info)) return; /* Use default refresh rate */ var->pixclock = 0; } static int uvesafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) { struct uvesafb_par *par = info->par; struct vbe_mode_ib *mode = NULL; int match = -1; int depth = var->red.length + var->green.length + var->blue.length; /* * Various apps will use bits_per_pixel to set the color depth, * which is theoretically incorrect, but which we'll try to handle * here. */ if (depth == 0 || abs(depth - var->bits_per_pixel) >= 8) depth = var->bits_per_pixel; match = uvesafb_vbe_find_mode(par, var->xres, var->yres, depth, UVESAFB_EXACT_RES); if (match == -1) return -EINVAL; mode = &par->vbe_modes[match]; uvesafb_setup_var(var, info, mode); /* * Check whether we have remapped enough memory for this mode. * We might be called at an early stage, when we haven't remapped * any memory yet, in which case we simply skip the check. */ if (var->yres * mode->bytes_per_scan_line > info->fix.smem_len && info->fix.smem_len) return -EINVAL; if ((var->vmode & FB_VMODE_DOUBLE) && !(par->vbe_modes[match].mode_attr & 0x100)) var->vmode &= ~FB_VMODE_DOUBLE; if ((var->vmode & FB_VMODE_INTERLACED) && !(par->vbe_modes[match].mode_attr & 0x200)) var->vmode &= ~FB_VMODE_INTERLACED; uvesafb_check_limits(var, info); var->xres_virtual = var->xres; var->yres_virtual = (par->ypan) ? info->fix.smem_len / mode->bytes_per_scan_line : var->yres; return 0; } static struct fb_ops uvesafb_ops = { .owner = THIS_MODULE, .fb_open = uvesafb_open, .fb_release = uvesafb_release, .fb_setcolreg = uvesafb_setcolreg, .fb_setcmap = uvesafb_setcmap, .fb_pan_display = uvesafb_pan_display, .fb_blank = uvesafb_blank, .fb_fillrect = cfb_fillrect, .fb_copyarea = cfb_copyarea, .fb_imageblit = cfb_imageblit, .fb_check_var = uvesafb_check_var, .fb_set_par = uvesafb_set_par, }; static void uvesafb_init_info(struct fb_info *info, struct vbe_mode_ib *mode) { unsigned int size_vmode; unsigned int size_remap; unsigned int size_total; struct uvesafb_par *par = info->par; int i, h; info->pseudo_palette = ((u8 *)info->par + sizeof(struct uvesafb_par)); info->fix = uvesafb_fix; info->fix.ypanstep = par->ypan ? 1 : 0; info->fix.ywrapstep = (par->ypan > 1) ? 1 : 0; /* Disable blanking if the user requested so. */ if (!blank) info->fbops->fb_blank = NULL; /* * Find out how much IO memory is required for the mode with * the highest resolution. */ size_remap = 0; for (i = 0; i < par->vbe_modes_cnt; i++) { h = par->vbe_modes[i].bytes_per_scan_line * par->vbe_modes[i].y_res; if (h > size_remap) size_remap = h; } size_remap *= 2; /* * size_vmode -- that is the amount of memory needed for the * used video mode, i.e. the minimum amount of * memory we need. */ if (mode != NULL) { size_vmode = info->var.yres * mode->bytes_per_scan_line; } else { size_vmode = info->var.yres * info->var.xres * ((info->var.bits_per_pixel + 7) >> 3); } /* * size_total -- all video memory we have. Used for mtrr * entries, resource allocation and bounds * checking. */ size_total = par->vbe_ib.total_memory * 65536; if (vram_total) size_total = vram_total * 1024 * 1024; if (size_total < size_vmode) size_total = size_vmode; /* * size_remap -- the amount of video memory we are going to * use for vesafb. With modern cards it is no * option to simply use size_total as th * wastes plenty of kernel address space. */ if (vram_remap) size_remap = vram_remap * 1024 * 1024; if (size_remap < size_vmode) size_remap = size_vmode; if (size_remap > size_total) size_remap = size_total; info->fix.smem_len = size_remap; info->fix.smem_start = mode->phys_base_ptr; /* * We have to set yres_virtual here because when setup_var() was * called, smem_len wasn't defined yet. */ info->var.yres_virtual = info->fix.smem_len / mode->bytes_per_scan_line; if (par->ypan && info->var.yres_virtual > info->var.yres) { printk(KERN_INFO "uvesafb: scrolling: %s " "using protected mode interface, " "yres_virtual=%d\n", (par->ypan > 1) ? "ywrap" : "ypan", info->var.yres_virtual); } else { printk(KERN_INFO "uvesafb: scrolling: redraw\n"); info->var.yres_virtual = info->var.yres; par->ypan = 0; } info->flags = FBINFO_FLAG_DEFAULT | (par->ypan ? FBINFO_HWACCEL_YPAN : 0); if (!par->ypan) info->fbops->fb_pan_display = NULL; } static void uvesafb_init_mtrr(struct fb_info *info) { struct uvesafb_par *par = info->par; if (mtrr && !(info->fix.smem_start & (PAGE_SIZE - 1))) { int temp_size = info->fix.smem_len; int rc; /* Find the largest power-of-two */ temp_size = roundup_pow_of_two(temp_size); /* Try and find a power of two to add */ do { rc = arch_phys_wc_add(info->fix.smem_start, temp_size); temp_size >>= 1; } while (temp_size >= PAGE_SIZE && rc == -EINVAL); if (rc >= 0) par->mtrr_handle = rc; } } static void uvesafb_ioremap(struct fb_info *info) { info->screen_base = ioremap_wc(info->fix.smem_start, info->fix.smem_len); } static ssize_t uvesafb_show_vbe_ver(struct device *dev, struct device_attribute *attr, char *buf) { struct fb_info *info = platform_get_drvdata(to_platform_device(dev)); struct uvesafb_par *par = info->par; return snprintf(buf, PAGE_SIZE, "%.4x\n", par->vbe_ib.vbe_version); } static DEVICE_ATTR(vbe_version, S_IRUGO, uvesafb_show_vbe_ver, NULL); static ssize_t uvesafb_show_vbe_modes(struct device *dev, struct device_attribute *attr, char *buf) { struct fb_info *info = platform_get_drvdata(to_platform_device(dev)); struct uvesafb_par *par = info->par; int ret = 0, i; for (i = 0; i < par->vbe_modes_cnt && ret < PAGE_SIZE; i++) { ret += snprintf(buf + ret, PAGE_SIZE - ret, "%dx%d-%d, 0x%.4x\n", par->vbe_modes[i].x_res, par->vbe_modes[i].y_res, par->vbe_modes[i].depth, par->vbe_modes[i].mode_id); } return ret; } static DEVICE_ATTR(vbe_modes, S_IRUGO, uvesafb_show_vbe_modes, NULL); static ssize_t uvesafb_show_vendor(struct device *dev, struct device_attribute *attr, char *buf) { struct fb_info *info = platform_get_drvdata(to_platform_device(dev)); struct uvesafb_par *par = info->par; if (par->vbe_ib.oem_vendor_name_ptr) return snprintf(buf, PAGE_SIZE, "%s\n", (char *) (&par->vbe_ib) + par->vbe_ib.oem_vendor_name_ptr); else return 0; } static DEVICE_ATTR(oem_vendor, S_IRUGO, uvesafb_show_vendor, NULL); static ssize_t uvesafb_show_product_name(struct device *dev, struct device_attribute *attr, char *buf) { struct fb_info *info = platform_get_drvdata(to_platform_device(dev)); struct uvesafb_par *par = info->par; if (par->vbe_ib.oem_product_name_ptr) return snprintf(buf, PAGE_SIZE, "%s\n", (char *) (&par->vbe_ib) + par->vbe_ib.oem_product_name_ptr); else return 0; } static DEVICE_ATTR(oem_product_name, S_IRUGO, uvesafb_show_product_name, NULL); static ssize_t uvesafb_show_product_rev(struct device *dev, struct device_attribute *attr, char *buf) { struct fb_info *info = platform_get_drvdata(to_platform_device(dev)); struct uvesafb_par *par = info->par; if (par->vbe_ib.oem_product_rev_ptr) return snprintf(buf, PAGE_SIZE, "%s\n", (char *) (&par->vbe_ib) + par->vbe_ib.oem_product_rev_ptr); else return 0; } static DEVICE_ATTR(oem_product_rev, S_IRUGO, uvesafb_show_product_rev, NULL); static ssize_t uvesafb_show_oem_string(struct device *dev, struct device_attribute *attr, char *buf) { struct fb_info *info = platform_get_drvdata(to_platform_device(dev)); struct uvesafb_par *par = info->par; if (par->vbe_ib.oem_string_ptr) return snprintf(buf, PAGE_SIZE, "%s\n", (char *)(&par->vbe_ib) + par->vbe_ib.oem_string_ptr); else return 0; } static DEVICE_ATTR(oem_string, S_IRUGO, uvesafb_show_oem_string, NULL); static ssize_t uvesafb_show_nocrtc(struct device *dev, struct device_attribute *attr, char *buf) { struct fb_info *info = platform_get_drvdata(to_platform_device(dev)); struct uvesafb_par *par = info->par; return snprintf(buf, PAGE_SIZE, "%d\n", par->nocrtc); } static ssize_t uvesafb_store_nocrtc(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fb_info *info = platform_get_drvdata(to_platform_device(dev)); struct uvesafb_par *par = info->par; if (count > 0) { if (buf[0] == '0') par->nocrtc = 0; else par->nocrtc = 1; } return count; } static DEVICE_ATTR(nocrtc, S_IRUGO | S_IWUSR, uvesafb_show_nocrtc, uvesafb_store_nocrtc); static struct attribute *uvesafb_dev_attrs[] = { &dev_attr_vbe_version.attr, &dev_attr_vbe_modes.attr, &dev_attr_oem_vendor.attr, &dev_attr_oem_product_name.attr, &dev_attr_oem_product_rev.attr, &dev_attr_oem_string.attr, &dev_attr_nocrtc.attr, NULL, }; static struct attribute_group uvesafb_dev_attgrp = { .name = NULL, .attrs = uvesafb_dev_attrs, }; static int uvesafb_probe(struct platform_device *dev) { struct fb_info *info; struct vbe_mode_ib *mode = NULL; struct uvesafb_par *par; int err = 0, i; info = framebuffer_alloc(sizeof(*par) + sizeof(u32) * 256, &dev->dev); if (!info) return -ENOMEM; par = info->par; err = uvesafb_vbe_init(info); if (err) { printk(KERN_ERR "uvesafb: vbe_init() failed with %d\n", err); goto out; } info->fbops = &uvesafb_ops; i = uvesafb_vbe_init_mode(info); if (i < 0) { err = -EINVAL; goto out; } else { mode = &par->vbe_modes[i]; } if (fb_alloc_cmap(&info->cmap, 256, 0) < 0) { err = -ENXIO; goto out; } uvesafb_init_info(info, mode); if (!request_region(0x3c0, 32, "uvesafb")) { printk(KERN_ERR "uvesafb: request region 0x3c0-0x3e0 failed\n"); err = -EIO; goto out_mode; } if (!request_mem_region(info->fix.smem_start, info->fix.smem_len, "uvesafb")) { printk(KERN_ERR "uvesafb: cannot reserve video memory at " "0x%lx\n", info->fix.smem_start); err = -EIO; goto out_reg; } uvesafb_init_mtrr(info); uvesafb_ioremap(info); if (!info->screen_base) { printk(KERN_ERR "uvesafb: abort, cannot ioremap 0x%x bytes of video " "memory at 0x%lx\n", info->fix.smem_len, info->fix.smem_start); err = -EIO; goto out_mem; } platform_set_drvdata(dev, info); if (register_framebuffer(info) < 0) { printk(KERN_ERR "uvesafb: failed to register framebuffer device\n"); err = -EINVAL; goto out_unmap; } printk(KERN_INFO "uvesafb: framebuffer at 0x%lx, mapped to 0x%p, " "using %dk, total %dk\n", info->fix.smem_start, info->screen_base, info->fix.smem_len/1024, par->vbe_ib.total_memory * 64); fb_info(info, "%s frame buffer device\n", info->fix.id); err = sysfs_create_group(&dev->dev.kobj, &uvesafb_dev_attgrp); if (err != 0) fb_warn(info, "failed to register attributes\n"); return 0; out_unmap: iounmap(info->screen_base); out_mem: release_mem_region(info->fix.smem_start, info->fix.smem_len); out_reg: release_region(0x3c0, 32); out_mode: if (!list_empty(&info->modelist)) fb_destroy_modelist(&info->modelist); fb_destroy_modedb(info->monspecs.modedb); fb_dealloc_cmap(&info->cmap); out: kfree(par->vbe_modes); framebuffer_release(info); return err; } static int uvesafb_remove(struct platform_device *dev) { struct fb_info *info = platform_get_drvdata(dev); if (info) { struct uvesafb_par *par = info->par; sysfs_remove_group(&dev->dev.kobj, &uvesafb_dev_attgrp); unregister_framebuffer(info); release_region(0x3c0, 32); iounmap(info->screen_base); arch_phys_wc_del(par->mtrr_handle); release_mem_region(info->fix.smem_start, info->fix.smem_len); fb_destroy_modedb(info->monspecs.modedb); fb_dealloc_cmap(&info->cmap); if (par) { kfree(par->vbe_modes); kfree(par->vbe_state_orig); kfree(par->vbe_state_saved); } framebuffer_release(info); } return 0; } static struct platform_driver uvesafb_driver = { .probe = uvesafb_probe, .remove = uvesafb_remove, .driver = { .name = "uvesafb", }, }; static struct platform_device *uvesafb_device; #ifndef MODULE static int uvesafb_setup(char *options) { char *this_opt; if (!options || !*options) return 0; while ((this_opt = strsep(&options, ",")) != NULL) { if (!*this_opt) continue; if (!strcmp(this_opt, "redraw")) ypan = 0; else if (!strcmp(this_opt, "ypan")) ypan = 1; else if (!strcmp(this_opt, "ywrap")) ypan = 2; else if (!strcmp(this_opt, "vgapal")) pmi_setpal = 0; else if (!strcmp(this_opt, "pmipal")) pmi_setpal = 1; else if (!strncmp(this_opt, "mtrr:", 5)) mtrr = simple_strtoul(this_opt+5, NULL, 0); else if (!strcmp(this_opt, "nomtrr")) mtrr = 0; else if (!strcmp(this_opt, "nocrtc")) nocrtc = 1; else if (!strcmp(this_opt, "noedid")) noedid = 1; else if (!strcmp(this_opt, "noblank")) blank = 0; else if (!strncmp(this_opt, "vtotal:", 7)) vram_total = simple_strtoul(this_opt + 7, NULL, 0); else if (!strncmp(this_opt, "vremap:", 7)) vram_remap = simple_strtoul(this_opt + 7, NULL, 0); else if (!strncmp(this_opt, "maxhf:", 6)) maxhf = simple_strtoul(this_opt + 6, NULL, 0); else if (!strncmp(this_opt, "maxvf:", 6)) maxvf = simple_strtoul(this_opt + 6, NULL, 0); else if (!strncmp(this_opt, "maxclk:", 7)) maxclk = simple_strtoul(this_opt + 7, NULL, 0); else if (!strncmp(this_opt, "vbemode:", 8)) vbemode = simple_strtoul(this_opt + 8, NULL, 0); else if (this_opt[0] >= '0' && this_opt[0] <= '9') { mode_option = this_opt; } else { printk(KERN_WARNING "uvesafb: unrecognized option %s\n", this_opt); } } if (mtrr != 3 && mtrr != 0) pr_warn("uvesafb: mtrr should be set to 0 or 3; %d is unsupported", mtrr); return 0; } #endif /* !MODULE */ static ssize_t show_v86d(struct device_driver *dev, char *buf) { return snprintf(buf, PAGE_SIZE, "%s\n", v86d_path); } static ssize_t store_v86d(struct device_driver *dev, const char *buf, size_t count) { strncpy(v86d_path, buf, PATH_MAX); return count; } static DRIVER_ATTR(v86d, S_IRUGO | S_IWUSR, show_v86d, store_v86d); static int uvesafb_init(void) { int err; #ifndef MODULE char *option = NULL; if (fb_get_options("uvesafb", &option)) return -ENODEV; uvesafb_setup(option); #endif err = cn_add_callback(&uvesafb_cn_id, "uvesafb", uvesafb_cn_callback); if (err) return err; err = platform_driver_register(&uvesafb_driver); if (!err) { uvesafb_device = platform_device_alloc("uvesafb", 0); if (uvesafb_device) err = platform_device_add(uvesafb_device); else err = -ENOMEM; if (err) { if (uvesafb_device) platform_device_put(uvesafb_device); platform_driver_unregister(&uvesafb_driver); cn_del_callback(&uvesafb_cn_id); return err; } err = driver_create_file(&uvesafb_driver.driver, &driver_attr_v86d); if (err) { printk(KERN_WARNING "uvesafb: failed to register " "attributes\n"); err = 0; } } return err; } module_init(uvesafb_init); static void uvesafb_exit(void) { struct uvesafb_ktask *task; if (v86d_started) { task = uvesafb_prep(); if (task) { task->t.flags = TF_EXIT; uvesafb_exec(task); uvesafb_free(task); } } cn_del_callback(&uvesafb_cn_id); driver_remove_file(&uvesafb_driver.driver, &driver_attr_v86d); platform_device_unregister(uvesafb_device); platform_driver_unregister(&uvesafb_driver); } module_exit(uvesafb_exit); static int param_set_scroll(const char *val, const struct kernel_param *kp) { ypan = 0; if (!strcmp(val, "redraw")) ypan = 0; else if (!strcmp(val, "ypan")) ypan = 1; else if (!strcmp(val, "ywrap")) ypan = 2; else return -EINVAL; return 0; } static struct kernel_param_ops param_ops_scroll = { .set = param_set_scroll, }; #define param_check_scroll(name, p) __param_check(name, p, void) module_param_named(scroll, ypan, scroll, 0); MODULE_PARM_DESC(scroll, "Scrolling mode, set to 'redraw', 'ypan', or 'ywrap'"); module_param_named(vgapal, pmi_setpal, invbool, 0); MODULE_PARM_DESC(vgapal, "Set palette using VGA registers"); module_param_named(pmipal, pmi_setpal, bool, 0); MODULE_PARM_DESC(pmipal, "Set palette using PMI calls"); module_param(mtrr, uint, 0); MODULE_PARM_DESC(mtrr, "Memory Type Range Registers setting. Use 0 to disable."); module_param(blank, bool, 0); MODULE_PARM_DESC(blank, "Enable hardware blanking"); module_param(nocrtc, bool, 0); MODULE_PARM_DESC(nocrtc, "Ignore CRTC timings when setting modes"); module_param(noedid, bool, 0); MODULE_PARM_DESC(noedid, "Ignore EDID-provided monitor limits when setting modes"); module_param(vram_remap, uint, 0); MODULE_PARM_DESC(vram_remap, "Set amount of video memory to be used [MiB]"); module_param(vram_total, uint, 0); MODULE_PARM_DESC(vram_total, "Set total amount of video memoery [MiB]"); module_param(maxclk, ushort, 0); MODULE_PARM_DESC(maxclk, "Maximum pixelclock [MHz], overrides EDID data"); module_param(maxhf, ushort, 0); MODULE_PARM_DESC(maxhf, "Maximum horizontal frequency [kHz], overrides EDID data"); module_param(maxvf, ushort, 0); MODULE_PARM_DESC(maxvf, "Maximum vertical frequency [Hz], overrides EDID data"); module_param(mode_option, charp, 0); MODULE_PARM_DESC(mode_option, "Specify initial video mode as \"<xres>x<yres>[-<bpp>][@<refresh>]\""); module_param(vbemode, ushort, 0); MODULE_PARM_DESC(vbemode, "VBE mode number to set, overrides the 'mode' option"); module_param_string(v86d, v86d_path, PATH_MAX, 0660); MODULE_PARM_DESC(v86d, "Path to the v86d userspace helper."); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Michal Januszewski <spock@gentoo.org>"); MODULE_DESCRIPTION("Framebuffer driver for VBE2.0+ compliant graphics boards");