/* * An async IO implementation for Linux * Written by Benjamin LaHaise * * Implements an efficient asynchronous io interface. * * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. * * See ../COPYING for licensing terms. */ #include #include #include #include #include #include #include #include #include #define DEBUG 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if DEBUG > 1 #define dprintk printk #else #define dprintk(x...) do { ; } while (0) #endif /*------ sysctl variables----*/ static DEFINE_SPINLOCK(aio_nr_lock); unsigned long aio_nr; /* current system wide number of aio requests */ unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ /*----end sysctl variables---*/ static struct kmem_cache *kiocb_cachep; static struct kmem_cache *kioctx_cachep; static struct workqueue_struct *aio_wq; /* Used for rare fput completion. */ static void aio_fput_routine(struct work_struct *); static DECLARE_WORK(fput_work, aio_fput_routine); static DEFINE_SPINLOCK(fput_lock); static LIST_HEAD(fput_head); #define AIO_BATCH_HASH_BITS 3 /* allocated on-stack, so don't go crazy */ #define AIO_BATCH_HASH_SIZE (1 << AIO_BATCH_HASH_BITS) struct aio_batch_entry { struct hlist_node list; struct address_space *mapping; }; mempool_t *abe_pool; static void aio_kick_handler(struct work_struct *); static void aio_queue_work(struct kioctx *); /* aio_setup * Creates the slab caches used by the aio routines, panic on * failure as this is done early during the boot sequence. */ static int __init aio_setup(void) { kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); aio_wq = create_workqueue("aio"); abe_pool = mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry)); BUG_ON(!abe_pool); pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); return 0; } __initcall(aio_setup); static void aio_free_ring(struct kioctx *ctx) { struct aio_ring_info *info = &ctx->ring_info; long i; for (i=0; inr_pages; i++) put_page(info->ring_pages[i]); if (info->mmap_size) { down_write(&ctx->mm->mmap_sem); do_munmap(ctx->mm, info->mmap_base, info->mmap_size); up_write(&ctx->mm->mmap_sem); } if (info->ring_pages && info->ring_pages != info->internal_pages) kfree(info->ring_pages); info->ring_pages = NULL; info->nr = 0; } static int aio_setup_ring(struct kioctx *ctx) { struct aio_ring *ring; struct aio_ring_info *info = &ctx->ring_info; unsigned nr_events = ctx->max_reqs; unsigned long size; int nr_pages; /* Compensate for the ring buffer's head/tail overlap entry */ nr_events += 2; /* 1 is required, 2 for good luck */ size = sizeof(struct aio_ring); size += sizeof(struct io_event) * nr_events; nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; if (nr_pages < 0) return -EINVAL; nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); info->nr = 0; info->ring_pages = info->internal_pages; if (nr_pages > AIO_RING_PAGES) { info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); if (!info->ring_pages) return -ENOMEM; } info->mmap_size = nr_pages * PAGE_SIZE; dprintk("attempting mmap of %lu bytes\n", info->mmap_size); down_write(&ctx->mm->mmap_sem); info->mmap_base = do_mmap(NULL, 0, info->mmap_size, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 0); if (IS_ERR((void *)info->mmap_base)) { up_write(&ctx->mm->mmap_sem); info->mmap_size = 0; aio_free_ring(ctx); return -EAGAIN; } dprintk("mmap address: 0x%08lx\n", info->mmap_base); info->nr_pages = get_user_pages(current, ctx->mm, info->mmap_base, nr_pages, 1, 0, info->ring_pages, NULL); up_write(&ctx->mm->mmap_sem); if (unlikely(info->nr_pages != nr_pages)) { aio_free_ring(ctx); return -EAGAIN; } ctx->user_id = info->mmap_base; info->nr = nr_events; /* trusted copy */ ring = kmap_atomic(info->ring_pages[0], KM_USER0); ring->nr = nr_events; /* user copy */ ring->id = ctx->user_id; ring->head = ring->tail = 0; ring->magic = AIO_RING_MAGIC; ring->compat_features = AIO_RING_COMPAT_FEATURES; ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; ring->header_length = sizeof(struct aio_ring); kunmap_atomic(ring, KM_USER0); return 0; } /* aio_ring_event: returns a pointer to the event at the given index from * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); */ #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) #define aio_ring_event(info, nr, km) ({ \ unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ struct io_event *__event; \ __event = kmap_atomic( \ (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ __event += pos % AIO_EVENTS_PER_PAGE; \ __event; \ }) #define put_aio_ring_event(event, km) do { \ struct io_event *__event = (event); \ (void)__event; \ kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ } while(0) static void ctx_rcu_free(struct rcu_head *head) { struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); unsigned nr_events = ctx->max_reqs; kmem_cache_free(kioctx_cachep, ctx); if (nr_events) { spin_lock(&aio_nr_lock); BUG_ON(aio_nr - nr_events > aio_nr); aio_nr -= nr_events; spin_unlock(&aio_nr_lock); } } /* __put_ioctx * Called when the last user of an aio context has gone away, * and the struct needs to be freed. */ static void __put_ioctx(struct kioctx *ctx) { BUG_ON(ctx->reqs_active); cancel_delayed_work(&ctx->wq); cancel_work_sync(&ctx->wq.work); aio_free_ring(ctx); mmdrop(ctx->mm); ctx->mm = NULL; pr_debug("__put_ioctx: freeing %p\n", ctx); call_rcu(&ctx->rcu_head, ctx_rcu_free); } #define get_ioctx(kioctx) do { \ BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ atomic_inc(&(kioctx)->users); \ } while (0) #define put_ioctx(kioctx) do { \ BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \ __put_ioctx(kioctx); \ } while (0) /* ioctx_alloc * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. */ static struct kioctx *ioctx_alloc(unsigned nr_events) { struct mm_struct *mm; struct kioctx *ctx; int did_sync = 0; /* Prevent overflows */ if ((nr_events > (0x10000000U / sizeof(struct io_event))) || (nr_events > (0x10000000U / sizeof(struct kiocb)))) { pr_debug("ENOMEM: nr_events too high\n"); return ERR_PTR(-EINVAL); } if ((unsigned long)nr_events > aio_max_nr) return ERR_PTR(-EAGAIN); ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); if (!ctx) return ERR_PTR(-ENOMEM); ctx->max_reqs = nr_events; mm = ctx->mm = current->mm; atomic_inc(&mm->mm_count); atomic_set(&ctx->users, 1); spin_lock_init(&ctx->ctx_lock); spin_lock_init(&ctx->ring_info.ring_lock); init_waitqueue_head(&ctx->wait); INIT_LIST_HEAD(&ctx->active_reqs); INIT_LIST_HEAD(&ctx->run_list); INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); if (aio_setup_ring(ctx) < 0) goto out_freectx; /* limit the number of system wide aios */ do { spin_lock_bh(&aio_nr_lock); if (aio_nr + nr_events > aio_max_nr || aio_nr + nr_events < aio_nr) ctx->max_reqs = 0; else aio_nr += ctx->max_reqs; spin_unlock_bh(&aio_nr_lock); if (ctx->max_reqs || did_sync) break; /* wait for rcu callbacks to have completed before giving up */ synchronize_rcu(); did_sync = 1; ctx->max_reqs = nr_events; } while (1); if (ctx->max_reqs == 0) goto out_cleanup; /* now link into global list. */ spin_lock(&mm->ioctx_lock); hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); spin_unlock(&mm->ioctx_lock); dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", ctx, ctx->user_id, current->mm, ctx->ring_info.nr); return ctx; out_cleanup: __put_ioctx(ctx); return ERR_PTR(-EAGAIN); out_freectx: mmdrop(mm); kmem_cache_free(kioctx_cachep, ctx); ctx = ERR_PTR(-ENOMEM); dprintk("aio: error allocating ioctx %p\n", ctx); return ctx; } /* aio_cancel_all * Cancels all outstanding aio requests on an aio context. Used * when the processes owning a context have all exited to encourage * the rapid destruction of the kioctx. */ static void aio_cancel_all(struct kioctx *ctx) { int (*cancel)(struct kiocb *, struct io_event *); struct io_event res; spin_lock_irq(&ctx->ctx_lock); ctx->dead = 1; while (!list_empty(&ctx->active_reqs)) { struct list_head *pos = ctx->active_reqs.next; struct kiocb *iocb = list_kiocb(pos); list_del_init(&iocb->ki_list); cancel = iocb->ki_cancel; kiocbSetCancelled(iocb); if (cancel) { iocb->ki_users++; spin_unlock_irq(&ctx->ctx_lock); cancel(iocb, &res); spin_lock_irq(&ctx->ctx_lock); } } spin_unlock_irq(&ctx->ctx_lock); } static void wait_for_all_aios(struct kioctx *ctx) { struct task_struct *tsk = current; DECLARE_WAITQUEUE(wait, tsk); spin_lock_irq(&ctx->ctx_lock); if (!ctx->reqs_active) goto out; add_wait_queue(&ctx->wait, &wait); set_task_state(tsk, TASK_UNINTERRUPTIBLE); while (ctx->reqs_active) { spin_unlock_irq(&ctx->ctx_lock); io_schedule(); set_task_state(tsk, TASK_UNINTERRUPTIBLE); spin_lock_irq(&ctx->ctx_lock); } __set_task_state(tsk, TASK_RUNNING); remove_wait_queue(&ctx->wait, &wait); out: spin_unlock_irq(&ctx->ctx_lock); } /* wait_on_sync_kiocb: * Waits on the given sync kiocb to complete. */ ssize_t wait_on_sync_kiocb(struct kiocb *iocb) { while (iocb->ki_users) { set_current_state(TASK_UNINTERRUPTIBLE); if (!iocb->ki_users) break; io_schedule(); } __set_current_state(TASK_RUNNING); return iocb->ki_user_data; } EXPORT_SYMBOL(wait_on_sync_kiocb); /* exit_aio: called when the last user of mm goes away. At this point, * there is no way for any new requests to be submited or any of the * io_* syscalls to be called on the context. However, there may be * outstanding requests which hold references to the context; as they * go away, they will call put_ioctx and release any pinned memory * associated with the request (held via struct page * references). */ void exit_aio(struct mm_struct *mm) { struct kioctx *ctx; while (!hlist_empty(&mm->ioctx_list)) { ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list); hlist_del_rcu(&ctx->list); aio_cancel_all(ctx); wait_for_all_aios(ctx); /* * Ensure we don't leave the ctx on the aio_wq */ cancel_work_sync(&ctx->wq.work); if (1 != atomic_read(&ctx->users)) printk(KERN_DEBUG "exit_aio:ioctx still alive: %d %d %d\n", atomic_read(&ctx->users), ctx->dead, ctx->reqs_active); put_ioctx(ctx); } } /* aio_get_req * Allocate a slot for an aio request. Increments the users count * of the kioctx so that the kioctx stays around until all requests are * complete. Returns NULL if no requests are free. * * Returns with kiocb->users set to 2. The io submit code path holds * an extra reference while submitting the i/o. * This prevents races between the aio code path referencing the * req (after submitting it) and aio_complete() freeing the req. */ static struct kiocb *__aio_get_req(struct kioctx *ctx) { struct kiocb *req = NULL; struct aio_ring *ring; int okay = 0; req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); if (unlikely(!req)) return NULL; req->ki_flags = 0; req->ki_users = 2; req->ki_key = 0; req->ki_ctx = ctx; req->ki_cancel = NULL; req->ki_retry = NULL; req->ki_dtor = NULL; req->private = NULL; req->ki_iovec = NULL; INIT_LIST_HEAD(&req->ki_run_list); req->ki_eventfd = NULL; /* Check if the completion queue has enough free space to * accept an event from this io. */ spin_lock_irq(&ctx->ctx_lock); ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { list_add(&req->ki_list, &ctx->active_reqs); ctx->reqs_active++; okay = 1; } kunmap_atomic(ring, KM_USER0); spin_unlock_irq(&ctx->ctx_lock); if (!okay) { kmem_cache_free(kiocb_cachep, req); req = NULL; } return req; } static inline struct kiocb *aio_get_req(struct kioctx *ctx) { struct kiocb *req; /* Handle a potential starvation case -- should be exceedingly rare as * requests will be stuck on fput_head only if the aio_fput_routine is * delayed and the requests were the last user of the struct file. */ req = __aio_get_req(ctx); if (unlikely(NULL == req)) { aio_fput_routine(NULL); req = __aio_get_req(ctx); } return req; } static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) { assert_spin_locked(&ctx->ctx_lock); if (req->ki_eventfd != NULL) eventfd_ctx_put(req->ki_eventfd); if (req->ki_dtor) req->ki_dtor(req); if (req->ki_iovec != &req->ki_inline_vec) kfree(req->ki_iovec); kmem_cache_free(kiocb_cachep, req); ctx->reqs_active--; if (unlikely(!ctx->reqs_active && ctx->dead)) wake_up(&ctx->wait); } static void aio_fput_routine(struct work_struct *data) { spin_lock_irq(&fput_lock); while (likely(!list_empty(&fput_head))) { struct kiocb *req = list_kiocb(fput_head.next); struct kioctx *ctx = req->ki_ctx; list_del(&req->ki_list); spin_unlock_irq(&fput_lock); /* Complete the fput(s) */ if (req->ki_filp != NULL) __fput(req->ki_filp); /* Link the iocb into the context's free list */ spin_lock_irq(&ctx->ctx_lock); really_put_req(ctx, req); spin_unlock_irq(&ctx->ctx_lock); put_ioctx(ctx); spin_lock_irq(&fput_lock); } spin_unlock_irq(&fput_lock); } /* __aio_put_req * Returns true if this put was the last user of the request. */ static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) { dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n", req, atomic_long_read(&req->ki_filp->f_count)); assert_spin_locked(&ctx->ctx_lock); req->ki_users--; BUG_ON(req->ki_users < 0); if (likely(req->ki_users)) return 0; list_del(&req->ki_list); /* remove from active_reqs */ req->ki_cancel = NULL; req->ki_retry = NULL; /* * Try to optimize the aio and eventfd file* puts, by avoiding to * schedule work in case it is not __fput() time. In normal cases, * we would not be holding the last reference to the file*, so * this function will be executed w/out any aio kthread wakeup. */ if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) { get_ioctx(ctx); spin_lock(&fput_lock); list_add(&req->ki_list, &fput_head); spin_unlock(&fput_lock); queue_work(aio_wq, &fput_work); } else { req->ki_filp = NULL; really_put_req(ctx, req); } return 1; } /* aio_put_req * Returns true if this put was the last user of the kiocb, * false if the request is still in use. */ int aio_put_req(struct kiocb *req) { struct kioctx *ctx = req->ki_ctx; int ret; spin_lock_irq(&ctx->ctx_lock); ret = __aio_put_req(ctx, req); spin_unlock_irq(&ctx->ctx_lock); return ret; } EXPORT_SYMBOL(aio_put_req); static struct kioctx *lookup_ioctx(unsigned long ctx_id) { struct mm_struct *mm = current->mm; struct kioctx *ctx, *ret = NULL; struct hlist_node *n; rcu_read_lock(); hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) { if (ctx->user_id == ctx_id && !ctx->dead) { get_ioctx(ctx); ret = ctx; break; } } rcu_read_unlock(); return ret; } /* * Queue up a kiocb to be retried. Assumes that the kiocb * has already been marked as kicked, and places it on * the retry run list for the corresponding ioctx, if it * isn't already queued. Returns 1 if it actually queued * the kiocb (to tell the caller to activate the work * queue to process it), or 0, if it found that it was * already queued. */ static inline int __queue_kicked_iocb(struct kiocb *iocb) { struct kioctx *ctx = iocb->ki_ctx; assert_spin_locked(&ctx->ctx_lock); if (list_empty(&iocb->ki_run_list)) { list_add_tail(&iocb->ki_run_list, &ctx->run_list); return 1; } return 0; } /* aio_run_iocb * This is the core aio execution routine. It is * invoked both for initial i/o submission and * subsequent retries via the aio_kick_handler. * Expects to be invoked with iocb->ki_ctx->lock * already held. The lock is released and reacquired * as needed during processing. * * Calls the iocb retry method (already setup for the * iocb on initial submission) for operation specific * handling, but takes care of most of common retry * execution details for a given iocb. The retry method * needs to be non-blocking as far as possible, to avoid * holding up other iocbs waiting to be serviced by the * retry kernel thread. * * The trickier parts in this code have to do with * ensuring that only one retry instance is in progress * for a given iocb at any time. Providing that guarantee * simplifies the coding of individual aio operations as * it avoids various potential races. */ static ssize_t aio_run_iocb(struct kiocb *iocb) { struct kioctx *ctx = iocb->ki_ctx; ssize_t (*retry)(struct kiocb *); ssize_t ret; if (!(retry = iocb->ki_retry)) { printk("aio_run_iocb: iocb->ki_retry = NULL\n"); return 0; } /* * We don't want the next retry iteration for this * operation to start until this one has returned and * updated the iocb state. However, wait_queue functions * can trigger a kick_iocb from interrupt context in the * meantime, indicating that data is available for the next * iteration. We want to remember that and enable the * next retry iteration _after_ we are through with * this one. * * So, in order to be able to register a "kick", but * prevent it from being queued now, we clear the kick * flag, but make the kick code *think* that the iocb is * still on the run list until we are actually done. * When we are done with this iteration, we check if * the iocb was kicked in the meantime and if so, queue * it up afresh. */ kiocbClearKicked(iocb); /* * This is so that aio_complete knows it doesn't need to * pull the iocb off the run list (We can't just call * INIT_LIST_HEAD because we don't want a kick_iocb to * queue this on the run list yet) */ iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; spin_unlock_irq(&ctx->ctx_lock); /* Quit retrying if the i/o has been cancelled */ if (kiocbIsCancelled(iocb)) { ret = -EINTR; aio_complete(iocb, ret, 0); /* must not access the iocb after this */ goto out; } /* * Now we are all set to call the retry method in async * context. */ ret = retry(iocb); if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) aio_complete(iocb, ret, 0); out: spin_lock_irq(&ctx->ctx_lock); if (-EIOCBRETRY == ret) { /* * OK, now that we are done with this iteration * and know that there is more left to go, * this is where we let go so that a subsequent * "kick" can start the next iteration */ /* will make __queue_kicked_iocb succeed from here on */ INIT_LIST_HEAD(&iocb->ki_run_list); /* we must queue the next iteration ourselves, if it * has already been kicked */ if (kiocbIsKicked(iocb)) { __queue_kicked_iocb(iocb); /* * __queue_kicked_iocb will always return 1 here, because * iocb->ki_run_list is empty at this point so it should * be safe to unconditionally queue the context into the * work queue. */ aio_queue_work(ctx); } } return ret; } /* * __aio_run_iocbs: * Process all pending retries queued on the ioctx * run list. * Assumes it is operating within the aio issuer's mm * context. */ static int __aio_run_iocbs(struct kioctx *ctx) { struct kiocb *iocb; struct list_head run_list; assert_spin_locked(&ctx->ctx_lock); list_replace_init(&ctx->run_list, &run_list); while (!list_empty(&run_list)) { iocb = list_entry(run_list.next, struct kiocb, ki_run_list); list_del(&iocb->ki_run_list); /* * Hold an extra reference while retrying i/o. */ iocb->ki_users++; /* grab extra reference */ aio_run_iocb(iocb); __aio_put_req(ctx, iocb); } if (!list_empty(&ctx->run_list)) return 1; return 0; } static void aio_queue_work(struct kioctx * ctx) { unsigned long timeout; /* * if someone is waiting, get the work started right * away, otherwise, use a longer delay */ smp_mb(); if (waitqueue_active(&ctx->wait)) timeout = 1; else timeout = HZ/10; queue_delayed_work(aio_wq, &ctx->wq, timeout); } /* * aio_run_iocbs: * Process all pending retries queued on the ioctx * run list. * Assumes it is operating within the aio issuer's mm * context. */ static inline void aio_run_iocbs(struct kioctx *ctx) { int requeue; spin_lock_irq(&ctx->ctx_lock); requeue = __aio_run_iocbs(ctx); spin_unlock_irq(&ctx->ctx_lock); if (requeue) aio_queue_work(ctx); } /* * just like aio_run_iocbs, but keeps running them until * the list stays empty */ static inline void aio_run_all_iocbs(struct kioctx *ctx) { spin_lock_irq(&ctx->ctx_lock); while (__aio_run_iocbs(ctx)) ; spin_unlock_irq(&ctx->ctx_lock); } /* * aio_kick_handler: * Work queue handler triggered to process pending * retries on an ioctx. Takes on the aio issuer's * mm context before running the iocbs, so that * copy_xxx_user operates on the issuer's address * space. * Run on aiod's context. */ static void aio_kick_handler(struct work_struct *work) { struct kioctx *ctx = container_of(work, struct kioctx, wq.work); mm_segment_t oldfs = get_fs(); struct mm_struct *mm; int requeue; set_fs(USER_DS); use_mm(ctx->mm); spin_lock_irq(&ctx->ctx_lock); requeue =__aio_run_iocbs(ctx); mm = ctx->mm; spin_unlock_irq(&ctx->ctx_lock); unuse_mm(mm); set_fs(oldfs); /* * we're in a worker thread already, don't use queue_delayed_work, */ if (requeue) queue_delayed_work(aio_wq, &ctx->wq, 0); } /* * Called by kick_iocb to queue the kiocb for retry * and if required activate the aio work queue to process * it */ static void try_queue_kicked_iocb(struct kiocb *iocb) { struct kioctx *ctx = iocb->ki_ctx; unsigned long flags; int run = 0; spin_lock_irqsave(&ctx->ctx_lock, flags); /* set this inside the lock so that we can't race with aio_run_iocb() * testing it and putting the iocb on the run list under the lock */ if (!kiocbTryKick(iocb)) run = __queue_kicked_iocb(iocb); spin_unlock_irqrestore(&ctx->ctx_lock, flags); if (run) aio_queue_work(ctx); } /* * kick_iocb: * Called typically from a wait queue callback context * to trigger a retry of the iocb. * The retry is usually executed by aio workqueue * threads (See aio_kick_handler). */ void kick_iocb(struct kiocb *iocb) { /* sync iocbs are easy: they can only ever be executing from a * single context. */ if (is_sync_kiocb(iocb)) { kiocbSetKicked(iocb); wake_up_process(iocb->ki_obj.tsk); return; } try_queue_kicked_iocb(iocb); } EXPORT_SYMBOL(kick_iocb); /* aio_complete * Called when the io request on the given iocb is complete. * Returns true if this is the last user of the request. The * only other user of the request can be the cancellation code. */ int aio_complete(struct kiocb *iocb, long res, long res2) { struct kioctx *ctx = iocb->ki_ctx; struct aio_ring_info *info; struct aio_ring *ring; struct io_event *event; unsigned long flags; unsigned long tail; int ret; /* * Special case handling for sync iocbs: * - events go directly into the iocb for fast handling * - the sync task with the iocb in its stack holds the single iocb * ref, no other paths have a way to get another ref * - the sync task helpfully left a reference to itself in the iocb */ if (is_sync_kiocb(iocb)) { BUG_ON(iocb->ki_users != 1); iocb->ki_user_data = res; iocb->ki_users = 0; wake_up_process(iocb->ki_obj.tsk); return 1; } info = &ctx->ring_info; /* add a completion event to the ring buffer. * must be done holding ctx->ctx_lock to prevent * other code from messing with the tail * pointer since we might be called from irq * context. */ spin_lock_irqsave(&ctx->ctx_lock, flags); if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) list_del_init(&iocb->ki_run_list); /* * cancelled requests don't get events, userland was given one * when the event got cancelled. */ if (kiocbIsCancelled(iocb)) goto put_rq; ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); tail = info->tail; event = aio_ring_event(info, tail, KM_IRQ0); if (++tail >= info->nr) tail = 0; event->obj = (u64)(unsigned long)iocb->ki_obj.user; event->data = iocb->ki_user_data; event->res = res; event->res2 = res2; dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, res, res2); /* after flagging the request as done, we * must never even look at it again */ smp_wmb(); /* make event visible before updating tail */ info->tail = tail; ring->tail = tail; put_aio_ring_event(event, KM_IRQ0); kunmap_atomic(ring, KM_IRQ1); pr_debug("added to ring %p at [%lu]\n", iocb, tail); /* * Check if the user asked us to deliver the result through an * eventfd. The eventfd_signal() function is safe to be called * from IRQ context. */ if (iocb->ki_eventfd != NULL) eventfd_signal(iocb->ki_eventfd, 1); put_rq: /* everything turned out well, dispose of the aiocb. */ ret = __aio_put_req(ctx, iocb); /* * We have to order our ring_info tail store above and test * of the wait list below outside the wait lock. This is * like in wake_up_bit() where clearing a bit has to be * ordered with the unlocked test. */ smp_mb(); if (waitqueue_active(&ctx->wait)) wake_up(&ctx->wait); spin_unlock_irqrestore(&ctx->ctx_lock, flags); return ret; } EXPORT_SYMBOL(aio_complete); /* aio_read_evt * Pull an event off of the ioctx's event ring. Returns the number of * events fetched (0 or 1 ;-) * FIXME: make this use cmpxchg. * TODO: make the ringbuffer user mmap()able (requires FIXME). */ static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) { struct aio_ring_info *info = &ioctx->ring_info; struct aio_ring *ring; unsigned long head; int ret = 0; ring = kmap_atomic(info->ring_pages[0], KM_USER0); dprintk("in aio_read_evt h%lu t%lu m%lu\n", (unsigned long)ring->head, (unsigned long)ring->tail, (unsigned long)ring->nr); if (ring->head == ring->tail) goto out; spin_lock(&info->ring_lock); head = ring->head % info->nr; if (head != ring->tail) { struct io_event *evp = aio_ring_event(info, head, KM_USER1); *ent = *evp; head = (head + 1) % info->nr; smp_mb(); /* finish reading the event before updatng the head */ ring->head = head; ret = 1; put_aio_ring_event(evp, KM_USER1); } spin_unlock(&info->ring_lock); out: kunmap_atomic(ring, KM_USER0); dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, (unsigned long)ring->head, (unsigned long)ring->tail); return ret; } struct aio_timeout { struct timer_list timer; int timed_out; struct task_struct *p; }; static void timeout_func(unsigned long data) { struct aio_timeout *to = (struct aio_timeout *)data; to->timed_out = 1; wake_up_process(to->p); } static inline void init_timeout(struct aio_timeout *to) { setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); to->timed_out = 0; to->p = current; } static inline void set_timeout(long start_jiffies, struct aio_timeout *to, const struct timespec *ts) { to->timer.expires = start_jiffies + timespec_to_jiffies(ts); if (time_after(to->timer.expires, jiffies)) add_timer(&to->timer); else to->timed_out = 1; } static inline void clear_timeout(struct aio_timeout *to) { del_singleshot_timer_sync(&to->timer); } static int read_events(struct kioctx *ctx, long min_nr, long nr, struct io_event __user *event, struct timespec __user *timeout) { long start_jiffies = jiffies; struct task_struct *tsk = current; DECLARE_WAITQUEUE(wait, tsk); int ret; int i = 0; struct io_event ent; struct aio_timeout to; int retry = 0; /* needed to zero any padding within an entry (there shouldn't be * any, but C is fun! */ memset(&ent, 0, sizeof(ent)); retry: ret = 0; while (likely(i < nr)) { ret = aio_read_evt(ctx, &ent); if (unlikely(ret <= 0)) break; dprintk("read event: %Lx %Lx %Lx %Lx\n", ent.data, ent.obj, ent.res, ent.res2); /* Could we split the check in two? */ ret = -EFAULT; if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { dprintk("aio: lost an event due to EFAULT.\n"); break; } ret = 0; /* Good, event copied to userland, update counts. */ event ++; i ++; } if (min_nr <= i) return i; if (ret) return ret; /* End fast path */ /* racey check, but it gets redone */ if (!retry && unlikely(!list_empty(&ctx->run_list))) { retry = 1; aio_run_all_iocbs(ctx); goto retry; } init_timeout(&to); if (timeout) { struct timespec ts; ret = -EFAULT; if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) goto out; set_timeout(start_jiffies, &to, &ts); } while (likely(i < nr)) { add_wait_queue_exclusive(&ctx->wait, &wait); do { set_task_state(tsk, TASK_INTERRUPTIBLE); ret = aio_read_evt(ctx, &ent); if (ret) break; if (min_nr <= i) break; if (unlikely(ctx->dead)) { ret = -EINVAL; break; } if (to.timed_out) /* Only check after read evt */ break; /* Try to only show up in io wait if there are ops * in flight */ if (ctx->reqs_active) io_schedule(); else schedule(); if (signal_pending(tsk)) { ret = -EINTR; break; } /*ret = aio_read_evt(ctx, &ent);*/ } while (1) ; set_task_state(tsk, TASK_RUNNING); remove_wait_queue(&ctx->wait, &wait); if (unlikely(ret <= 0)) break; ret = -EFAULT; if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { dprintk("aio: lost an event due to EFAULT.\n"); break; } /* Good, event copied to userland, update counts. */ event ++; i ++; } if (timeout) clear_timeout(&to); out: destroy_timer_on_stack(&to.timer); return i ? i : ret; } /* Take an ioctx and remove it from the list of ioctx's. Protects * against races with itself via ->dead. */ static void io_destroy(struct kioctx *ioctx) { struct mm_struct *mm = current->mm; int was_dead; /* delete the entry from the list is someone else hasn't already */ spin_lock(&mm->ioctx_lock); was_dead = ioctx->dead; ioctx->dead = 1; hlist_del_rcu(&ioctx->list); spin_unlock(&mm->ioctx_lock); dprintk("aio_release(%p)\n", ioctx); if (likely(!was_dead)) put_ioctx(ioctx); /* twice for the list */ aio_cancel_all(ioctx); wait_for_all_aios(ioctx); /* * Wake up any waiters. The setting of ctx->dead must be seen * by other CPUs at this point. Right now, we rely on the * locking done by the above calls to ensure this consistency. */ wake_up(&ioctx->wait); put_ioctx(ioctx); /* once for the lookup */ } /* sys_io_setup: * Create an aio_context capable of receiving at least nr_events. * ctxp must not point to an aio_context that already exists, and * must be initialized to 0 prior to the call. On successful * creation of the aio_context, *ctxp is filled in with the resulting * handle. May fail with -EINVAL if *ctxp is not initialized, * if the specified nr_events exceeds internal limits. May fail * with -EAGAIN if the specified nr_events exceeds the user's limit * of available events. May fail with -ENOMEM if insufficient kernel * resources are available. May fail with -EFAULT if an invalid * pointer is passed for ctxp. Will fail with -ENOSYS if not * implemented. */ SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) { struct kioctx *ioctx = NULL; unsigned long ctx; long ret; ret = get_user(ctx, ctxp); if (unlikely(ret)) goto out; ret = -EINVAL; if (unlikely(ctx || nr_events == 0)) { pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", ctx, nr_events); goto out; } ioctx = ioctx_alloc(nr_events); ret = PTR_ERR(ioctx); if (!IS_ERR(ioctx)) { ret = put_user(ioctx->user_id, ctxp); if (!ret) return 0; get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ io_destroy(ioctx); } out: return ret; } /* sys_io_destroy: * Destroy the aio_context specified. May cancel any outstanding * AIOs and block on completion. Will fail with -ENOSYS if not * implemented. May fail with -EFAULT if the context pointed to * is invalid. */ SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) { struct kioctx *ioctx = lookup_ioctx(ctx); if (likely(NULL != ioctx)) { io_destroy(ioctx); return 0; } pr_debug("EINVAL: io_destroy: invalid context id\n"); return -EINVAL; } static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) { struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; BUG_ON(ret <= 0); while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { ssize_t this = min((ssize_t)iov->iov_len, ret); iov->iov_base += this; iov->iov_len -= this; iocb->ki_left -= this; ret -= this; if (iov->iov_len == 0) { iocb->ki_cur_seg++; iov++; } } /* the caller should not have done more io than what fit in * the remaining iovecs */ BUG_ON(ret > 0 && iocb->ki_left == 0); } static ssize_t aio_rw_vect_retry(struct kiocb *iocb) { struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; ssize_t (*rw_op)(struct kiocb *, const struct iovec *, unsigned long, loff_t); ssize_t ret = 0; unsigned short opcode; if ((iocb->ki_opcode == IOCB_CMD_PREADV) || (iocb->ki_opcode == IOCB_CMD_PREAD)) { rw_op = file->f_op->aio_read; opcode = IOCB_CMD_PREADV; } else { rw_op = file->f_op->aio_write; opcode = IOCB_CMD_PWRITEV; } /* This matches the pread()/pwrite() logic */ if (iocb->ki_pos < 0) return -EINVAL; do { ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], iocb->ki_nr_segs - iocb->ki_cur_seg, iocb->ki_pos); if (ret > 0) aio_advance_iovec(iocb, ret); /* retry all partial writes. retry partial reads as long as its a * regular file. */ } while (ret > 0 && iocb->ki_left > 0 && (opcode == IOCB_CMD_PWRITEV || (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); /* This means we must have transferred all that we could */ /* No need to retry anymore */ if ((ret == 0) || (iocb->ki_left == 0)) ret = iocb->ki_nbytes - iocb->ki_left; /* If we managed to write some out we return that, rather than * the eventual error. */ if (opcode == IOCB_CMD_PWRITEV && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY && iocb->ki_nbytes - iocb->ki_left) ret = iocb->ki_nbytes - iocb->ki_left; return ret; } static ssize_t aio_fdsync(struct kiocb *iocb) { struct file *file = iocb->ki_filp; ssize_t ret = -EINVAL; if (file->f_op->aio_fsync) ret = file->f_op->aio_fsync(iocb, 1); return ret; } static ssize_t aio_fsync(struct kiocb *iocb) { struct file *file = iocb->ki_filp; ssize_t ret = -EINVAL; if (file->f_op->aio_fsync) ret = file->f_op->aio_fsync(iocb, 0); return ret; } static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat) { ssize_t ret; #ifdef CONFIG_COMPAT if (compat) ret = compat_rw_copy_check_uvector(type, (struct compat_iovec __user *)kiocb->ki_buf, kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, &kiocb->ki_iovec); else #endif ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf, kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, &kiocb->ki_iovec); if (ret < 0) goto out; kiocb->ki_nr_segs = kiocb->ki_nbytes; kiocb->ki_cur_seg = 0; /* ki_nbytes/left now reflect bytes instead of segs */ kiocb->ki_nbytes = ret; kiocb->ki_left = ret; ret = 0; out: return ret; } static ssize_t aio_setup_single_vector(struct kiocb *kiocb) { kiocb->ki_iovec = &kiocb->ki_inline_vec; kiocb->ki_iovec->iov_base = kiocb->ki_buf; kiocb->ki_iovec->iov_len = kiocb->ki_left; kiocb->ki_nr_segs = 1; kiocb->ki_cur_seg = 0; return 0; } /* * aio_setup_iocb: * Performs the initial checks and aio retry method * setup for the kiocb at the time of io submission. */ static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat) { struct file *file = kiocb->ki_filp; ssize_t ret = 0; switch (kiocb->ki_opcode) { case IOCB_CMD_PREAD: ret = -EBADF; if (unlikely(!(file->f_mode & FMODE_READ))) break; ret = -EFAULT; if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, kiocb->ki_left))) break; ret = security_file_permission(file, MAY_READ); if (unlikely(ret)) break; ret = aio_setup_single_vector(kiocb); if (ret) break; ret = -EINVAL; if (file->f_op->aio_read) kiocb->ki_retry = aio_rw_vect_retry; break; case IOCB_CMD_PWRITE: ret = -EBADF; if (unlikely(!(file->f_mode & FMODE_WRITE))) break; ret = -EFAULT; if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, kiocb->ki_left))) break; ret = security_file_permission(file, MAY_WRITE); if (unlikely(ret)) break; ret = aio_setup_single_vector(kiocb); if (ret) break; ret = -EINVAL; if (file->f_op->aio_write) kiocb->ki_retry = aio_rw_vect_retry; break; case IOCB_CMD_PREADV: ret = -EBADF; if (unlikely(!(file->f_mode & FMODE_READ))) break; ret = security_file_permission(file, MAY_READ); if (unlikely(ret)) break; ret = aio_setup_vectored_rw(READ, kiocb, compat); if (ret) break; ret = -EINVAL; if (file->f_op->aio_read) kiocb->ki_retry = aio_rw_vect_retry; break; case IOCB_CMD_PWRITEV: ret = -EBADF; if (unlikely(!(file->f_mode & FMODE_WRITE))) break; ret = security_file_permission(file, MAY_WRITE); if (unlikely(ret)) break; ret = aio_setup_vectored_rw(WRITE, kiocb, compat); if (ret) break; ret = -EINVAL; if (file->f_op->aio_write) kiocb->ki_retry = aio_rw_vect_retry; break; case IOCB_CMD_FDSYNC: ret = -EINVAL; if (file->f_op->aio_fsync) kiocb->ki_retry = aio_fdsync; break; case IOCB_CMD_FSYNC: ret = -EINVAL; if (file->f_op->aio_fsync) kiocb->ki_retry = aio_fsync; break; default: dprintk("EINVAL: io_submit: no operation provided\n"); ret = -EINVAL; } if (!kiocb->ki_retry) return ret; return 0; } static void aio_batch_add(struct address_space *mapping, struct hlist_head *batch_hash) { struct aio_batch_entry *abe; struct hlist_node *pos; unsigned bucket; bucket = hash_ptr(mapping, AIO_BATCH_HASH_BITS); hlist_for_each_entry(abe, pos, &batch_hash[bucket], list) { if (abe->mapping == mapping) return; } abe = mempool_alloc(abe_pool, GFP_KERNEL); BUG_ON(!igrab(mapping->host)); abe->mapping = mapping; hlist_add_head(&abe->list, &batch_hash[bucket]); return; } static void aio_batch_free(struct hlist_head *batch_hash) { struct aio_batch_entry *abe; struct hlist_node *pos, *n; int i; for (i = 0; i < AIO_BATCH_HASH_SIZE; i++) { hlist_for_each_entry_safe(abe, pos, n, &batch_hash[i], list) { blk_run_address_space(abe->mapping); iput(abe->mapping->host); hlist_del(&abe->list); mempool_free(abe, abe_pool); } } } static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, struct iocb *iocb, struct hlist_head *batch_hash, bool compat) { struct kiocb *req; struct file *file; ssize_t ret; /* enforce forwards compatibility on users */ if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { pr_debug("EINVAL: io_submit: reserve field set\n"); return -EINVAL; } /* prevent overflows */ if (unlikely( (iocb->aio_buf != (unsigned long)iocb->aio_buf) || (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || ((ssize_t)iocb->aio_nbytes < 0) )) { pr_debug("EINVAL: io_submit: overflow check\n"); return -EINVAL; } file = fget(iocb->aio_fildes); if (unlikely(!file)) return -EBADF; req = aio_get_req(ctx); /* returns with 2 references to req */ if (unlikely(!req)) { fput(file); return -EAGAIN; } req->ki_filp = file; if (iocb->aio_flags & IOCB_FLAG_RESFD) { /* * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an * instance of the file* now. The file descriptor must be * an eventfd() fd, and will be signaled for each completed * event using the eventfd_signal() function. */ req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); if (IS_ERR(req->ki_eventfd)) { ret = PTR_ERR(req->ki_eventfd); req->ki_eventfd = NULL; goto out_put_req; } } ret = put_user(req->ki_key, &user_iocb->aio_key); if (unlikely(ret)) { dprintk("EFAULT: aio_key\n"); goto out_put_req; } req->ki_obj.user = user_iocb; req->ki_user_data = iocb->aio_data; req->ki_pos = iocb->aio_offset; req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; req->ki_left = req->ki_nbytes = iocb->aio_nbytes; req->ki_opcode = iocb->aio_lio_opcode; ret = aio_setup_iocb(req, compat); if (ret) goto out_put_req; spin_lock_irq(&ctx->ctx_lock); aio_run_iocb(req); if (!list_empty(&ctx->run_list)) { /* drain the run list */ while (__aio_run_iocbs(ctx)) ; } spin_unlock_irq(&ctx->ctx_lock); if (req->ki_opcode == IOCB_CMD_PREAD || req->ki_opcode == IOCB_CMD_PREADV || req->ki_opcode == IOCB_CMD_PWRITE || req->ki_opcode == IOCB_CMD_PWRITEV) aio_batch_add(file->f_mapping, batch_hash); aio_put_req(req); /* drop extra ref to req */ return 0; out_put_req: aio_put_req(req); /* drop extra ref to req */ aio_put_req(req); /* drop i/o ref to req */ return ret; } long do_io_submit(aio_context_t ctx_id, long nr, struct iocb __user *__user *iocbpp, bool compat) { struct kioctx *ctx; long ret = 0; int i; struct hlist_head batch_hash[AIO_BATCH_HASH_SIZE] = { { 0, }, }; if (unlikely(nr < 0)) return -EINVAL; if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) nr = LONG_MAX/sizeof(*iocbpp); if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) return -EFAULT; ctx = lookup_ioctx(ctx_id); if (unlikely(!ctx)) { pr_debug("EINVAL: io_submit: invalid context id\n"); return -EINVAL; } /* * AKPM: should this return a partial result if some of the IOs were * successfully submitted? */ for (i=0; ictx_lock); /* TODO: use a hash or array, this sucks. */ list_for_each(pos, &ctx->active_reqs) { struct kiocb *kiocb = list_kiocb(pos); if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) return kiocb; } return NULL; } /* sys_io_cancel: * Attempts to cancel an iocb previously passed to io_submit. If * the operation is successfully cancelled, the resulting event is * copied into the memory pointed to by result without being placed * into the completion queue and 0 is returned. May fail with * -EFAULT if any of the data structures pointed to are invalid. * May fail with -EINVAL if aio_context specified by ctx_id is * invalid. May fail with -EAGAIN if the iocb specified was not * cancelled. Will fail with -ENOSYS if not implemented. */ SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, struct io_event __user *, result) { int (*cancel)(struct kiocb *iocb, struct io_event *res); struct kioctx *ctx; struct kiocb *kiocb; u32 key; int ret; ret = get_user(key, &iocb->aio_key); if (unlikely(ret)) return -EFAULT; ctx = lookup_ioctx(ctx_id); if (unlikely(!ctx)) return -EINVAL; spin_lock_irq(&ctx->ctx_lock); ret = -EAGAIN; kiocb = lookup_kiocb(ctx, iocb, key); if (kiocb && kiocb->ki_cancel) { cancel = kiocb->ki_cancel; kiocb->ki_users ++; kiocbSetCancelled(kiocb); } else cancel = NULL; spin_unlock_irq(&ctx->ctx_lock); if (NULL != cancel) { struct io_event tmp; pr_debug("calling cancel\n"); memset(&tmp, 0, sizeof(tmp)); tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; tmp.data = kiocb->ki_user_data; ret = cancel(kiocb, &tmp); if (!ret) { /* Cancellation succeeded -- copy the result * into the user's buffer. */ if (copy_to_user(result, &tmp, sizeof(tmp))) ret = -EFAULT; } } else ret = -EINVAL; put_ioctx(ctx); return ret; } /* io_getevents: * Attempts to read at least min_nr events and up to nr events from * the completion queue for the aio_context specified by ctx_id. May * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range, * if nr is out of range, if when is out of range. May fail with * -EFAULT if any of the memory specified to is invalid. May return * 0 or < min_nr if no events are available and the timeout specified * by when has elapsed, where when == NULL specifies an infinite * timeout. Note that the timeout pointed to by when is relative and * will be updated if not NULL and the operation blocks. Will fail * with -ENOSYS if not implemented. */ SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, long, min_nr, long, nr, struct io_event __user *, events, struct timespec __user *, timeout) { struct kioctx *ioctx = lookup_ioctx(ctx_id); long ret = -EINVAL; if (likely(ioctx)) { if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0)) ret = read_events(ioctx, min_nr, nr, events, timeout); put_ioctx(ioctx); } asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); return ret; }