/* * fs/f2fs/inode.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include "f2fs.h" #include "node.h" #include void f2fs_set_inode_flags(struct inode *inode) { unsigned int flags = F2FS_I(inode)->i_flags; unsigned int new_fl = 0; if (flags & FS_SYNC_FL) new_fl |= S_SYNC; if (flags & FS_APPEND_FL) new_fl |= S_APPEND; if (flags & FS_IMMUTABLE_FL) new_fl |= S_IMMUTABLE; if (flags & FS_NOATIME_FL) new_fl |= S_NOATIME; if (flags & FS_DIRSYNC_FL) new_fl |= S_DIRSYNC; inode_set_flags(inode, new_fl, S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); } static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri) { if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { if (ri->i_addr[0]) inode->i_rdev = old_decode_dev(le32_to_cpu(ri->i_addr[0])); else inode->i_rdev = new_decode_dev(le32_to_cpu(ri->i_addr[1])); } } static bool __written_first_block(struct f2fs_inode *ri) { block_t addr = le32_to_cpu(ri->i_addr[0]); if (addr != NEW_ADDR && addr != NULL_ADDR) return true; return false; } static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri) { if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { if (old_valid_dev(inode->i_rdev)) { ri->i_addr[0] = cpu_to_le32(old_encode_dev(inode->i_rdev)); ri->i_addr[1] = 0; } else { ri->i_addr[0] = 0; ri->i_addr[1] = cpu_to_le32(new_encode_dev(inode->i_rdev)); ri->i_addr[2] = 0; } } } static void __recover_inline_status(struct inode *inode, struct page *ipage) { void *inline_data = inline_data_addr(ipage); __le32 *start = inline_data; __le32 *end = start + MAX_INLINE_DATA / sizeof(__le32); while (start < end) { if (*start++) { f2fs_wait_on_page_writeback(ipage, NODE); set_inode_flag(F2FS_I(inode), FI_DATA_EXIST); set_raw_inline(F2FS_I(inode), F2FS_INODE(ipage)); set_page_dirty(ipage); return; } } return; } static int do_read_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); struct page *node_page; struct f2fs_inode *ri; /* Check if ino is within scope */ if (check_nid_range(sbi, inode->i_ino)) { f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu", (unsigned long) inode->i_ino); WARN_ON(1); return -EINVAL; } node_page = get_node_page(sbi, inode->i_ino); if (IS_ERR(node_page)) return PTR_ERR(node_page); ri = F2FS_INODE(node_page); inode->i_mode = le16_to_cpu(ri->i_mode); i_uid_write(inode, le32_to_cpu(ri->i_uid)); i_gid_write(inode, le32_to_cpu(ri->i_gid)); set_nlink(inode, le32_to_cpu(ri->i_links)); inode->i_size = le64_to_cpu(ri->i_size); inode->i_blocks = le64_to_cpu(ri->i_blocks); inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime); inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime); inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime); inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec); inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec); inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec); inode->i_generation = le32_to_cpu(ri->i_generation); fi->i_current_depth = le32_to_cpu(ri->i_current_depth); fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid); fi->i_flags = le32_to_cpu(ri->i_flags); fi->flags = 0; fi->i_advise = ri->i_advise; fi->i_pino = le32_to_cpu(ri->i_pino); fi->i_dir_level = ri->i_dir_level; f2fs_init_extent_tree(inode, &ri->i_ext); get_inline_info(fi, ri); /* check data exist */ if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode)) __recover_inline_status(inode, node_page); /* get rdev by using inline_info */ __get_inode_rdev(inode, ri); if (__written_first_block(ri)) set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); f2fs_put_page(node_page, 1); stat_inc_inline_xattr(inode); stat_inc_inline_inode(inode); stat_inc_inline_dir(inode); return 0; } struct inode *f2fs_iget(struct super_block *sb, unsigned long ino) { struct f2fs_sb_info *sbi = F2FS_SB(sb); struct inode *inode; int ret = 0; inode = iget_locked(sb, ino); if (!inode) return ERR_PTR(-ENOMEM); if (!(inode->i_state & I_NEW)) { trace_f2fs_iget(inode); return inode; } if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi)) goto make_now; ret = do_read_inode(inode); if (ret) goto bad_inode; make_now: if (ino == F2FS_NODE_INO(sbi)) { inode->i_mapping->a_ops = &f2fs_node_aops; mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); } else if (ino == F2FS_META_INO(sbi)) { inode->i_mapping->a_ops = &f2fs_meta_aops; mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); } else if (S_ISREG(inode->i_mode)) { inode->i_op = &f2fs_file_inode_operations; inode->i_fop = &f2fs_file_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; } else if (S_ISDIR(inode->i_mode)) { inode->i_op = &f2fs_dir_inode_operations; inode->i_fop = &f2fs_dir_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO); } else if (S_ISLNK(inode->i_mode)) { if (f2fs_encrypted_inode(inode)) inode->i_op = &f2fs_encrypted_symlink_inode_operations; else inode->i_op = &f2fs_symlink_inode_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { inode->i_op = &f2fs_special_inode_operations; init_special_inode(inode, inode->i_mode, inode->i_rdev); } else { ret = -EIO; goto bad_inode; } unlock_new_inode(inode); trace_f2fs_iget(inode); return inode; bad_inode: iget_failed(inode); trace_f2fs_iget_exit(inode, ret); return ERR_PTR(ret); } void update_inode(struct inode *inode, struct page *node_page) { struct f2fs_inode *ri; f2fs_wait_on_page_writeback(node_page, NODE); ri = F2FS_INODE(node_page); ri->i_mode = cpu_to_le16(inode->i_mode); ri->i_advise = F2FS_I(inode)->i_advise; ri->i_uid = cpu_to_le32(i_uid_read(inode)); ri->i_gid = cpu_to_le32(i_gid_read(inode)); ri->i_links = cpu_to_le32(inode->i_nlink); ri->i_size = cpu_to_le64(i_size_read(inode)); ri->i_blocks = cpu_to_le64(inode->i_blocks); if (F2FS_I(inode)->extent_tree) set_raw_extent(&F2FS_I(inode)->extent_tree->largest, &ri->i_ext); else memset(&ri->i_ext, 0, sizeof(ri->i_ext)); set_raw_inline(F2FS_I(inode), ri); ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec); ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec); ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec); ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth); ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid); ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags); ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino); ri->i_generation = cpu_to_le32(inode->i_generation); ri->i_dir_level = F2FS_I(inode)->i_dir_level; __set_inode_rdev(inode, ri); set_cold_node(inode, node_page); set_page_dirty(node_page); clear_inode_flag(F2FS_I(inode), FI_DIRTY_INODE); } void update_inode_page(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct page *node_page; retry: node_page = get_node_page(sbi, inode->i_ino); if (IS_ERR(node_page)) { int err = PTR_ERR(node_page); if (err == -ENOMEM) { cond_resched(); goto retry; } else if (err != -ENOENT) { f2fs_stop_checkpoint(sbi); } return; } update_inode(inode, node_page); f2fs_put_page(node_page, 1); } int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); if (inode->i_ino == F2FS_NODE_INO(sbi) || inode->i_ino == F2FS_META_INO(sbi)) return 0; if (!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_INODE)) return 0; /* * We need to balance fs here to prevent from producing dirty node pages * during the urgent cleaning time when runing out of free sections. */ update_inode_page(inode); f2fs_balance_fs(sbi); return 0; } /* * Called at the last iput() if i_nlink is zero */ void f2fs_evict_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); nid_t xnid = fi->i_xattr_nid; int err = 0; /* some remained atomic pages should discarded */ if (f2fs_is_atomic_file(inode)) commit_inmem_pages(inode, true); trace_f2fs_evict_inode(inode); truncate_inode_pages_final(&inode->i_data); if (inode->i_ino == F2FS_NODE_INO(sbi) || inode->i_ino == F2FS_META_INO(sbi)) goto out_clear; f2fs_bug_on(sbi, get_dirty_pages(inode)); remove_dirty_inode(inode); f2fs_destroy_extent_tree(inode); if (inode->i_nlink || is_bad_inode(inode)) goto no_delete; sb_start_intwrite(inode->i_sb); set_inode_flag(fi, FI_NO_ALLOC); i_size_write(inode, 0); if (F2FS_HAS_BLOCKS(inode)) err = f2fs_truncate(inode, true); if (!err) { f2fs_lock_op(sbi); err = remove_inode_page(inode); f2fs_unlock_op(sbi); } sb_end_intwrite(inode->i_sb); no_delete: stat_dec_inline_xattr(inode); stat_dec_inline_dir(inode); stat_dec_inline_inode(inode); invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino); if (xnid) invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid); if (is_inode_flag_set(fi, FI_APPEND_WRITE)) add_ino_entry(sbi, inode->i_ino, APPEND_INO); if (is_inode_flag_set(fi, FI_UPDATE_WRITE)) add_ino_entry(sbi, inode->i_ino, UPDATE_INO); if (is_inode_flag_set(fi, FI_FREE_NID)) { if (err && err != -ENOENT) alloc_nid_done(sbi, inode->i_ino); else alloc_nid_failed(sbi, inode->i_ino); clear_inode_flag(fi, FI_FREE_NID); } if (err && err != -ENOENT) { if (!exist_written_data(sbi, inode->i_ino, ORPHAN_INO)) { /* * get here because we failed to release resource * of inode previously, reminder our user to run fsck * for fixing. */ set_sbi_flag(sbi, SBI_NEED_FSCK); f2fs_msg(sbi->sb, KERN_WARNING, "inode (ino:%lu) resource leak, run fsck " "to fix this issue!", inode->i_ino); } } out_clear: #ifdef CONFIG_F2FS_FS_ENCRYPTION if (fi->i_crypt_info) f2fs_free_encryption_info(inode, fi->i_crypt_info); #endif clear_inode(inode); } /* caller should call f2fs_lock_op() */ void handle_failed_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); int err = 0; clear_nlink(inode); make_bad_inode(inode); unlock_new_inode(inode); i_size_write(inode, 0); if (F2FS_HAS_BLOCKS(inode)) err = f2fs_truncate(inode, false); if (!err) err = remove_inode_page(inode); /* * if we skip truncate_node in remove_inode_page bacause we failed * before, it's better to find another way to release resource of * this inode (e.g. valid block count, node block or nid). Here we * choose to add this inode to orphan list, so that we can call iput * for releasing in orphan recovery flow. * * Note: we should add inode to orphan list before f2fs_unlock_op() * so we can prevent losing this orphan when encoutering checkpoint * and following suddenly power-off. */ if (err && err != -ENOENT) { err = acquire_orphan_inode(sbi); if (!err) add_orphan_inode(sbi, inode->i_ino); } set_inode_flag(F2FS_I(inode), FI_FREE_NID); f2fs_unlock_op(sbi); /* iput will drop the inode object */ iput(inode); }