/* * linux/fs/proc/array.c * * Copyright (C) 1992 by Linus Torvalds * based on ideas by Darren Senn * * Fixes: * Michael. K. Johnson: stat,statm extensions. * * * Pauline Middelink : Made cmdline,envline only break at '\0's, to * make sure SET_PROCTITLE works. Also removed * bad '!' which forced address recalculation for * EVERY character on the current page. * * * Danny ter Haar : added cpuinfo * * * Alessandro Rubini : profile extension. * * * Jeff Tranter : added BogoMips field to cpuinfo * * * Bruno Haible : remove 4K limit for the maps file * * * Yves Arrouye : remove removal of trailing spaces in get_array. * * * Jerome Forissier : added per-CPU time information to /proc/stat * and /proc//cpu extension * * - Incorporation and non-SMP safe operation * of forissier patch in 2.1.78 by * Hans Marcus * * aeb@cwi.nl : /proc/partitions * * * Alan Cox : security fixes. * * * Al Viro : safe handling of mm_struct * * Gerhard Wichert : added BIGMEM support * Siemens AG * * Al Viro & Jeff Garzik : moved most of the thing into base.c and * : proc_misc.c. The rest may eventually go into * : base.c too. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" /* Gcc optimizes away "strlen(x)" for constant x */ #define ADDBUF(buffer, string) \ do { memcpy(buffer, string, strlen(string)); \ buffer += strlen(string); } while (0) static inline char *task_name(struct task_struct *p, char *buf) { int i; char *name; char tcomm[sizeof(p->comm)]; get_task_comm(tcomm, p); ADDBUF(buf, "Name:\t"); name = tcomm; i = sizeof(tcomm); do { unsigned char c = *name; name++; i--; *buf = c; if (!c) break; if (c == '\\') { buf[1] = c; buf += 2; continue; } if (c == '\n') { buf[0] = '\\'; buf[1] = 'n'; buf += 2; continue; } buf++; } while (i); *buf = '\n'; return buf+1; } /* * The task state array is a strange "bitmap" of * reasons to sleep. Thus "running" is zero, and * you can test for combinations of others with * simple bit tests. */ static const char *task_state_array[] = { "R (running)", /* 0 */ "S (sleeping)", /* 1 */ "D (disk sleep)", /* 2 */ "T (stopped)", /* 4 */ "T (tracing stop)", /* 8 */ "Z (zombie)", /* 16 */ "X (dead)" /* 32 */ }; static inline const char *get_task_state(struct task_struct *tsk) { unsigned int state = (tsk->state & (TASK_RUNNING | TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE | TASK_STOPPED | TASK_TRACED)) | (tsk->exit_state & (EXIT_ZOMBIE | EXIT_DEAD)); const char **p = &task_state_array[0]; while (state) { p++; state >>= 1; } return *p; } static inline char *task_state(struct task_struct *p, char *buffer) { struct group_info *group_info; int g; struct fdtable *fdt = NULL; rcu_read_lock(); buffer += sprintf(buffer, "State:\t%s\n" "Tgid:\t%d\n" "Pid:\t%d\n" "PPid:\t%d\n" "TracerPid:\t%d\n" "Uid:\t%d\t%d\t%d\t%d\n" "Gid:\t%d\t%d\t%d\t%d\n", get_task_state(p), p->tgid, p->pid, pid_alive(p) ? rcu_dereference(p->real_parent)->tgid : 0, pid_alive(p) && p->ptrace ? rcu_dereference(p->parent)->pid : 0, p->uid, p->euid, p->suid, p->fsuid, p->gid, p->egid, p->sgid, p->fsgid); task_lock(p); if (p->files) fdt = files_fdtable(p->files); buffer += sprintf(buffer, "FDSize:\t%d\n" "Groups:\t", fdt ? fdt->max_fds : 0); rcu_read_unlock(); group_info = p->group_info; get_group_info(group_info); task_unlock(p); for (g = 0; g < min(group_info->ngroups, NGROUPS_SMALL); g++) buffer += sprintf(buffer, "%d ", GROUP_AT(group_info, g)); put_group_info(group_info); buffer += sprintf(buffer, "\n"); return buffer; } static char *render_sigset_t(const char *header, sigset_t *set, char *buffer) { int i, len; len = strlen(header); memcpy(buffer, header, len); buffer += len; i = _NSIG; do { int x = 0; i -= 4; if (sigismember(set, i+1)) x |= 1; if (sigismember(set, i+2)) x |= 2; if (sigismember(set, i+3)) x |= 4; if (sigismember(set, i+4)) x |= 8; *buffer++ = (x < 10 ? '0' : 'a' - 10) + x; } while (i >= 4); *buffer++ = '\n'; *buffer = 0; return buffer; } static void collect_sigign_sigcatch(struct task_struct *p, sigset_t *ign, sigset_t *catch) { struct k_sigaction *k; int i; k = p->sighand->action; for (i = 1; i <= _NSIG; ++i, ++k) { if (k->sa.sa_handler == SIG_IGN) sigaddset(ign, i); else if (k->sa.sa_handler != SIG_DFL) sigaddset(catch, i); } } static inline char *task_sig(struct task_struct *p, char *buffer) { unsigned long flags; sigset_t pending, shpending, blocked, ignored, caught; int num_threads = 0; unsigned long qsize = 0; unsigned long qlim = 0; sigemptyset(&pending); sigemptyset(&shpending); sigemptyset(&blocked); sigemptyset(&ignored); sigemptyset(&caught); rcu_read_lock(); if (lock_task_sighand(p, &flags)) { pending = p->pending.signal; shpending = p->signal->shared_pending.signal; blocked = p->blocked; collect_sigign_sigcatch(p, &ignored, &caught); num_threads = atomic_read(&p->signal->count); qsize = atomic_read(&p->user->sigpending); qlim = p->signal->rlim[RLIMIT_SIGPENDING].rlim_cur; unlock_task_sighand(p, &flags); } rcu_read_unlock(); buffer += sprintf(buffer, "Threads:\t%d\n", num_threads); buffer += sprintf(buffer, "SigQ:\t%lu/%lu\n", qsize, qlim); /* render them all */ buffer = render_sigset_t("SigPnd:\t", &pending, buffer); buffer = render_sigset_t("ShdPnd:\t", &shpending, buffer); buffer = render_sigset_t("SigBlk:\t", &blocked, buffer); buffer = render_sigset_t("SigIgn:\t", &ignored, buffer); buffer = render_sigset_t("SigCgt:\t", &caught, buffer); return buffer; } static inline char *task_cap(struct task_struct *p, char *buffer) { return buffer + sprintf(buffer, "CapInh:\t%016x\n" "CapPrm:\t%016x\n" "CapEff:\t%016x\n", cap_t(p->cap_inheritable), cap_t(p->cap_permitted), cap_t(p->cap_effective)); } static inline char *task_context_switch_counts(struct task_struct *p, char *buffer) { return buffer + sprintf(buffer, "voluntary_ctxt_switches:\t%lu\n" "nonvoluntary_ctxt_switches:\t%lu\n", p->nvcsw, p->nivcsw); } int proc_pid_status(struct task_struct *task, char *buffer) { char *orig = buffer; struct mm_struct *mm = get_task_mm(task); buffer = task_name(task, buffer); buffer = task_state(task, buffer); if (mm) { buffer = task_mem(mm, buffer); mmput(mm); } buffer = task_sig(task, buffer); buffer = task_cap(task, buffer); buffer = cpuset_task_status_allowed(task, buffer); #if defined(CONFIG_S390) buffer = task_show_regs(task, buffer); #endif buffer = task_context_switch_counts(task, buffer); return buffer - orig; } /* * Use precise platform statistics if available: */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING static cputime_t task_utime(struct task_struct *p) { return p->utime; } static cputime_t task_stime(struct task_struct *p) { return p->stime; } #else static cputime_t task_utime(struct task_struct *p) { clock_t utime = cputime_to_clock_t(p->utime), total = utime + cputime_to_clock_t(p->stime); u64 temp; /* * Use CFS's precise accounting: */ temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); if (total) { temp *= utime; do_div(temp, total); } utime = (clock_t)temp; p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); return p->prev_utime; } static cputime_t task_stime(struct task_struct *p) { clock_t stime; /* * Use CFS's precise accounting. (we subtract utime from * the total, to make sure the total observed by userspace * grows monotonically - apps rely on that): */ stime = nsec_to_clock_t(p->se.sum_exec_runtime) - cputime_to_clock_t(task_utime(p)); p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); return p->prev_stime; } #endif static int do_task_stat(struct task_struct *task, char *buffer, int whole) { unsigned long vsize, eip, esp, wchan = ~0UL; long priority, nice; int tty_pgrp = -1, tty_nr = 0; sigset_t sigign, sigcatch; char state; int res; pid_t ppid = 0, pgid = -1, sid = -1; int num_threads = 0; struct mm_struct *mm; unsigned long long start_time; unsigned long cmin_flt = 0, cmaj_flt = 0; unsigned long min_flt = 0, maj_flt = 0; cputime_t cutime, cstime, utime, stime; unsigned long rsslim = 0; char tcomm[sizeof(task->comm)]; unsigned long flags; state = *get_task_state(task); vsize = eip = esp = 0; mm = get_task_mm(task); if (mm) { vsize = task_vsize(mm); eip = KSTK_EIP(task); esp = KSTK_ESP(task); } get_task_comm(tcomm, task); sigemptyset(&sigign); sigemptyset(&sigcatch); cutime = cstime = utime = stime = cputime_zero; rcu_read_lock(); if (lock_task_sighand(task, &flags)) { struct signal_struct *sig = task->signal; if (sig->tty) { tty_pgrp = pid_nr(sig->tty->pgrp); tty_nr = new_encode_dev(tty_devnum(sig->tty)); } num_threads = atomic_read(&sig->count); collect_sigign_sigcatch(task, &sigign, &sigcatch); cmin_flt = sig->cmin_flt; cmaj_flt = sig->cmaj_flt; cutime = sig->cutime; cstime = sig->cstime; rsslim = sig->rlim[RLIMIT_RSS].rlim_cur; /* add up live thread stats at the group level */ if (whole) { struct task_struct *t = task; do { min_flt += t->min_flt; maj_flt += t->maj_flt; utime = cputime_add(utime, task_utime(t)); stime = cputime_add(stime, task_stime(t)); t = next_thread(t); } while (t != task); min_flt += sig->min_flt; maj_flt += sig->maj_flt; utime = cputime_add(utime, sig->utime); stime = cputime_add(stime, sig->stime); } sid = signal_session(sig); pgid = process_group(task); ppid = rcu_dereference(task->real_parent)->tgid; unlock_task_sighand(task, &flags); } rcu_read_unlock(); if (!whole || num_threads < 2) wchan = get_wchan(task); if (!whole) { min_flt = task->min_flt; maj_flt = task->maj_flt; utime = task_utime(task); stime = task_stime(task); } /* scale priority and nice values from timeslices to -20..20 */ /* to make it look like a "normal" Unix priority/nice value */ priority = task_prio(task); nice = task_nice(task); /* Temporary variable needed for gcc-2.96 */ /* convert timespec -> nsec*/ start_time = (unsigned long long)task->real_start_time.tv_sec * NSEC_PER_SEC + task->real_start_time.tv_nsec; /* convert nsec -> ticks */ start_time = nsec_to_clock_t(start_time); res = sprintf(buffer, "%d (%s) %c %d %d %d %d %d %u %lu \ %lu %lu %lu %lu %lu %ld %ld %ld %ld %d 0 %llu %lu %ld %lu %lu %lu %lu %lu \ %lu %lu %lu %lu %lu %lu %lu %lu %d %d %u %u %llu\n", task->pid, tcomm, state, ppid, pgid, sid, tty_nr, tty_pgrp, task->flags, min_flt, cmin_flt, maj_flt, cmaj_flt, cputime_to_clock_t(utime), cputime_to_clock_t(stime), cputime_to_clock_t(cutime), cputime_to_clock_t(cstime), priority, nice, num_threads, start_time, vsize, mm ? get_mm_rss(mm) : 0, rsslim, mm ? mm->start_code : 0, mm ? mm->end_code : 0, mm ? mm->start_stack : 0, esp, eip, /* The signal information here is obsolete. * It must be decimal for Linux 2.0 compatibility. * Use /proc/#/status for real-time signals. */ task->pending.signal.sig[0] & 0x7fffffffUL, task->blocked.sig[0] & 0x7fffffffUL, sigign .sig[0] & 0x7fffffffUL, sigcatch .sig[0] & 0x7fffffffUL, wchan, 0UL, 0UL, task->exit_signal, task_cpu(task), task->rt_priority, task->policy, (unsigned long long)delayacct_blkio_ticks(task)); if (mm) mmput(mm); return res; } int proc_tid_stat(struct task_struct *task, char *buffer) { return do_task_stat(task, buffer, 0); } int proc_tgid_stat(struct task_struct *task, char *buffer) { return do_task_stat(task, buffer, 1); } int proc_pid_statm(struct task_struct *task, char *buffer) { int size = 0, resident = 0, shared = 0, text = 0, lib = 0, data = 0; struct mm_struct *mm = get_task_mm(task); if (mm) { size = task_statm(mm, &shared, &text, &data, &resident); mmput(mm); } return sprintf(buffer, "%d %d %d %d %d %d %d\n", size, resident, shared, text, lib, data, 0); }