/* * Copyright (c) 2012 Taobao. * Written by Tao Ma * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2.1 of the GNU Lesser General Public License * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "ext4_jbd2.h" #include "ext4.h" #include "xattr.h" #include "truncate.h" #include #define EXT4_XATTR_SYSTEM_DATA "data" #define EXT4_MIN_INLINE_DATA_SIZE ((sizeof(__le32) * EXT4_N_BLOCKS)) #define EXT4_INLINE_DOTDOT_OFFSET 2 #define EXT4_INLINE_DOTDOT_SIZE 4 int ext4_get_inline_size(struct inode *inode) { if (EXT4_I(inode)->i_inline_off) return EXT4_I(inode)->i_inline_size; return 0; } static int get_max_inline_xattr_value_size(struct inode *inode, struct ext4_iloc *iloc) { struct ext4_xattr_ibody_header *header; struct ext4_xattr_entry *entry; struct ext4_inode *raw_inode; int free, min_offs; min_offs = EXT4_SB(inode->i_sb)->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE - EXT4_I(inode)->i_extra_isize - sizeof(struct ext4_xattr_ibody_header); /* * We need to subtract another sizeof(__u32) since an in-inode xattr * needs an empty 4 bytes to indicate the gap between the xattr entry * and the name/value pair. */ if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR)) return EXT4_XATTR_SIZE(min_offs - EXT4_XATTR_LEN(strlen(EXT4_XATTR_SYSTEM_DATA)) - EXT4_XATTR_ROUND - sizeof(__u32)); raw_inode = ext4_raw_inode(iloc); header = IHDR(inode, raw_inode); entry = IFIRST(header); /* Compute min_offs. */ for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) { if (!entry->e_value_block && entry->e_value_size) { size_t offs = le16_to_cpu(entry->e_value_offs); if (offs < min_offs) min_offs = offs; } } free = min_offs - ((void *)entry - (void *)IFIRST(header)) - sizeof(__u32); if (EXT4_I(inode)->i_inline_off) { entry = (struct ext4_xattr_entry *) ((void *)raw_inode + EXT4_I(inode)->i_inline_off); free += EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size)); goto out; } free -= EXT4_XATTR_LEN(strlen(EXT4_XATTR_SYSTEM_DATA)); if (free > EXT4_XATTR_ROUND) free = EXT4_XATTR_SIZE(free - EXT4_XATTR_ROUND); else free = 0; out: return free; } /* * Get the maximum size we now can store in an inode. * If we can't find the space for a xattr entry, don't use the space * of the extents since we have no space to indicate the inline data. */ int ext4_get_max_inline_size(struct inode *inode) { int error, max_inline_size; struct ext4_iloc iloc; if (EXT4_I(inode)->i_extra_isize == 0) return 0; error = ext4_get_inode_loc(inode, &iloc); if (error) { ext4_error_inode(inode, __func__, __LINE__, 0, "can't get inode location %lu", inode->i_ino); return 0; } down_read(&EXT4_I(inode)->xattr_sem); max_inline_size = get_max_inline_xattr_value_size(inode, &iloc); up_read(&EXT4_I(inode)->xattr_sem); brelse(iloc.bh); if (!max_inline_size) return 0; return max_inline_size + EXT4_MIN_INLINE_DATA_SIZE; } int ext4_has_inline_data(struct inode *inode) { return ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA) && EXT4_I(inode)->i_inline_off; } /* * this function does not take xattr_sem, which is OK because it is * currently only used in a code path coming form ext4_iget, before * the new inode has been unlocked */ int ext4_find_inline_data_nolock(struct inode *inode) { struct ext4_xattr_ibody_find is = { .s = { .not_found = -ENODATA, }, }; struct ext4_xattr_info i = { .name_index = EXT4_XATTR_INDEX_SYSTEM, .name = EXT4_XATTR_SYSTEM_DATA, }; int error; if (EXT4_I(inode)->i_extra_isize == 0) return 0; error = ext4_get_inode_loc(inode, &is.iloc); if (error) return error; error = ext4_xattr_ibody_find(inode, &i, &is); if (error) goto out; if (!is.s.not_found) { EXT4_I(inode)->i_inline_off = (u16)((void *)is.s.here - (void *)ext4_raw_inode(&is.iloc)); EXT4_I(inode)->i_inline_size = EXT4_MIN_INLINE_DATA_SIZE + le32_to_cpu(is.s.here->e_value_size); ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); } out: brelse(is.iloc.bh); return error; } static int ext4_read_inline_data(struct inode *inode, void *buffer, unsigned int len, struct ext4_iloc *iloc) { struct ext4_xattr_entry *entry; struct ext4_xattr_ibody_header *header; int cp_len = 0; struct ext4_inode *raw_inode; if (!len) return 0; BUG_ON(len > EXT4_I(inode)->i_inline_size); cp_len = len < EXT4_MIN_INLINE_DATA_SIZE ? len : EXT4_MIN_INLINE_DATA_SIZE; raw_inode = ext4_raw_inode(iloc); memcpy(buffer, (void *)(raw_inode->i_block), cp_len); len -= cp_len; buffer += cp_len; if (!len) goto out; header = IHDR(inode, raw_inode); entry = (struct ext4_xattr_entry *)((void *)raw_inode + EXT4_I(inode)->i_inline_off); len = min_t(unsigned int, len, (unsigned int)le32_to_cpu(entry->e_value_size)); memcpy(buffer, (void *)IFIRST(header) + le16_to_cpu(entry->e_value_offs), len); cp_len += len; out: return cp_len; } /* * write the buffer to the inline inode. * If 'create' is set, we don't need to do the extra copy in the xattr * value since it is already handled by ext4_xattr_ibody_inline_set. * That saves us one memcpy. */ void ext4_write_inline_data(struct inode *inode, struct ext4_iloc *iloc, void *buffer, loff_t pos, unsigned int len) { struct ext4_xattr_entry *entry; struct ext4_xattr_ibody_header *header; struct ext4_inode *raw_inode; int cp_len = 0; BUG_ON(!EXT4_I(inode)->i_inline_off); BUG_ON(pos + len > EXT4_I(inode)->i_inline_size); raw_inode = ext4_raw_inode(iloc); buffer += pos; if (pos < EXT4_MIN_INLINE_DATA_SIZE) { cp_len = pos + len > EXT4_MIN_INLINE_DATA_SIZE ? EXT4_MIN_INLINE_DATA_SIZE - pos : len; memcpy((void *)raw_inode->i_block + pos, buffer, cp_len); len -= cp_len; buffer += cp_len; pos += cp_len; } if (!len) return; pos -= EXT4_MIN_INLINE_DATA_SIZE; header = IHDR(inode, raw_inode); entry = (struct ext4_xattr_entry *)((void *)raw_inode + EXT4_I(inode)->i_inline_off); memcpy((void *)IFIRST(header) + le16_to_cpu(entry->e_value_offs) + pos, buffer, len); } static int ext4_create_inline_data(handle_t *handle, struct inode *inode, unsigned len) { int error; void *value = NULL; struct ext4_xattr_ibody_find is = { .s = { .not_found = -ENODATA, }, }; struct ext4_xattr_info i = { .name_index = EXT4_XATTR_INDEX_SYSTEM, .name = EXT4_XATTR_SYSTEM_DATA, }; error = ext4_get_inode_loc(inode, &is.iloc); if (error) return error; error = ext4_journal_get_write_access(handle, is.iloc.bh); if (error) goto out; if (len > EXT4_MIN_INLINE_DATA_SIZE) { value = EXT4_ZERO_XATTR_VALUE; len -= EXT4_MIN_INLINE_DATA_SIZE; } else { value = ""; len = 0; } /* Insert the the xttr entry. */ i.value = value; i.value_len = len; error = ext4_xattr_ibody_find(inode, &i, &is); if (error) goto out; BUG_ON(!is.s.not_found); error = ext4_xattr_ibody_inline_set(handle, inode, &i, &is); if (error) { if (error == -ENOSPC) ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); goto out; } memset((void *)ext4_raw_inode(&is.iloc)->i_block, 0, EXT4_MIN_INLINE_DATA_SIZE); EXT4_I(inode)->i_inline_off = (u16)((void *)is.s.here - (void *)ext4_raw_inode(&is.iloc)); EXT4_I(inode)->i_inline_size = len + EXT4_MIN_INLINE_DATA_SIZE; ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS); ext4_set_inode_flag(inode, EXT4_INODE_INLINE_DATA); get_bh(is.iloc.bh); error = ext4_mark_iloc_dirty(handle, inode, &is.iloc); out: brelse(is.iloc.bh); return error; } static int ext4_update_inline_data(handle_t *handle, struct inode *inode, unsigned int len) { int error; void *value = NULL; struct ext4_xattr_ibody_find is = { .s = { .not_found = -ENODATA, }, }; struct ext4_xattr_info i = { .name_index = EXT4_XATTR_INDEX_SYSTEM, .name = EXT4_XATTR_SYSTEM_DATA, }; /* If the old space is ok, write the data directly. */ if (len <= EXT4_I(inode)->i_inline_size) return 0; error = ext4_get_inode_loc(inode, &is.iloc); if (error) return error; error = ext4_xattr_ibody_find(inode, &i, &is); if (error) goto out; BUG_ON(is.s.not_found); len -= EXT4_MIN_INLINE_DATA_SIZE; value = kzalloc(len, GFP_NOFS); if (!value) goto out; error = ext4_xattr_ibody_get(inode, i.name_index, i.name, value, len); if (error == -ENODATA) goto out; error = ext4_journal_get_write_access(handle, is.iloc.bh); if (error) goto out; /* Update the xttr entry. */ i.value = value; i.value_len = len; error = ext4_xattr_ibody_inline_set(handle, inode, &i, &is); if (error) goto out; EXT4_I(inode)->i_inline_off = (u16)((void *)is.s.here - (void *)ext4_raw_inode(&is.iloc)); EXT4_I(inode)->i_inline_size = EXT4_MIN_INLINE_DATA_SIZE + le32_to_cpu(is.s.here->e_value_size); ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); get_bh(is.iloc.bh); error = ext4_mark_iloc_dirty(handle, inode, &is.iloc); out: kfree(value); brelse(is.iloc.bh); return error; } int ext4_prepare_inline_data(handle_t *handle, struct inode *inode, unsigned int len) { int ret, size; struct ext4_inode_info *ei = EXT4_I(inode); if (!ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) return -ENOSPC; size = ext4_get_max_inline_size(inode); if (size < len) return -ENOSPC; down_write(&EXT4_I(inode)->xattr_sem); if (ei->i_inline_off) ret = ext4_update_inline_data(handle, inode, len); else ret = ext4_create_inline_data(handle, inode, len); up_write(&EXT4_I(inode)->xattr_sem); return ret; } static int ext4_destroy_inline_data_nolock(handle_t *handle, struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_xattr_ibody_find is = { .s = { .not_found = 0, }, }; struct ext4_xattr_info i = { .name_index = EXT4_XATTR_INDEX_SYSTEM, .name = EXT4_XATTR_SYSTEM_DATA, .value = NULL, .value_len = 0, }; int error; if (!ei->i_inline_off) return 0; error = ext4_get_inode_loc(inode, &is.iloc); if (error) return error; error = ext4_xattr_ibody_find(inode, &i, &is); if (error) goto out; error = ext4_journal_get_write_access(handle, is.iloc.bh); if (error) goto out; error = ext4_xattr_ibody_inline_set(handle, inode, &i, &is); if (error) goto out; memset((void *)ext4_raw_inode(&is.iloc)->i_block, 0, EXT4_MIN_INLINE_DATA_SIZE); if (EXT4_HAS_INCOMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { if (S_ISDIR(inode->i_mode) || S_ISREG(inode->i_mode) || S_ISLNK(inode->i_mode)) { ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); ext4_ext_tree_init(handle, inode); } } ext4_clear_inode_flag(inode, EXT4_INODE_INLINE_DATA); get_bh(is.iloc.bh); error = ext4_mark_iloc_dirty(handle, inode, &is.iloc); EXT4_I(inode)->i_inline_off = 0; EXT4_I(inode)->i_inline_size = 0; ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); out: brelse(is.iloc.bh); if (error == -ENODATA) error = 0; return error; } static int ext4_read_inline_page(struct inode *inode, struct page *page) { void *kaddr; int ret = 0; size_t len; struct ext4_iloc iloc; BUG_ON(!PageLocked(page)); BUG_ON(!ext4_has_inline_data(inode)); BUG_ON(page->index); if (!EXT4_I(inode)->i_inline_off) { ext4_warning(inode->i_sb, "inode %lu doesn't have inline data.", inode->i_ino); goto out; } ret = ext4_get_inode_loc(inode, &iloc); if (ret) goto out; len = min_t(size_t, ext4_get_inline_size(inode), i_size_read(inode)); kaddr = kmap_atomic(page); ret = ext4_read_inline_data(inode, kaddr, len, &iloc); flush_dcache_page(page); kunmap_atomic(kaddr); zero_user_segment(page, len, PAGE_CACHE_SIZE); SetPageUptodate(page); brelse(iloc.bh); out: return ret; } int ext4_readpage_inline(struct inode *inode, struct page *page) { int ret = 0; down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { up_read(&EXT4_I(inode)->xattr_sem); return -EAGAIN; } /* * Current inline data can only exist in the 1st page, * So for all the other pages, just set them uptodate. */ if (!page->index) ret = ext4_read_inline_page(inode, page); else if (!PageUptodate(page)) { zero_user_segment(page, 0, PAGE_CACHE_SIZE); SetPageUptodate(page); } up_read(&EXT4_I(inode)->xattr_sem); unlock_page(page); return ret >= 0 ? 0 : ret; } static int ext4_convert_inline_data_to_extent(struct address_space *mapping, struct inode *inode, unsigned flags) { int ret, needed_blocks; handle_t *handle = NULL; int retries = 0, sem_held = 0; struct page *page = NULL; unsigned from, to; struct ext4_iloc iloc; if (!ext4_has_inline_data(inode)) { /* * clear the flag so that no new write * will trap here again. */ ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); return 0; } needed_blocks = ext4_writepage_trans_blocks(inode); ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; retry: handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); if (IS_ERR(handle)) { ret = PTR_ERR(handle); handle = NULL; goto out; } /* We cannot recurse into the filesystem as the transaction is already * started */ flags |= AOP_FLAG_NOFS; page = grab_cache_page_write_begin(mapping, 0, flags); if (!page) { ret = -ENOMEM; goto out; } down_write(&EXT4_I(inode)->xattr_sem); sem_held = 1; /* If some one has already done this for us, just exit. */ if (!ext4_has_inline_data(inode)) { ret = 0; goto out; } from = 0; to = ext4_get_inline_size(inode); if (!PageUptodate(page)) { ret = ext4_read_inline_page(inode, page); if (ret < 0) goto out; } ret = ext4_destroy_inline_data_nolock(handle, inode); if (ret) goto out; if (ext4_should_dioread_nolock(inode)) ret = __block_write_begin(page, from, to, ext4_get_block_write); else ret = __block_write_begin(page, from, to, ext4_get_block); if (!ret && ext4_should_journal_data(inode)) { ret = ext4_walk_page_buffers(handle, page_buffers(page), from, to, NULL, do_journal_get_write_access); } if (ret) { unlock_page(page); page_cache_release(page); ext4_orphan_add(handle, inode); up_write(&EXT4_I(inode)->xattr_sem); sem_held = 0; ext4_journal_stop(handle); handle = NULL; ext4_truncate_failed_write(inode); /* * If truncate failed early the inode might * still be on the orphan list; we need to * make sure the inode is removed from the * orphan list in that case. */ if (inode->i_nlink) ext4_orphan_del(NULL, inode); } if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) goto retry; block_commit_write(page, from, to); out: if (page) { unlock_page(page); page_cache_release(page); } if (sem_held) up_write(&EXT4_I(inode)->xattr_sem); if (handle) ext4_journal_stop(handle); brelse(iloc.bh); return ret; } /* * Try to write data in the inode. * If the inode has inline data, check whether the new write can be * in the inode also. If not, create the page the handle, move the data * to the page make it update and let the later codes create extent for it. */ int ext4_try_to_write_inline_data(struct address_space *mapping, struct inode *inode, loff_t pos, unsigned len, unsigned flags, struct page **pagep) { int ret; handle_t *handle; struct page *page; struct ext4_iloc iloc; if (pos + len > ext4_get_max_inline_size(inode)) goto convert; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; /* * The possible write could happen in the inode, * so try to reserve the space in inode first. */ handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); if (IS_ERR(handle)) { ret = PTR_ERR(handle); handle = NULL; goto out; } ret = ext4_prepare_inline_data(handle, inode, pos + len); if (ret && ret != -ENOSPC) goto out; /* We don't have space in inline inode, so convert it to extent. */ if (ret == -ENOSPC) { ext4_journal_stop(handle); brelse(iloc.bh); goto convert; } flags |= AOP_FLAG_NOFS; page = grab_cache_page_write_begin(mapping, 0, flags); if (!page) { ret = -ENOMEM; goto out; } *pagep = page; down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { ret = 0; unlock_page(page); page_cache_release(page); goto out_up_read; } if (!PageUptodate(page)) { ret = ext4_read_inline_page(inode, page); if (ret < 0) goto out_up_read; } ret = 1; handle = NULL; out_up_read: up_read(&EXT4_I(inode)->xattr_sem); out: if (handle) ext4_journal_stop(handle); brelse(iloc.bh); return ret; convert: return ext4_convert_inline_data_to_extent(mapping, inode, flags); } int ext4_write_inline_data_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied, struct page *page) { int ret; void *kaddr; struct ext4_iloc iloc; if (unlikely(copied < len)) { if (!PageUptodate(page)) { copied = 0; goto out; } } ret = ext4_get_inode_loc(inode, &iloc); if (ret) { ext4_std_error(inode->i_sb, ret); copied = 0; goto out; } down_write(&EXT4_I(inode)->xattr_sem); BUG_ON(!ext4_has_inline_data(inode)); kaddr = kmap_atomic(page); ext4_write_inline_data(inode, &iloc, kaddr, pos, len); kunmap_atomic(kaddr); SetPageUptodate(page); /* clear page dirty so that writepages wouldn't work for us. */ ClearPageDirty(page); up_write(&EXT4_I(inode)->xattr_sem); brelse(iloc.bh); out: return copied; } struct buffer_head * ext4_journalled_write_inline_data(struct inode *inode, unsigned len, struct page *page) { int ret; void *kaddr; struct ext4_iloc iloc; ret = ext4_get_inode_loc(inode, &iloc); if (ret) { ext4_std_error(inode->i_sb, ret); return NULL; } down_write(&EXT4_I(inode)->xattr_sem); kaddr = kmap_atomic(page); ext4_write_inline_data(inode, &iloc, kaddr, 0, len); kunmap_atomic(kaddr); up_write(&EXT4_I(inode)->xattr_sem); return iloc.bh; } /* * Try to make the page cache and handle ready for the inline data case. * We can call this function in 2 cases: * 1. The inode is created and the first write exceeds inline size. We can * clear the inode state safely. * 2. The inode has inline data, then we need to read the data, make it * update and dirty so that ext4_da_writepages can handle it. We don't * need to start the journal since the file's metatdata isn't changed now. */ static int ext4_da_convert_inline_data_to_extent(struct address_space *mapping, struct inode *inode, unsigned flags, void **fsdata) { int ret = 0, inline_size; struct page *page; page = grab_cache_page_write_begin(mapping, 0, flags); if (!page) return -ENOMEM; down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); goto out; } inline_size = ext4_get_inline_size(inode); if (!PageUptodate(page)) { ret = ext4_read_inline_page(inode, page); if (ret < 0) goto out; } ret = __block_write_begin(page, 0, inline_size, ext4_da_get_block_prep); if (ret) { ext4_truncate_failed_write(inode); goto out; } SetPageDirty(page); SetPageUptodate(page); ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); *fsdata = (void *)CONVERT_INLINE_DATA; out: up_read(&EXT4_I(inode)->xattr_sem); if (page) { unlock_page(page); page_cache_release(page); } return ret; } /* * Prepare the write for the inline data. * If the the data can be written into the inode, we just read * the page and make it uptodate, and start the journal. * Otherwise read the page, makes it dirty so that it can be * handle in writepages(the i_disksize update is left to the * normal ext4_da_write_end). */ int ext4_da_write_inline_data_begin(struct address_space *mapping, struct inode *inode, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { int ret, inline_size; handle_t *handle; struct page *page; struct ext4_iloc iloc; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); if (IS_ERR(handle)) { ret = PTR_ERR(handle); handle = NULL; goto out; } inline_size = ext4_get_max_inline_size(inode); ret = -ENOSPC; if (inline_size >= pos + len) { ret = ext4_prepare_inline_data(handle, inode, pos + len); if (ret && ret != -ENOSPC) goto out; } if (ret == -ENOSPC) { ret = ext4_da_convert_inline_data_to_extent(mapping, inode, flags, fsdata); goto out; } /* * We cannot recurse into the filesystem as the transaction * is already started. */ flags |= AOP_FLAG_NOFS; page = grab_cache_page_write_begin(mapping, 0, flags); if (!page) { ret = -ENOMEM; goto out; } down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { ret = 0; goto out_release_page; } if (!PageUptodate(page)) { ret = ext4_read_inline_page(inode, page); if (ret < 0) goto out_release_page; } up_read(&EXT4_I(inode)->xattr_sem); *pagep = page; handle = NULL; brelse(iloc.bh); return 1; out_release_page: up_read(&EXT4_I(inode)->xattr_sem); unlock_page(page); page_cache_release(page); out: if (handle) ext4_journal_stop(handle); brelse(iloc.bh); return ret; } int ext4_da_write_inline_data_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied, struct page *page) { int i_size_changed = 0; copied = ext4_write_inline_data_end(inode, pos, len, copied, page); /* * No need to use i_size_read() here, the i_size * cannot change under us because we hold i_mutex. * * But it's important to update i_size while still holding page lock: * page writeout could otherwise come in and zero beyond i_size. */ if (pos+copied > inode->i_size) { i_size_write(inode, pos+copied); i_size_changed = 1; } unlock_page(page); page_cache_release(page); /* * Don't mark the inode dirty under page lock. First, it unnecessarily * makes the holding time of page lock longer. Second, it forces lock * ordering of page lock and transaction start for journaling * filesystems. */ if (i_size_changed) mark_inode_dirty(inode); return copied; } #ifdef INLINE_DIR_DEBUG void ext4_show_inline_dir(struct inode *dir, struct buffer_head *bh, void *inline_start, int inline_size) { int offset; unsigned short de_len; struct ext4_dir_entry_2 *de = inline_start; void *dlimit = inline_start + inline_size; trace_printk("inode %lu\n", dir->i_ino); offset = 0; while ((void *)de < dlimit) { de_len = ext4_rec_len_from_disk(de->rec_len, inline_size); trace_printk("de: off %u rlen %u name %*.s nlen %u ino %u\n", offset, de_len, de->name_len, de->name, de->name_len, le32_to_cpu(de->inode)); if (ext4_check_dir_entry(dir, NULL, de, bh, inline_start, inline_size, offset)) BUG(); offset += de_len; de = (struct ext4_dir_entry_2 *) ((char *) de + de_len); } } #else #define ext4_show_inline_dir(dir, bh, inline_start, inline_size) #endif /* * Add a new entry into a inline dir. * It will return -ENOSPC if no space is available, and -EIO * and -EEXIST if directory entry already exists. */ static int ext4_add_dirent_to_inline(handle_t *handle, struct dentry *dentry, struct inode *inode, struct ext4_iloc *iloc, void *inline_start, int inline_size) { struct inode *dir = dentry->d_parent->d_inode; const char *name = dentry->d_name.name; int namelen = dentry->d_name.len; int err; struct ext4_dir_entry_2 *de; err = ext4_find_dest_de(dir, inode, iloc->bh, inline_start, inline_size, name, namelen, &de); if (err) return err; err = ext4_journal_get_write_access(handle, iloc->bh); if (err) return err; ext4_insert_dentry(inode, de, inline_size, name, namelen); ext4_show_inline_dir(dir, iloc->bh, inline_start, inline_size); /* * XXX shouldn't update any times until successful * completion of syscall, but too many callers depend * on this. * * XXX similarly, too many callers depend on * ext4_new_inode() setting the times, but error * recovery deletes the inode, so the worst that can * happen is that the times are slightly out of date * and/or different from the directory change time. */ dir->i_mtime = dir->i_ctime = ext4_current_time(dir); ext4_update_dx_flag(dir); dir->i_version++; ext4_mark_inode_dirty(handle, dir); return 1; } static void *ext4_get_inline_xattr_pos(struct inode *inode, struct ext4_iloc *iloc) { struct ext4_xattr_entry *entry; struct ext4_xattr_ibody_header *header; BUG_ON(!EXT4_I(inode)->i_inline_off); header = IHDR(inode, ext4_raw_inode(iloc)); entry = (struct ext4_xattr_entry *)((void *)ext4_raw_inode(iloc) + EXT4_I(inode)->i_inline_off); return (void *)IFIRST(header) + le16_to_cpu(entry->e_value_offs); } /* Set the final de to cover the whole block. */ static void ext4_update_final_de(void *de_buf, int old_size, int new_size) { struct ext4_dir_entry_2 *de, *prev_de; void *limit; int de_len; de = (struct ext4_dir_entry_2 *)de_buf; if (old_size) { limit = de_buf + old_size; do { prev_de = de; de_len = ext4_rec_len_from_disk(de->rec_len, old_size); de_buf += de_len; de = (struct ext4_dir_entry_2 *)de_buf; } while (de_buf < limit); prev_de->rec_len = ext4_rec_len_to_disk(de_len + new_size - old_size, new_size); } else { /* this is just created, so create an empty entry. */ de->inode = 0; de->rec_len = ext4_rec_len_to_disk(new_size, new_size); } } static int ext4_update_inline_dir(handle_t *handle, struct inode *dir, struct ext4_iloc *iloc) { int ret; int old_size = EXT4_I(dir)->i_inline_size - EXT4_MIN_INLINE_DATA_SIZE; int new_size = get_max_inline_xattr_value_size(dir, iloc); if (new_size - old_size <= EXT4_DIR_REC_LEN(1)) return -ENOSPC; ret = ext4_update_inline_data(handle, dir, new_size + EXT4_MIN_INLINE_DATA_SIZE); if (ret) return ret; ext4_update_final_de(ext4_get_inline_xattr_pos(dir, iloc), old_size, EXT4_I(dir)->i_inline_size - EXT4_MIN_INLINE_DATA_SIZE); dir->i_size = EXT4_I(dir)->i_disksize = EXT4_I(dir)->i_inline_size; return 0; } static void ext4_restore_inline_data(handle_t *handle, struct inode *inode, struct ext4_iloc *iloc, void *buf, int inline_size) { ext4_create_inline_data(handle, inode, inline_size); ext4_write_inline_data(inode, iloc, buf, 0, inline_size); ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); } static int ext4_finish_convert_inline_dir(handle_t *handle, struct inode *inode, struct buffer_head *dir_block, void *buf, int inline_size) { int err, csum_size = 0, header_size = 0; struct ext4_dir_entry_2 *de; struct ext4_dir_entry_tail *t; void *target = dir_block->b_data; /* * First create "." and ".." and then copy the dir information * back to the block. */ de = (struct ext4_dir_entry_2 *)target; de = ext4_init_dot_dotdot(inode, de, inode->i_sb->s_blocksize, csum_size, le32_to_cpu(((struct ext4_dir_entry_2 *)buf)->inode), 1); header_size = (void *)de - target; memcpy((void *)de, buf + EXT4_INLINE_DOTDOT_SIZE, inline_size - EXT4_INLINE_DOTDOT_SIZE); if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) csum_size = sizeof(struct ext4_dir_entry_tail); inode->i_size = inode->i_sb->s_blocksize; i_size_write(inode, inode->i_sb->s_blocksize); EXT4_I(inode)->i_disksize = inode->i_sb->s_blocksize; ext4_update_final_de(dir_block->b_data, inline_size - EXT4_INLINE_DOTDOT_SIZE + header_size, inode->i_sb->s_blocksize - csum_size); if (csum_size) { t = EXT4_DIRENT_TAIL(dir_block->b_data, inode->i_sb->s_blocksize); initialize_dirent_tail(t, inode->i_sb->s_blocksize); } set_buffer_uptodate(dir_block); err = ext4_handle_dirty_dirent_node(handle, inode, dir_block); if (err) goto out; set_buffer_verified(dir_block); out: return err; } static int ext4_convert_inline_data_nolock(handle_t *handle, struct inode *inode, struct ext4_iloc *iloc) { int error; void *buf = NULL; struct buffer_head *data_bh = NULL; struct ext4_map_blocks map; int inline_size; inline_size = ext4_get_inline_size(inode); buf = kmalloc(inline_size, GFP_NOFS); if (!buf) { error = -ENOMEM; goto out; } error = ext4_read_inline_data(inode, buf, inline_size, iloc); if (error < 0) goto out; error = ext4_destroy_inline_data_nolock(handle, inode); if (error) goto out; map.m_lblk = 0; map.m_len = 1; map.m_flags = 0; error = ext4_map_blocks(handle, inode, &map, EXT4_GET_BLOCKS_CREATE); if (error < 0) goto out_restore; if (!(map.m_flags & EXT4_MAP_MAPPED)) { error = -EIO; goto out_restore; } data_bh = sb_getblk(inode->i_sb, map.m_pblk); if (!data_bh) { error = -ENOMEM; goto out_restore; } lock_buffer(data_bh); error = ext4_journal_get_create_access(handle, data_bh); if (error) { unlock_buffer(data_bh); error = -EIO; goto out_restore; } memset(data_bh->b_data, 0, inode->i_sb->s_blocksize); if (!S_ISDIR(inode->i_mode)) { memcpy(data_bh->b_data, buf, inline_size); set_buffer_uptodate(data_bh); error = ext4_handle_dirty_metadata(handle, inode, data_bh); } else { error = ext4_finish_convert_inline_dir(handle, inode, data_bh, buf, inline_size); } unlock_buffer(data_bh); out_restore: if (error) ext4_restore_inline_data(handle, inode, iloc, buf, inline_size); out: brelse(data_bh); kfree(buf); return error; } /* * Try to add the new entry to the inline data. * If succeeds, return 0. If not, extended the inline dir and copied data to * the new created block. */ int ext4_try_add_inline_entry(handle_t *handle, struct dentry *dentry, struct inode *inode) { int ret, inline_size; void *inline_start; struct ext4_iloc iloc; struct inode *dir = dentry->d_parent->d_inode; ret = ext4_get_inode_loc(dir, &iloc); if (ret) return ret; down_write(&EXT4_I(dir)->xattr_sem); if (!ext4_has_inline_data(dir)) goto out; inline_start = (void *)ext4_raw_inode(&iloc)->i_block + EXT4_INLINE_DOTDOT_SIZE; inline_size = EXT4_MIN_INLINE_DATA_SIZE - EXT4_INLINE_DOTDOT_SIZE; ret = ext4_add_dirent_to_inline(handle, dentry, inode, &iloc, inline_start, inline_size); if (ret != -ENOSPC) goto out; /* check whether it can be inserted to inline xattr space. */ inline_size = EXT4_I(dir)->i_inline_size - EXT4_MIN_INLINE_DATA_SIZE; if (!inline_size) { /* Try to use the xattr space.*/ ret = ext4_update_inline_dir(handle, dir, &iloc); if (ret && ret != -ENOSPC) goto out; inline_size = EXT4_I(dir)->i_inline_size - EXT4_MIN_INLINE_DATA_SIZE; } if (inline_size) { inline_start = ext4_get_inline_xattr_pos(dir, &iloc); ret = ext4_add_dirent_to_inline(handle, dentry, inode, &iloc, inline_start, inline_size); if (ret != -ENOSPC) goto out; } /* * The inline space is filled up, so create a new block for it. * As the extent tree will be created, we have to save the inline * dir first. */ ret = ext4_convert_inline_data_nolock(handle, dir, &iloc); out: ext4_mark_inode_dirty(handle, dir); up_write(&EXT4_I(dir)->xattr_sem); brelse(iloc.bh); return ret; } /* * This function fills a red-black tree with information from an * inlined dir. It returns the number directory entries loaded * into the tree. If there is an error it is returned in err. */ int htree_inlinedir_to_tree(struct file *dir_file, struct inode *dir, ext4_lblk_t block, struct dx_hash_info *hinfo, __u32 start_hash, __u32 start_minor_hash, int *has_inline_data) { int err = 0, count = 0; unsigned int parent_ino; int pos; struct ext4_dir_entry_2 *de; struct inode *inode = file_inode(dir_file); int ret, inline_size = 0; struct ext4_iloc iloc; void *dir_buf = NULL; struct ext4_dir_entry_2 fake; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { up_read(&EXT4_I(inode)->xattr_sem); *has_inline_data = 0; goto out; } inline_size = ext4_get_inline_size(inode); dir_buf = kmalloc(inline_size, GFP_NOFS); if (!dir_buf) { ret = -ENOMEM; up_read(&EXT4_I(inode)->xattr_sem); goto out; } ret = ext4_read_inline_data(inode, dir_buf, inline_size, &iloc); up_read(&EXT4_I(inode)->xattr_sem); if (ret < 0) goto out; pos = 0; parent_ino = le32_to_cpu(((struct ext4_dir_entry_2 *)dir_buf)->inode); while (pos < inline_size) { /* * As inlined dir doesn't store any information about '.' and * only the inode number of '..' is stored, we have to handle * them differently. */ if (pos == 0) { fake.inode = cpu_to_le32(inode->i_ino); fake.name_len = 1; strcpy(fake.name, "."); fake.rec_len = ext4_rec_len_to_disk( EXT4_DIR_REC_LEN(fake.name_len), inline_size); ext4_set_de_type(inode->i_sb, &fake, S_IFDIR); de = &fake; pos = EXT4_INLINE_DOTDOT_OFFSET; } else if (pos == EXT4_INLINE_DOTDOT_OFFSET) { fake.inode = cpu_to_le32(parent_ino); fake.name_len = 2; strcpy(fake.name, ".."); fake.rec_len = ext4_rec_len_to_disk( EXT4_DIR_REC_LEN(fake.name_len), inline_size); ext4_set_de_type(inode->i_sb, &fake, S_IFDIR); de = &fake; pos = EXT4_INLINE_DOTDOT_SIZE; } else { de = (struct ext4_dir_entry_2 *)(dir_buf + pos); pos += ext4_rec_len_from_disk(de->rec_len, inline_size); if (ext4_check_dir_entry(inode, dir_file, de, iloc.bh, dir_buf, inline_size, pos)) { ret = count; goto out; } } ext4fs_dirhash(de->name, de->name_len, hinfo); if ((hinfo->hash < start_hash) || ((hinfo->hash == start_hash) && (hinfo->minor_hash < start_minor_hash))) continue; if (de->inode == 0) continue; err = ext4_htree_store_dirent(dir_file, hinfo->hash, hinfo->minor_hash, de); if (err) { count = err; goto out; } count++; } ret = count; out: kfree(dir_buf); brelse(iloc.bh); return ret; } /* * So this function is called when the volume is mkfsed with * dir_index disabled. In order to keep f_pos persistent * after we convert from an inlined dir to a blocked based, * we just pretend that we are a normal dir and return the * offset as if '.' and '..' really take place. * */ int ext4_read_inline_dir(struct file *file, struct dir_context *ctx, int *has_inline_data) { unsigned int offset, parent_ino; int i; struct ext4_dir_entry_2 *de; struct super_block *sb; struct inode *inode = file_inode(file); int ret, inline_size = 0; struct ext4_iloc iloc; void *dir_buf = NULL; int dotdot_offset, dotdot_size, extra_offset, extra_size; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { up_read(&EXT4_I(inode)->xattr_sem); *has_inline_data = 0; goto out; } inline_size = ext4_get_inline_size(inode); dir_buf = kmalloc(inline_size, GFP_NOFS); if (!dir_buf) { ret = -ENOMEM; up_read(&EXT4_I(inode)->xattr_sem); goto out; } ret = ext4_read_inline_data(inode, dir_buf, inline_size, &iloc); up_read(&EXT4_I(inode)->xattr_sem); if (ret < 0) goto out; ret = 0; sb = inode->i_sb; parent_ino = le32_to_cpu(((struct ext4_dir_entry_2 *)dir_buf)->inode); offset = ctx->pos; /* * dotdot_offset and dotdot_size is the real offset and * size for ".." and "." if the dir is block based while * the real size for them are only EXT4_INLINE_DOTDOT_SIZE. * So we will use extra_offset and extra_size to indicate them * during the inline dir iteration. */ dotdot_offset = EXT4_DIR_REC_LEN(1); dotdot_size = dotdot_offset + EXT4_DIR_REC_LEN(2); extra_offset = dotdot_size - EXT4_INLINE_DOTDOT_SIZE; extra_size = extra_offset + inline_size; /* * If the version has changed since the last call to * readdir(2), then we might be pointing to an invalid * dirent right now. Scan from the start of the inline * dir to make sure. */ if (file->f_version != inode->i_version) { for (i = 0; i < extra_size && i < offset;) { /* * "." is with offset 0 and * ".." is dotdot_offset. */ if (!i) { i = dotdot_offset; continue; } else if (i == dotdot_offset) { i = dotdot_size; continue; } /* for other entry, the real offset in * the buf has to be tuned accordingly. */ de = (struct ext4_dir_entry_2 *) (dir_buf + i - extra_offset); /* It's too expensive to do a full * dirent test each time round this * loop, but we do have to test at * least that it is non-zero. A * failure will be detected in the * dirent test below. */ if (ext4_rec_len_from_disk(de->rec_len, extra_size) < EXT4_DIR_REC_LEN(1)) break; i += ext4_rec_len_from_disk(de->rec_len, extra_size); } offset = i; ctx->pos = offset; file->f_version = inode->i_version; } while (ctx->pos < extra_size) { if (ctx->pos == 0) { if (!dir_emit(ctx, ".", 1, inode->i_ino, DT_DIR)) goto out; ctx->pos = dotdot_offset; continue; } if (ctx->pos == dotdot_offset) { if (!dir_emit(ctx, "..", 2, parent_ino, DT_DIR)) goto out; ctx->pos = dotdot_size; continue; } de = (struct ext4_dir_entry_2 *) (dir_buf + ctx->pos - extra_offset); if (ext4_check_dir_entry(inode, file, de, iloc.bh, dir_buf, extra_size, ctx->pos)) goto out; if (le32_to_cpu(de->inode)) { if (!dir_emit(ctx, de->name, de->name_len, le32_to_cpu(de->inode), get_dtype(sb, de->file_type))) goto out; } ctx->pos += ext4_rec_len_from_disk(de->rec_len, extra_size); } out: kfree(dir_buf); brelse(iloc.bh); return ret; } struct buffer_head *ext4_get_first_inline_block(struct inode *inode, struct ext4_dir_entry_2 **parent_de, int *retval) { struct ext4_iloc iloc; *retval = ext4_get_inode_loc(inode, &iloc); if (*retval) return NULL; *parent_de = (struct ext4_dir_entry_2 *)ext4_raw_inode(&iloc)->i_block; return iloc.bh; } /* * Try to create the inline data for the new dir. * If it succeeds, return 0, otherwise return the error. * In case of ENOSPC, the caller should create the normal disk layout dir. */ int ext4_try_create_inline_dir(handle_t *handle, struct inode *parent, struct inode *inode) { int ret, inline_size = EXT4_MIN_INLINE_DATA_SIZE; struct ext4_iloc iloc; struct ext4_dir_entry_2 *de; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; ret = ext4_prepare_inline_data(handle, inode, inline_size); if (ret) goto out; /* * For inline dir, we only save the inode information for the ".." * and create a fake dentry to cover the left space. */ de = (struct ext4_dir_entry_2 *)ext4_raw_inode(&iloc)->i_block; de->inode = cpu_to_le32(parent->i_ino); de = (struct ext4_dir_entry_2 *)((void *)de + EXT4_INLINE_DOTDOT_SIZE); de->inode = 0; de->rec_len = ext4_rec_len_to_disk( inline_size - EXT4_INLINE_DOTDOT_SIZE, inline_size); set_nlink(inode, 2); inode->i_size = EXT4_I(inode)->i_disksize = inline_size; out: brelse(iloc.bh); return ret; } struct buffer_head *ext4_find_inline_entry(struct inode *dir, const struct qstr *d_name, struct ext4_dir_entry_2 **res_dir, int *has_inline_data) { int ret; struct ext4_iloc iloc; void *inline_start; int inline_size; if (ext4_get_inode_loc(dir, &iloc)) return NULL; down_read(&EXT4_I(dir)->xattr_sem); if (!ext4_has_inline_data(dir)) { *has_inline_data = 0; goto out; } inline_start = (void *)ext4_raw_inode(&iloc)->i_block + EXT4_INLINE_DOTDOT_SIZE; inline_size = EXT4_MIN_INLINE_DATA_SIZE - EXT4_INLINE_DOTDOT_SIZE; ret = search_dir(iloc.bh, inline_start, inline_size, dir, d_name, 0, res_dir); if (ret == 1) goto out_find; if (ret < 0) goto out; if (ext4_get_inline_size(dir) == EXT4_MIN_INLINE_DATA_SIZE) goto out; inline_start = ext4_get_inline_xattr_pos(dir, &iloc); inline_size = ext4_get_inline_size(dir) - EXT4_MIN_INLINE_DATA_SIZE; ret = search_dir(iloc.bh, inline_start, inline_size, dir, d_name, 0, res_dir); if (ret == 1) goto out_find; out: brelse(iloc.bh); iloc.bh = NULL; out_find: up_read(&EXT4_I(dir)->xattr_sem); return iloc.bh; } int ext4_delete_inline_entry(handle_t *handle, struct inode *dir, struct ext4_dir_entry_2 *de_del, struct buffer_head *bh, int *has_inline_data) { int err, inline_size; struct ext4_iloc iloc; void *inline_start; err = ext4_get_inode_loc(dir, &iloc); if (err) return err; down_write(&EXT4_I(dir)->xattr_sem); if (!ext4_has_inline_data(dir)) { *has_inline_data = 0; goto out; } if ((void *)de_del - ((void *)ext4_raw_inode(&iloc)->i_block) < EXT4_MIN_INLINE_DATA_SIZE) { inline_start = (void *)ext4_raw_inode(&iloc)->i_block + EXT4_INLINE_DOTDOT_SIZE; inline_size = EXT4_MIN_INLINE_DATA_SIZE - EXT4_INLINE_DOTDOT_SIZE; } else { inline_start = ext4_get_inline_xattr_pos(dir, &iloc); inline_size = ext4_get_inline_size(dir) - EXT4_MIN_INLINE_DATA_SIZE; } err = ext4_journal_get_write_access(handle, bh); if (err) goto out; err = ext4_generic_delete_entry(handle, dir, de_del, bh, inline_start, inline_size, 0); if (err) goto out; BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); err = ext4_mark_inode_dirty(handle, dir); if (unlikely(err)) goto out; ext4_show_inline_dir(dir, iloc.bh, inline_start, inline_size); out: up_write(&EXT4_I(dir)->xattr_sem); brelse(iloc.bh); if (err != -ENOENT) ext4_std_error(dir->i_sb, err); return err; } /* * Get the inline dentry at offset. */ static inline struct ext4_dir_entry_2 * ext4_get_inline_entry(struct inode *inode, struct ext4_iloc *iloc, unsigned int offset, void **inline_start, int *inline_size) { void *inline_pos; BUG_ON(offset > ext4_get_inline_size(inode)); if (offset < EXT4_MIN_INLINE_DATA_SIZE) { inline_pos = (void *)ext4_raw_inode(iloc)->i_block; *inline_size = EXT4_MIN_INLINE_DATA_SIZE; } else { inline_pos = ext4_get_inline_xattr_pos(inode, iloc); offset -= EXT4_MIN_INLINE_DATA_SIZE; *inline_size = ext4_get_inline_size(inode) - EXT4_MIN_INLINE_DATA_SIZE; } if (inline_start) *inline_start = inline_pos; return (struct ext4_dir_entry_2 *)(inline_pos + offset); } int empty_inline_dir(struct inode *dir, int *has_inline_data) { int err, inline_size; struct ext4_iloc iloc; void *inline_pos; unsigned int offset; struct ext4_dir_entry_2 *de; int ret = 1; err = ext4_get_inode_loc(dir, &iloc); if (err) { EXT4_ERROR_INODE(dir, "error %d getting inode %lu block", err, dir->i_ino); return 1; } down_read(&EXT4_I(dir)->xattr_sem); if (!ext4_has_inline_data(dir)) { *has_inline_data = 0; goto out; } de = (struct ext4_dir_entry_2 *)ext4_raw_inode(&iloc)->i_block; if (!le32_to_cpu(de->inode)) { ext4_warning(dir->i_sb, "bad inline directory (dir #%lu) - no `..'", dir->i_ino); ret = 1; goto out; } offset = EXT4_INLINE_DOTDOT_SIZE; while (offset < dir->i_size) { de = ext4_get_inline_entry(dir, &iloc, offset, &inline_pos, &inline_size); if (ext4_check_dir_entry(dir, NULL, de, iloc.bh, inline_pos, inline_size, offset)) { ext4_warning(dir->i_sb, "bad inline directory (dir #%lu) - " "inode %u, rec_len %u, name_len %d" "inline size %d\n", dir->i_ino, le32_to_cpu(de->inode), le16_to_cpu(de->rec_len), de->name_len, inline_size); ret = 1; goto out; } if (le32_to_cpu(de->inode)) { ret = 0; goto out; } offset += ext4_rec_len_from_disk(de->rec_len, inline_size); } out: up_read(&EXT4_I(dir)->xattr_sem); brelse(iloc.bh); return ret; } int ext4_destroy_inline_data(handle_t *handle, struct inode *inode) { int ret; down_write(&EXT4_I(inode)->xattr_sem); ret = ext4_destroy_inline_data_nolock(handle, inode); up_write(&EXT4_I(inode)->xattr_sem); return ret; } int ext4_inline_data_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, int *has_inline) { __u64 physical = 0; __u64 length; __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST; int error = 0; struct ext4_iloc iloc; down_read(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { *has_inline = 0; goto out; } error = ext4_get_inode_loc(inode, &iloc); if (error) goto out; physical = (__u64)iloc.bh->b_blocknr << inode->i_sb->s_blocksize_bits; physical += (char *)ext4_raw_inode(&iloc) - iloc.bh->b_data; physical += offsetof(struct ext4_inode, i_block); length = i_size_read(inode); if (physical) error = fiemap_fill_next_extent(fieinfo, 0, physical, length, flags); brelse(iloc.bh); out: up_read(&EXT4_I(inode)->xattr_sem); return (error < 0 ? error : 0); } /* * Called during xattr set, and if we can sparse space 'needed', * just create the extent tree evict the data to the outer block. * * We use jbd2 instead of page cache to move data to the 1st block * so that the whole transaction can be committed as a whole and * the data isn't lost because of the delayed page cache write. */ int ext4_try_to_evict_inline_data(handle_t *handle, struct inode *inode, int needed) { int error; struct ext4_xattr_entry *entry; struct ext4_xattr_ibody_header *header; struct ext4_inode *raw_inode; struct ext4_iloc iloc; error = ext4_get_inode_loc(inode, &iloc); if (error) return error; raw_inode = ext4_raw_inode(&iloc); header = IHDR(inode, raw_inode); entry = (struct ext4_xattr_entry *)((void *)raw_inode + EXT4_I(inode)->i_inline_off); if (EXT4_XATTR_LEN(entry->e_name_len) + EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size)) < needed) { error = -ENOSPC; goto out; } error = ext4_convert_inline_data_nolock(handle, inode, &iloc); out: brelse(iloc.bh); return error; } void ext4_inline_data_truncate(struct inode *inode, int *has_inline) { handle_t *handle; int inline_size, value_len, needed_blocks; size_t i_size; void *value = NULL; struct ext4_xattr_ibody_find is = { .s = { .not_found = -ENODATA, }, }; struct ext4_xattr_info i = { .name_index = EXT4_XATTR_INDEX_SYSTEM, .name = EXT4_XATTR_SYSTEM_DATA, }; needed_blocks = ext4_writepage_trans_blocks(inode); handle = ext4_journal_start(inode, EXT4_HT_INODE, needed_blocks); if (IS_ERR(handle)) return; down_write(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { *has_inline = 0; ext4_journal_stop(handle); return; } if (ext4_orphan_add(handle, inode)) goto out; if (ext4_get_inode_loc(inode, &is.iloc)) goto out; down_write(&EXT4_I(inode)->i_data_sem); i_size = inode->i_size; inline_size = ext4_get_inline_size(inode); EXT4_I(inode)->i_disksize = i_size; if (i_size < inline_size) { /* Clear the content in the xattr space. */ if (inline_size > EXT4_MIN_INLINE_DATA_SIZE) { if (ext4_xattr_ibody_find(inode, &i, &is)) goto out_error; BUG_ON(is.s.not_found); value_len = le32_to_cpu(is.s.here->e_value_size); value = kmalloc(value_len, GFP_NOFS); if (!value) goto out_error; if (ext4_xattr_ibody_get(inode, i.name_index, i.name, value, value_len)) goto out_error; i.value = value; i.value_len = i_size > EXT4_MIN_INLINE_DATA_SIZE ? i_size - EXT4_MIN_INLINE_DATA_SIZE : 0; if (ext4_xattr_ibody_inline_set(handle, inode, &i, &is)) goto out_error; } /* Clear the content within i_blocks. */ if (i_size < EXT4_MIN_INLINE_DATA_SIZE) { void *p = (void *) ext4_raw_inode(&is.iloc)->i_block; memset(p + i_size, 0, EXT4_MIN_INLINE_DATA_SIZE - i_size); } EXT4_I(inode)->i_inline_size = i_size < EXT4_MIN_INLINE_DATA_SIZE ? EXT4_MIN_INLINE_DATA_SIZE : i_size; } out_error: up_write(&EXT4_I(inode)->i_data_sem); out: brelse(is.iloc.bh); up_write(&EXT4_I(inode)->xattr_sem); kfree(value); if (inode->i_nlink) ext4_orphan_del(handle, inode); inode->i_mtime = inode->i_ctime = ext4_current_time(inode); ext4_mark_inode_dirty(handle, inode); if (IS_SYNC(inode)) ext4_handle_sync(handle); ext4_journal_stop(handle); return; } int ext4_convert_inline_data(struct inode *inode) { int error, needed_blocks; handle_t *handle; struct ext4_iloc iloc; if (!ext4_has_inline_data(inode)) { ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); return 0; } needed_blocks = ext4_writepage_trans_blocks(inode); iloc.bh = NULL; error = ext4_get_inode_loc(inode, &iloc); if (error) return error; handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); if (IS_ERR(handle)) { error = PTR_ERR(handle); goto out_free; } down_write(&EXT4_I(inode)->xattr_sem); if (!ext4_has_inline_data(inode)) { up_write(&EXT4_I(inode)->xattr_sem); goto out; } error = ext4_convert_inline_data_nolock(handle, inode, &iloc); up_write(&EXT4_I(inode)->xattr_sem); out: ext4_journal_stop(handle); out_free: brelse(iloc.bh); return error; }