/* * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README */ /* * Now we have all buffers that must be used in balancing of the tree * Further calculations can not cause schedule(), and thus the buffer * tree will be stable until the balancing will be finished * balance the tree according to the analysis made before, * and using buffers obtained after all above. */ #include #include #include "reiserfs.h" #include #include static inline void buffer_info_init_left(struct tree_balance *tb, struct buffer_info *bi) { bi->tb = tb; bi->bi_bh = tb->L[0]; bi->bi_parent = tb->FL[0]; bi->bi_position = get_left_neighbor_position(tb, 0); } static inline void buffer_info_init_right(struct tree_balance *tb, struct buffer_info *bi) { bi->tb = tb; bi->bi_bh = tb->R[0]; bi->bi_parent = tb->FR[0]; bi->bi_position = get_right_neighbor_position(tb, 0); } static inline void buffer_info_init_tbS0(struct tree_balance *tb, struct buffer_info *bi) { bi->tb = tb; bi->bi_bh = PATH_PLAST_BUFFER(tb->tb_path); bi->bi_parent = PATH_H_PPARENT(tb->tb_path, 0); bi->bi_position = PATH_H_POSITION(tb->tb_path, 1); } static inline void buffer_info_init_bh(struct tree_balance *tb, struct buffer_info *bi, struct buffer_head *bh) { bi->tb = tb; bi->bi_bh = bh; bi->bi_parent = NULL; bi->bi_position = 0; } inline void do_balance_mark_leaf_dirty(struct tree_balance *tb, struct buffer_head *bh, int flag) { journal_mark_dirty(tb->transaction_handle, bh); } #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty /* * summary: * if deleting something ( tb->insert_size[0] < 0 ) * return(balance_leaf_when_delete()); (flag d handled here) * else * if lnum is larger than 0 we put items into the left node * if rnum is larger than 0 we put items into the right node * if snum1 is larger than 0 we put items into the new node s1 * if snum2 is larger than 0 we put items into the new node s2 * Note that all *num* count new items being created. */ /* * Balance leaf node in case of delete or cut: insert_size[0] < 0 * * lnum, rnum can have values >= -1 * -1 means that the neighbor must be joined with S * 0 means that nothing should be done with the neighbor * >0 means to shift entirely or partly the specified number of items * to the neighbor */ static int balance_leaf_when_delete(struct tree_balance *tb, int flag) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); int item_pos = PATH_LAST_POSITION(tb->tb_path); int pos_in_item = tb->tb_path->pos_in_item; struct buffer_info bi; int n; struct item_head *ih; RFALSE(tb->FR[0] && B_LEVEL(tb->FR[0]) != DISK_LEAF_NODE_LEVEL + 1, "vs- 12000: level: wrong FR %z", tb->FR[0]); RFALSE(tb->blknum[0] > 1, "PAP-12005: tb->blknum == %d, can not be > 1", tb->blknum[0]); RFALSE(!tb->blknum[0] && !PATH_H_PPARENT(tb->tb_path, 0), "PAP-12010: tree can not be empty"); ih = item_head(tbS0, item_pos); buffer_info_init_tbS0(tb, &bi); /* Delete or truncate the item */ switch (flag) { case M_DELETE: /* delete item in S[0] */ RFALSE(ih_item_len(ih) + IH_SIZE != -tb->insert_size[0], "vs-12013: mode Delete, insert size %d, ih to be deleted %h", -tb->insert_size[0], ih); leaf_delete_items(&bi, 0, item_pos, 1, -1); if (!item_pos && tb->CFL[0]) { if (B_NR_ITEMS(tbS0)) { replace_key(tb, tb->CFL[0], tb->lkey[0], tbS0, 0); } else { if (!PATH_H_POSITION(tb->tb_path, 1)) replace_key(tb, tb->CFL[0], tb->lkey[0], PATH_H_PPARENT(tb->tb_path, 0), 0); } } RFALSE(!item_pos && !tb->CFL[0], "PAP-12020: tb->CFL[0]==%p, tb->L[0]==%p", tb->CFL[0], tb->L[0]); break; case M_CUT:{ /* cut item in S[0] */ if (is_direntry_le_ih(ih)) { /* * UFS unlink semantics are such that you * can only delete one directory entry at * a time. */ /* * when we cut a directory tb->insert_size[0] * means number of entries to be cut (always 1) */ tb->insert_size[0] = -1; leaf_cut_from_buffer(&bi, item_pos, pos_in_item, -tb->insert_size[0]); RFALSE(!item_pos && !pos_in_item && !tb->CFL[0], "PAP-12030: can not change delimiting key. CFL[0]=%p", tb->CFL[0]); if (!item_pos && !pos_in_item && tb->CFL[0]) { replace_key(tb, tb->CFL[0], tb->lkey[0], tbS0, 0); } } else { leaf_cut_from_buffer(&bi, item_pos, pos_in_item, -tb->insert_size[0]); RFALSE(!ih_item_len(ih), "PAP-12035: cut must leave non-zero dynamic length of item"); } break; } default: print_cur_tb("12040"); reiserfs_panic(tb->tb_sb, "PAP-12040", "unexpected mode: %s(%d)", (flag == M_PASTE) ? "PASTE" : ((flag == M_INSERT) ? "INSERT" : "UNKNOWN"), flag); } /* * the rule is that no shifting occurs unless by shifting * a node can be freed */ n = B_NR_ITEMS(tbS0); /* L[0] takes part in balancing */ if (tb->lnum[0]) { /* L[0] must be joined with S[0] */ if (tb->lnum[0] == -1) { /* R[0] must be also joined with S[0] */ if (tb->rnum[0] == -1) { if (tb->FR[0] == PATH_H_PPARENT(tb->tb_path, 0)) { /* * all contents of all the 3 buffers * will be in L[0] */ if (PATH_H_POSITION(tb->tb_path, 1) == 0 && 1 < B_NR_ITEMS(tb->FR[0])) replace_key(tb, tb->CFL[0], tb->lkey[0], tb->FR[0], 1); leaf_move_items(LEAF_FROM_S_TO_L, tb, n, -1, NULL); leaf_move_items(LEAF_FROM_R_TO_L, tb, B_NR_ITEMS(tb->R[0]), -1, NULL); reiserfs_invalidate_buffer(tb, tbS0); reiserfs_invalidate_buffer(tb, tb->R[0]); return 0; } /* * all contents of all the 3 buffers will * be in R[0] */ leaf_move_items(LEAF_FROM_S_TO_R, tb, n, -1, NULL); leaf_move_items(LEAF_FROM_L_TO_R, tb, B_NR_ITEMS(tb->L[0]), -1, NULL); /* right_delimiting_key is correct in R[0] */ replace_key(tb, tb->CFR[0], tb->rkey[0], tb->R[0], 0); reiserfs_invalidate_buffer(tb, tbS0); reiserfs_invalidate_buffer(tb, tb->L[0]); return -1; } RFALSE(tb->rnum[0] != 0, "PAP-12045: rnum must be 0 (%d)", tb->rnum[0]); /* all contents of L[0] and S[0] will be in L[0] */ leaf_shift_left(tb, n, -1); reiserfs_invalidate_buffer(tb, tbS0); return 0; } /* * a part of contents of S[0] will be in L[0] and the * rest part of S[0] will be in R[0] */ RFALSE((tb->lnum[0] + tb->rnum[0] < n) || (tb->lnum[0] + tb->rnum[0] > n + 1), "PAP-12050: rnum(%d) and lnum(%d) and item number(%d) in S[0] are not consistent", tb->rnum[0], tb->lnum[0], n); RFALSE((tb->lnum[0] + tb->rnum[0] == n) && (tb->lbytes != -1 || tb->rbytes != -1), "PAP-12055: bad rbytes (%d)/lbytes (%d) parameters when items are not split", tb->rbytes, tb->lbytes); RFALSE((tb->lnum[0] + tb->rnum[0] == n + 1) && (tb->lbytes < 1 || tb->rbytes != -1), "PAP-12060: bad rbytes (%d)/lbytes (%d) parameters when items are split", tb->rbytes, tb->lbytes); leaf_shift_left(tb, tb->lnum[0], tb->lbytes); leaf_shift_right(tb, tb->rnum[0], tb->rbytes); reiserfs_invalidate_buffer(tb, tbS0); return 0; } if (tb->rnum[0] == -1) { /* all contents of R[0] and S[0] will be in R[0] */ leaf_shift_right(tb, n, -1); reiserfs_invalidate_buffer(tb, tbS0); return 0; } RFALSE(tb->rnum[0], "PAP-12065: bad rnum parameter must be 0 (%d)", tb->rnum[0]); return 0; } static void balance_leaf_insert_left(struct tree_balance *tb, struct item_head *ih, const char *body) { int ret; struct buffer_info bi; int n = B_NR_ITEMS(tb->L[0]); if (tb->item_pos == tb->lnum[0] - 1 && tb->lbytes != -1) { /* part of new item falls into L[0] */ int new_item_len, shift; int version; ret = leaf_shift_left(tb, tb->lnum[0] - 1, -1); /* Calculate item length to insert to S[0] */ new_item_len = ih_item_len(ih) - tb->lbytes; /* Calculate and check item length to insert to L[0] */ put_ih_item_len(ih, ih_item_len(ih) - new_item_len); RFALSE(ih_item_len(ih) <= 0, "PAP-12080: there is nothing to insert into L[0]: " "ih_item_len=%d", ih_item_len(ih)); /* Insert new item into L[0] */ buffer_info_init_left(tb, &bi); leaf_insert_into_buf(&bi, n + tb->item_pos - ret, ih, body, min_t(int, tb->zeroes_num, ih_item_len(ih))); version = ih_version(ih); /* * Calculate key component, item length and body to * insert into S[0] */ shift = 0; if (is_indirect_le_ih(ih)) shift = tb->tb_sb->s_blocksize_bits - UNFM_P_SHIFT; add_le_ih_k_offset(ih, tb->lbytes << shift); put_ih_item_len(ih, new_item_len); if (tb->lbytes > tb->zeroes_num) { body += (tb->lbytes - tb->zeroes_num); tb->zeroes_num = 0; } else tb->zeroes_num -= tb->lbytes; RFALSE(ih_item_len(ih) <= 0, "PAP-12085: there is nothing to insert into S[0]: " "ih_item_len=%d", ih_item_len(ih)); } else { /* new item in whole falls into L[0] */ /* Shift lnum[0]-1 items to L[0] */ ret = leaf_shift_left(tb, tb->lnum[0] - 1, tb->lbytes); /* Insert new item into L[0] */ buffer_info_init_left(tb, &bi); leaf_insert_into_buf(&bi, n + tb->item_pos - ret, ih, body, tb->zeroes_num); tb->insert_size[0] = 0; tb->zeroes_num = 0; } } static void balance_leaf_paste_left_shift_dirent(struct tree_balance *tb, struct item_head *ih, const char *body) { int n = B_NR_ITEMS(tb->L[0]); struct buffer_info bi; RFALSE(tb->zeroes_num, "PAP-12090: invalid parameter in case of a directory"); /* directory item */ if (tb->lbytes > tb->pos_in_item) { /* new directory entry falls into L[0] */ struct item_head *pasted; int ret, l_pos_in_item = tb->pos_in_item; /* * Shift lnum[0] - 1 items in whole. * Shift lbytes - 1 entries from given directory item */ ret = leaf_shift_left(tb, tb->lnum[0], tb->lbytes - 1); if (ret && !tb->item_pos) { pasted = item_head(tb->L[0], B_NR_ITEMS(tb->L[0]) - 1); l_pos_in_item += ih_entry_count(pasted) - (tb->lbytes - 1); } /* Append given directory entry to directory item */ buffer_info_init_left(tb, &bi); leaf_paste_in_buffer(&bi, n + tb->item_pos - ret, l_pos_in_item, tb->insert_size[0], body, tb->zeroes_num); /* * previous string prepared space for pasting new entry, * following string pastes this entry */ /* * when we have merge directory item, pos_in_item * has been changed too */ /* paste new directory entry. 1 is entry number */ leaf_paste_entries(&bi, n + tb->item_pos - ret, l_pos_in_item, 1, (struct reiserfs_de_head *) body, body + DEH_SIZE, tb->insert_size[0]); tb->insert_size[0] = 0; } else { /* new directory item doesn't fall into L[0] */ /* * Shift lnum[0]-1 items in whole. Shift lbytes * directory entries from directory item number lnum[0] */ leaf_shift_left(tb, tb->lnum[0], tb->lbytes); } /* Calculate new position to append in item body */ tb->pos_in_item -= tb->lbytes; } static void balance_leaf_paste_left_shift(struct tree_balance *tb, struct item_head *ih, const char *body) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); int n = B_NR_ITEMS(tb->L[0]); struct buffer_info bi; if (is_direntry_le_ih(item_head(tbS0, tb->item_pos))) { balance_leaf_paste_left_shift_dirent(tb, ih, body); return; } RFALSE(tb->lbytes <= 0, "PAP-12095: there is nothing to shift to L[0]. " "lbytes=%d", tb->lbytes); RFALSE(tb->pos_in_item != ih_item_len(item_head(tbS0, tb->item_pos)), "PAP-12100: incorrect position to paste: " "item_len=%d, pos_in_item=%d", ih_item_len(item_head(tbS0, tb->item_pos)), tb->pos_in_item); /* appended item will be in L[0] in whole */ if (tb->lbytes >= tb->pos_in_item) { struct item_head *tbS0_pos_ih, *tbL0_ih; struct item_head *tbS0_0_ih; struct reiserfs_key *left_delim_key; int ret, l_n, version, temp_l; tbS0_pos_ih = item_head(tbS0, tb->item_pos); tbS0_0_ih = item_head(tbS0, 0); /* * this bytes number must be appended * to the last item of L[h] */ l_n = tb->lbytes - tb->pos_in_item; /* Calculate new insert_size[0] */ tb->insert_size[0] -= l_n; RFALSE(tb->insert_size[0] <= 0, "PAP-12105: there is nothing to paste into " "L[0]. insert_size=%d", tb->insert_size[0]); ret = leaf_shift_left(tb, tb->lnum[0], ih_item_len(tbS0_pos_ih)); tbL0_ih = item_head(tb->L[0], n + tb->item_pos - ret); /* Append to body of item in L[0] */ buffer_info_init_left(tb, &bi); leaf_paste_in_buffer(&bi, n + tb->item_pos - ret, ih_item_len(tbL0_ih), l_n, body, min_t(int, l_n, tb->zeroes_num)); /* * 0-th item in S0 can be only of DIRECT type * when l_n != 0 */ temp_l = l_n; RFALSE(ih_item_len(tbS0_0_ih), "PAP-12106: item length must be 0"); RFALSE(comp_short_le_keys(&tbS0_0_ih->ih_key, leaf_key(tb->L[0], n + tb->item_pos - ret)), "PAP-12107: items must be of the same file"); if (is_indirect_le_ih(tbL0_ih)) { int shift = tb->tb_sb->s_blocksize_bits - UNFM_P_SHIFT; temp_l = l_n << shift; } /* update key of first item in S0 */ version = ih_version(tbS0_0_ih); add_le_key_k_offset(version, &tbS0_0_ih->ih_key, temp_l); /* update left delimiting key */ left_delim_key = internal_key(tb->CFL[0], tb->lkey[0]); add_le_key_k_offset(version, left_delim_key, temp_l); /* * Calculate new body, position in item and * insert_size[0] */ if (l_n > tb->zeroes_num) { body += (l_n - tb->zeroes_num); tb->zeroes_num = 0; } else tb->zeroes_num -= l_n; tb->pos_in_item = 0; RFALSE(comp_short_le_keys(&tbS0_0_ih->ih_key, leaf_key(tb->L[0], B_NR_ITEMS(tb->L[0]) - 1)) || !op_is_left_mergeable(leaf_key(tbS0, 0), tbS0->b_size) || !op_is_left_mergeable(left_delim_key, tbS0->b_size), "PAP-12120: item must be merge-able with left " "neighboring item"); } else { /* only part of the appended item will be in L[0] */ /* Calculate position in item for append in S[0] */ tb->pos_in_item -= tb->lbytes; RFALSE(tb->pos_in_item <= 0, "PAP-12125: no place for paste. pos_in_item=%d", tb->pos_in_item); /* * Shift lnum[0] - 1 items in whole. * Shift lbytes - 1 byte from item number lnum[0] */ leaf_shift_left(tb, tb->lnum[0], tb->lbytes); } } /* appended item will be in L[0] in whole */ static void balance_leaf_paste_left_whole(struct tree_balance *tb, struct item_head *ih, const char *body) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); int n = B_NR_ITEMS(tb->L[0]); struct buffer_info bi; struct item_head *pasted; int ret; /* if we paste into first item of S[0] and it is left mergable */ if (!tb->item_pos && op_is_left_mergeable(leaf_key(tbS0, 0), tbS0->b_size)) { /* * then increment pos_in_item by the size of the * last item in L[0] */ pasted = item_head(tb->L[0], n - 1); if (is_direntry_le_ih(pasted)) tb->pos_in_item += ih_entry_count(pasted); else tb->pos_in_item += ih_item_len(pasted); } /* * Shift lnum[0] - 1 items in whole. * Shift lbytes - 1 byte from item number lnum[0] */ ret = leaf_shift_left(tb, tb->lnum[0], tb->lbytes); /* Append to body of item in L[0] */ buffer_info_init_left(tb, &bi); leaf_paste_in_buffer(&bi, n + tb->item_pos - ret, tb->pos_in_item, tb->insert_size[0], body, tb->zeroes_num); /* if appended item is directory, paste entry */ pasted = item_head(tb->L[0], n + tb->item_pos - ret); if (is_direntry_le_ih(pasted)) leaf_paste_entries(&bi, n + tb->item_pos - ret, tb->pos_in_item, 1, (struct reiserfs_de_head *)body, body + DEH_SIZE, tb->insert_size[0]); /* * if appended item is indirect item, put unformatted node * into un list */ if (is_indirect_le_ih(pasted)) set_ih_free_space(pasted, 0); tb->insert_size[0] = 0; tb->zeroes_num = 0; } static void balance_leaf_paste_left(struct tree_balance *tb, struct item_head *ih, const char *body) { /* we must shift the part of the appended item */ if (tb->item_pos == tb->lnum[0] - 1 && tb->lbytes != -1) balance_leaf_paste_left_shift(tb, ih, body); else balance_leaf_paste_left_whole(tb, ih, body); } /* Shift lnum[0] items from S[0] to the left neighbor L[0] */ static void balance_leaf_left(struct tree_balance *tb, struct item_head *ih, const char *body, int flag) { if (tb->lnum[0] <= 0) return; /* new item or it part falls to L[0], shift it too */ if (tb->item_pos < tb->lnum[0]) { BUG_ON(flag != M_INSERT && flag != M_PASTE); if (flag == M_INSERT) balance_leaf_insert_left(tb, ih, body); else /* M_PASTE */ balance_leaf_paste_left(tb, ih, body); } else /* new item doesn't fall into L[0] */ leaf_shift_left(tb, tb->lnum[0], tb->lbytes); } static void balance_leaf_insert_right(struct tree_balance *tb, struct item_head *ih, const char *body) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); int n = B_NR_ITEMS(tbS0); struct buffer_info bi; int ret; /* new item or part of it doesn't fall into R[0] */ if (n - tb->rnum[0] >= tb->item_pos) { leaf_shift_right(tb, tb->rnum[0], tb->rbytes); return; } /* new item or its part falls to R[0] */ /* part of new item falls into R[0] */ if (tb->item_pos == n - tb->rnum[0] + 1 && tb->rbytes != -1) { loff_t old_key_comp, old_len, r_zeroes_number; const char *r_body; int version, shift; loff_t offset; leaf_shift_right(tb, tb->rnum[0] - 1, -1); version = ih_version(ih); /* Remember key component and item length */ old_key_comp = le_ih_k_offset(ih); old_len = ih_item_len(ih); /* * Calculate key component and item length to insert * into R[0] */ shift = 0; if (is_indirect_le_ih(ih)) shift = tb->tb_sb->s_blocksize_bits - UNFM_P_SHIFT; offset = le_ih_k_offset(ih) + ((old_len - tb->rbytes) << shift); set_le_ih_k_offset(ih, offset); put_ih_item_len(ih, tb->rbytes); /* Insert part of the item into R[0] */ buffer_info_init_right(tb, &bi); if ((old_len - tb->rbytes) > tb->zeroes_num) { r_zeroes_number = 0; r_body = body + (old_len - tb->rbytes) - tb->zeroes_num; } else { r_body = body; r_zeroes_number = tb->zeroes_num - (old_len - tb->rbytes); tb->zeroes_num -= r_zeroes_number; } leaf_insert_into_buf(&bi, 0, ih, r_body, r_zeroes_number); /* Replace right delimiting key by first key in R[0] */ replace_key(tb, tb->CFR[0], tb->rkey[0], tb->R[0], 0); /* * Calculate key component and item length to * insert into S[0] */ set_le_ih_k_offset(ih, old_key_comp); put_ih_item_len(ih, old_len - tb->rbytes); tb->insert_size[0] -= tb->rbytes; } else { /* whole new item falls into R[0] */ /* Shift rnum[0]-1 items to R[0] */ ret = leaf_shift_right(tb, tb->rnum[0] - 1, tb->rbytes); /* Insert new item into R[0] */ buffer_info_init_right(tb, &bi); leaf_insert_into_buf(&bi, tb->item_pos - n + tb->rnum[0] - 1, ih, body, tb->zeroes_num); if (tb->item_pos - n + tb->rnum[0] - 1 == 0) replace_key(tb, tb->CFR[0], tb->rkey[0], tb->R[0], 0); tb->zeroes_num = tb->insert_size[0] = 0; } } static void balance_leaf_paste_right_shift_dirent(struct tree_balance *tb, struct item_head *ih, const char *body) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); struct buffer_info bi; int entry_count; RFALSE(tb->zeroes_num, "PAP-12145: invalid parameter in case of a directory"); entry_count = ih_entry_count(item_head(tbS0, tb->item_pos)); /* new directory entry falls into R[0] */ if (entry_count - tb->rbytes < tb->pos_in_item) { int paste_entry_position; RFALSE(tb->rbytes - 1 >= entry_count || !tb->insert_size[0], "PAP-12150: no enough of entries to shift to R[0]: " "rbytes=%d, entry_count=%d", tb->rbytes, entry_count); /* * Shift rnum[0]-1 items in whole. * Shift rbytes-1 directory entries from directory * item number rnum[0] */ leaf_shift_right(tb, tb->rnum[0], tb->rbytes - 1); /* Paste given directory entry to directory item */ paste_entry_position = tb->pos_in_item - entry_count + tb->rbytes - 1; buffer_info_init_right(tb, &bi); leaf_paste_in_buffer(&bi, 0, paste_entry_position, tb->insert_size[0], body, tb->zeroes_num); /* paste entry */ leaf_paste_entries(&bi, 0, paste_entry_position, 1, (struct reiserfs_de_head *) body, body + DEH_SIZE, tb->insert_size[0]); /* change delimiting keys */ if (paste_entry_position == 0) replace_key(tb, tb->CFR[0], tb->rkey[0], tb->R[0], 0); tb->insert_size[0] = 0; tb->pos_in_item++; } else { /* new directory entry doesn't fall into R[0] */ leaf_shift_right(tb, tb->rnum[0], tb->rbytes); } } static void balance_leaf_paste_right_shift(struct tree_balance *tb, struct item_head *ih, const char *body) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); int n_shift, n_rem, r_zeroes_number, version; unsigned long temp_rem; const char *r_body; struct buffer_info bi; /* we append to directory item */ if (is_direntry_le_ih(item_head(tbS0, tb->item_pos))) { balance_leaf_paste_right_shift_dirent(tb, ih, body); return; } /* regular object */ /* * Calculate number of bytes which must be shifted * from appended item */ n_shift = tb->rbytes - tb->insert_size[0]; if (n_shift < 0) n_shift = 0; RFALSE(tb->pos_in_item != ih_item_len(item_head(tbS0, tb->item_pos)), "PAP-12155: invalid position to paste. ih_item_len=%d, " "pos_in_item=%d", tb->pos_in_item, ih_item_len(item_head(tbS0, tb->item_pos))); leaf_shift_right(tb, tb->rnum[0], n_shift); /* * Calculate number of bytes which must remain in body * after appending to R[0] */ n_rem = tb->insert_size[0] - tb->rbytes; if (n_rem < 0) n_rem = 0; temp_rem = n_rem; version = ih_version(item_head(tb->R[0], 0)); if (is_indirect_le_key(version, leaf_key(tb->R[0], 0))) { int shift = tb->tb_sb->s_blocksize_bits - UNFM_P_SHIFT; temp_rem = n_rem << shift; } add_le_key_k_offset(version, leaf_key(tb->R[0], 0), temp_rem); add_le_key_k_offset(version, internal_key(tb->CFR[0], tb->rkey[0]), temp_rem); do_balance_mark_internal_dirty(tb, tb->CFR[0], 0); /* Append part of body into R[0] */ buffer_info_init_right(tb, &bi); if (n_rem > tb->zeroes_num) { r_zeroes_number = 0; r_body = body + n_rem - tb->zeroes_num; } else { r_body = body; r_zeroes_number = tb->zeroes_num - n_rem; tb->zeroes_num -= r_zeroes_number; } leaf_paste_in_buffer(&bi, 0, n_shift, tb->insert_size[0] - n_rem, r_body, r_zeroes_number); if (is_indirect_le_ih(item_head(tb->R[0], 0))) set_ih_free_space(item_head(tb->R[0], 0), 0); tb->insert_size[0] = n_rem; if (!n_rem) tb->pos_in_item++; } static void balance_leaf_paste_right_whole(struct tree_balance *tb, struct item_head *ih, const char *body) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); int n = B_NR_ITEMS(tbS0); struct item_head *pasted; struct buffer_info bi; buffer_info_init_right(tb, &bi); leaf_shift_right(tb, tb->rnum[0], tb->rbytes); /* append item in R[0] */ if (tb->pos_in_item >= 0) { buffer_info_init_right(tb, &bi); leaf_paste_in_buffer(&bi, tb->item_pos - n + tb->rnum[0], tb->pos_in_item, tb->insert_size[0], body, tb->zeroes_num); } /* paste new entry, if item is directory item */ pasted = item_head(tb->R[0], tb->item_pos - n + tb->rnum[0]); if (is_direntry_le_ih(pasted) && tb->pos_in_item >= 0) { leaf_paste_entries(&bi, tb->item_pos - n + tb->rnum[0], tb->pos_in_item, 1, (struct reiserfs_de_head *)body, body + DEH_SIZE, tb->insert_size[0]); if (!tb->pos_in_item) { RFALSE(tb->item_pos - n + tb->rnum[0], "PAP-12165: directory item must be first " "item of node when pasting is in 0th position"); /* update delimiting keys */ replace_key(tb, tb->CFR[0], tb->rkey[0], tb->R[0], 0); } } if (is_indirect_le_ih(pasted)) set_ih_free_space(pasted, 0); tb->zeroes_num = tb->insert_size[0] = 0; } static void balance_leaf_paste_right(struct tree_balance *tb, struct item_head *ih, const char *body) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); int n = B_NR_ITEMS(tbS0); /* new item doesn't fall into R[0] */ if (n - tb->rnum[0] > tb->item_pos) { leaf_shift_right(tb, tb->rnum[0], tb->rbytes); return; } /* pasted item or part of it falls to R[0] */ if (tb->item_pos == n - tb->rnum[0] && tb->rbytes != -1) /* we must shift the part of the appended item */ balance_leaf_paste_right_shift(tb, ih, body); else /* pasted item in whole falls into R[0] */ balance_leaf_paste_right_whole(tb, ih, body); } /* shift rnum[0] items from S[0] to the right neighbor R[0] */ static void balance_leaf_right(struct tree_balance *tb, struct item_head *ih, const char *body, int flag) { if (tb->rnum[0] <= 0) return; BUG_ON(flag != M_INSERT && flag != M_PASTE); if (flag == M_INSERT) balance_leaf_insert_right(tb, ih, body); else /* M_PASTE */ balance_leaf_paste_right(tb, ih, body); } static void balance_leaf_new_nodes_insert(struct tree_balance *tb, struct item_head *ih, const char *body, struct item_head *insert_key, struct buffer_head **insert_ptr, int i) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); int n = B_NR_ITEMS(tbS0); struct buffer_info bi; int shift; /* new item or it part don't falls into S_new[i] */ if (n - tb->snum[i] >= tb->item_pos) { leaf_move_items(LEAF_FROM_S_TO_SNEW, tb, tb->snum[i], tb->sbytes[i], tb->S_new[i]); return; } /* new item or it's part falls to first new node S_new[i] */ /* part of new item falls into S_new[i] */ if (tb->item_pos == n - tb->snum[i] + 1 && tb->sbytes[i] != -1) { int old_key_comp, old_len, r_zeroes_number; const char *r_body; int version; /* Move snum[i]-1 items from S[0] to S_new[i] */ leaf_move_items(LEAF_FROM_S_TO_SNEW, tb, tb->snum[i] - 1, -1, tb->S_new[i]); /* Remember key component and item length */ version = ih_version(ih); old_key_comp = le_ih_k_offset(ih); old_len = ih_item_len(ih); /* * Calculate key component and item length to insert * into S_new[i] */ shift = 0; if (is_indirect_le_ih(ih)) shift = tb->tb_sb->s_blocksize_bits - UNFM_P_SHIFT; set_le_ih_k_offset(ih, le_ih_k_offset(ih) + ((old_len - tb->sbytes[i]) << shift)); put_ih_item_len(ih, tb->sbytes[i]); /* Insert part of the item into S_new[i] before 0-th item */ buffer_info_init_bh(tb, &bi, tb->S_new[i]); if ((old_len - tb->sbytes[i]) > tb->zeroes_num) { r_zeroes_number = 0; r_body = body + (old_len - tb->sbytes[i]) - tb->zeroes_num; } else { r_body = body; r_zeroes_number = tb->zeroes_num - (old_len - tb->sbytes[i]); tb->zeroes_num -= r_zeroes_number; } leaf_insert_into_buf(&bi, 0, ih, r_body, r_zeroes_number); /* * Calculate key component and item length to * insert into S[i] */ set_le_ih_k_offset(ih, old_key_comp); put_ih_item_len(ih, old_len - tb->sbytes[i]); tb->insert_size[0] -= tb->sbytes[i]; } else { /* whole new item falls into S_new[i] */ /* * Shift snum[0] - 1 items to S_new[i] * (sbytes[i] of split item) */ leaf_move_items(LEAF_FROM_S_TO_SNEW, tb, tb->snum[i] - 1, tb->sbytes[i], tb->S_new[i]); /* Insert new item into S_new[i] */ buffer_info_init_bh(tb, &bi, tb->S_new[i]); leaf_insert_into_buf(&bi, tb->item_pos - n + tb->snum[i] - 1, ih, body, tb->zeroes_num); tb->zeroes_num = tb->insert_size[0] = 0; } } /* we append to directory item */ static void balance_leaf_new_nodes_paste_dirent(struct tree_balance *tb, struct item_head *ih, const char *body, struct item_head *insert_key, struct buffer_head **insert_ptr, int i) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); struct item_head *aux_ih = item_head(tbS0, tb->item_pos); int entry_count = ih_entry_count(aux_ih); struct buffer_info bi; if (entry_count - tb->sbytes[i] < tb->pos_in_item && tb->pos_in_item <= entry_count) { /* new directory entry falls into S_new[i] */ RFALSE(!tb->insert_size[0], "PAP-12215: insert_size is already 0"); RFALSE(tb->sbytes[i] - 1 >= entry_count, "PAP-12220: there are no so much entries (%d), only %d", tb->sbytes[i] - 1, entry_count); /* * Shift snum[i]-1 items in whole. * Shift sbytes[i] directory entries * from directory item number snum[i] */ leaf_move_items(LEAF_FROM_S_TO_SNEW, tb, tb->snum[i], tb->sbytes[i] - 1, tb->S_new[i]); /* * Paste given directory entry to * directory item */ buffer_info_init_bh(tb, &bi, tb->S_new[i]); leaf_paste_in_buffer(&bi, 0, tb->pos_in_item - entry_count + tb->sbytes[i] - 1, tb->insert_size[0], body, tb->zeroes_num); /* paste new directory entry */ leaf_paste_entries(&bi, 0, tb->pos_in_item - entry_count + tb->sbytes[i] - 1, 1, (struct reiserfs_de_head *) body, body + DEH_SIZE, tb->insert_size[0]); tb->insert_size[0] = 0; tb->pos_in_item++; } else { /* new directory entry doesn't fall into S_new[i] */ leaf_move_items(LEAF_FROM_S_TO_SNEW, tb, tb->snum[i], tb->sbytes[i], tb->S_new[i]); } } static void balance_leaf_new_nodes_paste_shift(struct tree_balance *tb, struct item_head *ih, const char *body, struct item_head *insert_key, struct buffer_head **insert_ptr, int i) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); struct item_head *aux_ih = item_head(tbS0, tb->item_pos); int n_shift, n_rem, r_zeroes_number, shift; const char *r_body; struct item_head *tmp; struct buffer_info bi; RFALSE(ih, "PAP-12210: ih must be 0"); if (is_direntry_le_ih(aux_ih)) { balance_leaf_new_nodes_paste_dirent(tb, ih, body, insert_key, insert_ptr, i); return; } /* regular object */ RFALSE(tb->pos_in_item != ih_item_len(item_head(tbS0, tb->item_pos)) || tb->insert_size[0] <= 0, "PAP-12225: item too short or insert_size <= 0"); /* * Calculate number of bytes which must be shifted from appended item */ n_shift = tb->sbytes[i] - tb->insert_size[0]; if (n_shift < 0) n_shift = 0; leaf_move_items(LEAF_FROM_S_TO_SNEW, tb, tb->snum[i], n_shift, tb->S_new[i]); /* * Calculate number of bytes which must remain in body after * append to S_new[i] */ n_rem = tb->insert_size[0] - tb->sbytes[i]; if (n_rem < 0) n_rem = 0; /* Append part of body into S_new[0] */ buffer_info_init_bh(tb, &bi, tb->S_new[i]); if (n_rem > tb->zeroes_num) { r_zeroes_number = 0; r_body = body + n_rem - tb->zeroes_num; } else { r_body = body; r_zeroes_number = tb->zeroes_num - n_rem; tb->zeroes_num -= r_zeroes_number; } leaf_paste_in_buffer(&bi, 0, n_shift, tb->insert_size[0] - n_rem, r_body, r_zeroes_number); tmp = item_head(tb->S_new[i], 0); shift = 0; if (is_indirect_le_ih(tmp)) { set_ih_free_space(tmp, 0); shift = tb->tb_sb->s_blocksize_bits - UNFM_P_SHIFT; } add_le_ih_k_offset(tmp, n_rem << shift); tb->insert_size[0] = n_rem; if (!n_rem) tb->pos_in_item++; } static void balance_leaf_new_nodes_paste_whole(struct tree_balance *tb, struct item_head *ih, const char *body, struct item_head *insert_key, struct buffer_head **insert_ptr, int i) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); int n = B_NR_ITEMS(tbS0); int leaf_mi; struct item_head *pasted; struct buffer_info bi; #ifdef CONFIG_REISERFS_CHECK struct item_head *ih_check = item_head(tbS0, tb->item_pos); if (!is_direntry_le_ih(ih_check) && (tb->pos_in_item != ih_item_len(ih_check) || tb->insert_size[0] <= 0)) reiserfs_panic(tb->tb_sb, "PAP-12235", "pos_in_item must be equal to ih_item_len"); #endif leaf_mi = leaf_move_items(LEAF_FROM_S_TO_SNEW, tb, tb->snum[i], tb->sbytes[i], tb->S_new[i]); RFALSE(leaf_mi, "PAP-12240: unexpected value returned by leaf_move_items (%d)", leaf_mi); /* paste into item */ buffer_info_init_bh(tb, &bi, tb->S_new[i]); leaf_paste_in_buffer(&bi, tb->item_pos - n + tb->snum[i], tb->pos_in_item, tb->insert_size[0], body, tb->zeroes_num); pasted = item_head(tb->S_new[i], tb->item_pos - n + tb->snum[i]); if (is_direntry_le_ih(pasted)) leaf_paste_entries(&bi, tb->item_pos - n + tb->snum[i], tb->pos_in_item, 1, (struct reiserfs_de_head *)body, body + DEH_SIZE, tb->insert_size[0]); /* if we paste to indirect item update ih_free_space */ if (is_indirect_le_ih(pasted)) set_ih_free_space(pasted, 0); tb->zeroes_num = tb->insert_size[0] = 0; } static void balance_leaf_new_nodes_paste(struct tree_balance *tb, struct item_head *ih, const char *body, struct item_head *insert_key, struct buffer_head **insert_ptr, int i) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); int n = B_NR_ITEMS(tbS0); /* pasted item doesn't fall into S_new[i] */ if (n - tb->snum[i] > tb->item_pos) { leaf_move_items(LEAF_FROM_S_TO_SNEW, tb, tb->snum[i], tb->sbytes[i], tb->S_new[i]); return; } /* pasted item or part if it falls to S_new[i] */ if (tb->item_pos == n - tb->snum[i] && tb->sbytes[i] != -1) /* we must shift part of the appended item */ balance_leaf_new_nodes_paste_shift(tb, ih, body, insert_key, insert_ptr, i); else /* item falls wholly into S_new[i] */ balance_leaf_new_nodes_paste_whole(tb, ih, body, insert_key, insert_ptr, i); } /* Fill new nodes that appear in place of S[0] */ static void balance_leaf_new_nodes(struct tree_balance *tb, struct item_head *ih, const char *body, struct item_head *insert_key, struct buffer_head **insert_ptr, int flag) { int i; for (i = tb->blknum[0] - 2; i >= 0; i--) { BUG_ON(flag != M_INSERT && flag != M_PASTE); RFALSE(!tb->snum[i], "PAP-12200: snum[%d] == %d. Must be > 0", i, tb->snum[i]); /* here we shift from S to S_new nodes */ tb->S_new[i] = get_FEB(tb); /* initialized block type and tree level */ set_blkh_level(B_BLK_HEAD(tb->S_new[i]), DISK_LEAF_NODE_LEVEL); if (flag == M_INSERT) balance_leaf_new_nodes_insert(tb, ih, body, insert_key, insert_ptr, i); else /* M_PASTE */ balance_leaf_new_nodes_paste(tb, ih, body, insert_key, insert_ptr, i); memcpy(insert_key + i, leaf_key(tb->S_new[i], 0), KEY_SIZE); insert_ptr[i] = tb->S_new[i]; RFALSE(!buffer_journaled(tb->S_new[i]) || buffer_journal_dirty(tb->S_new[i]) || buffer_dirty(tb->S_new[i]), "PAP-12247: S_new[%d] : (%b)", i, format_bh(tb->S_new[i])); } } static void balance_leaf_finish_node_insert(struct tree_balance *tb, struct item_head *ih, const char *body) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); struct buffer_info bi; buffer_info_init_tbS0(tb, &bi); leaf_insert_into_buf(&bi, tb->item_pos, ih, body, tb->zeroes_num); /* If we insert the first key change the delimiting key */ if (tb->item_pos == 0) { if (tb->CFL[0]) /* can be 0 in reiserfsck */ replace_key(tb, tb->CFL[0], tb->lkey[0], tbS0, 0); } } static void balance_leaf_finish_node_paste_dirent(struct tree_balance *tb, struct item_head *ih, const char *body) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); struct item_head *pasted = item_head(tbS0, tb->item_pos); struct buffer_info bi; if (tb->pos_in_item >= 0 && tb->pos_in_item <= ih_entry_count(pasted)) { RFALSE(!tb->insert_size[0], "PAP-12260: insert_size is 0 already"); /* prepare space */ buffer_info_init_tbS0(tb, &bi); leaf_paste_in_buffer(&bi, tb->item_pos, tb->pos_in_item, tb->insert_size[0], body, tb->zeroes_num); /* paste entry */ leaf_paste_entries(&bi, tb->item_pos, tb->pos_in_item, 1, (struct reiserfs_de_head *)body, body + DEH_SIZE, tb->insert_size[0]); if (!tb->item_pos && !tb->pos_in_item) { RFALSE(!tb->CFL[0] || !tb->L[0], "PAP-12270: CFL[0]/L[0] must be specified"); if (tb->CFL[0]) replace_key(tb, tb->CFL[0], tb->lkey[0], tbS0, 0); } tb->insert_size[0] = 0; } } static void balance_leaf_finish_node_paste(struct tree_balance *tb, struct item_head *ih, const char *body) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); struct buffer_info bi; struct item_head *pasted = item_head(tbS0, tb->item_pos); /* when directory, may be new entry already pasted */ if (is_direntry_le_ih(pasted)) { balance_leaf_finish_node_paste_dirent(tb, ih, body); return; } /* regular object */ if (tb->pos_in_item == ih_item_len(pasted)) { RFALSE(tb->insert_size[0] <= 0, "PAP-12275: insert size must not be %d", tb->insert_size[0]); buffer_info_init_tbS0(tb, &bi); leaf_paste_in_buffer(&bi, tb->item_pos, tb->pos_in_item, tb->insert_size[0], body, tb->zeroes_num); if (is_indirect_le_ih(pasted)) set_ih_free_space(pasted, 0); tb->insert_size[0] = 0; } #ifdef CONFIG_REISERFS_CHECK else if (tb->insert_size[0]) { print_cur_tb("12285"); reiserfs_panic(tb->tb_sb, "PAP-12285", "insert_size must be 0 (%d)", tb->insert_size[0]); } #endif } /* * if the affected item was not wholly shifted then we * perform all necessary operations on that part or whole * of the affected item which remains in S */ static void balance_leaf_finish_node(struct tree_balance *tb, struct item_head *ih, const char *body, int flag) { /* if we must insert or append into buffer S[0] */ if (0 <= tb->item_pos && tb->item_pos < tb->s0num) { if (flag == M_INSERT) balance_leaf_finish_node_insert(tb, ih, body); else /* M_PASTE */ balance_leaf_finish_node_paste(tb, ih, body); } } /** * balance_leaf - reiserfs tree balancing algorithm * @tb: tree balance state * @ih: item header of inserted item (little endian) * @body: body of inserted item or bytes to paste * @flag: i - insert, d - delete, c - cut, p - paste (see do_balance) * passed back: * @insert_key: key to insert new nodes * @insert_ptr: array of nodes to insert at the next level * * In our processing of one level we sometimes determine what must be * inserted into the next higher level. This insertion consists of a * key or two keys and their corresponding pointers. */ static int balance_leaf(struct tree_balance *tb, struct item_head *ih, const char *body, int flag, struct item_head *insert_key, struct buffer_head **insert_ptr) { struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); PROC_INFO_INC(tb->tb_sb, balance_at[0]); /* Make balance in case insert_size[0] < 0 */ if (tb->insert_size[0] < 0) return balance_leaf_when_delete(tb, flag); tb->item_pos = PATH_LAST_POSITION(tb->tb_path), tb->pos_in_item = tb->tb_path->pos_in_item, tb->zeroes_num = 0; if (flag == M_INSERT && !body) tb->zeroes_num = ih_item_len(ih); /* * for indirect item pos_in_item is measured in unformatted node * pointers. Recalculate to bytes */ if (flag != M_INSERT && is_indirect_le_ih(item_head(tbS0, tb->item_pos))) tb->pos_in_item *= UNFM_P_SIZE; balance_leaf_left(tb, ih, body, flag); /* tb->lnum[0] > 0 */ /* Calculate new item position */ tb->item_pos -= (tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0)); balance_leaf_right(tb, ih, body, flag); /* tb->rnum[0] > 0 */ RFALSE(tb->blknum[0] > 3, "PAP-12180: blknum can not be %d. It must be <= 3", tb->blknum[0]); RFALSE(tb->blknum[0] < 0, "PAP-12185: blknum can not be %d. It must be >= 0", tb->blknum[0]); /* * if while adding to a node we discover that it is possible to split * it in two, and merge the left part into the left neighbor and the * right part into the right neighbor, eliminating the node */ if (tb->blknum[0] == 0) { /* node S[0] is empty now */ RFALSE(!tb->lnum[0] || !tb->rnum[0], "PAP-12190: lnum and rnum must not be zero"); /* * if insertion was done before 0-th position in R[0], right * delimiting key of the tb->L[0]'s and left delimiting key are * not set correctly */ if (tb->CFL[0]) { if (!tb->CFR[0]) reiserfs_panic(tb->tb_sb, "vs-12195", "CFR not initialized"); copy_key(internal_key(tb->CFL[0], tb->lkey[0]), internal_key(tb->CFR[0], tb->rkey[0])); do_balance_mark_internal_dirty(tb, tb->CFL[0], 0); } reiserfs_invalidate_buffer(tb, tbS0); return 0; } balance_leaf_new_nodes(tb, ih, body, insert_key, insert_ptr, flag); balance_leaf_finish_node(tb, ih, body, flag); #ifdef CONFIG_REISERFS_CHECK if (flag == M_PASTE && tb->insert_size[0]) { print_cur_tb("12290"); reiserfs_panic(tb->tb_sb, "PAP-12290", "insert_size is still not 0 (%d)", tb->insert_size[0]); } #endif /* Leaf level of the tree is balanced (end of balance_leaf) */ return 0; } /* Make empty node */ void make_empty_node(struct buffer_info *bi) { struct block_head *blkh; RFALSE(bi->bi_bh == NULL, "PAP-12295: pointer to the buffer is NULL"); blkh = B_BLK_HEAD(bi->bi_bh); set_blkh_nr_item(blkh, 0); set_blkh_free_space(blkh, MAX_CHILD_SIZE(bi->bi_bh)); if (bi->bi_parent) B_N_CHILD(bi->bi_parent, bi->bi_position)->dc_size = 0; /* Endian safe if 0 */ } /* Get first empty buffer */ struct buffer_head *get_FEB(struct tree_balance *tb) { int i; struct buffer_info bi; for (i = 0; i < MAX_FEB_SIZE; i++) if (tb->FEB[i] != NULL) break; if (i == MAX_FEB_SIZE) reiserfs_panic(tb->tb_sb, "vs-12300", "FEB list is empty"); buffer_info_init_bh(tb, &bi, tb->FEB[i]); make_empty_node(&bi); set_buffer_uptodate(tb->FEB[i]); tb->used[i] = tb->FEB[i]; tb->FEB[i] = NULL; return tb->used[i]; } /* This is now used because reiserfs_free_block has to be able to schedule. */ static void store_thrown(struct tree_balance *tb, struct buffer_head *bh) { int i; if (buffer_dirty(bh)) reiserfs_warning(tb->tb_sb, "reiserfs-12320", "called with dirty buffer"); for (i = 0; i < ARRAY_SIZE(tb->thrown); i++) if (!tb->thrown[i]) { tb->thrown[i] = bh; get_bh(bh); /* free_thrown puts this */ return; } reiserfs_warning(tb->tb_sb, "reiserfs-12321", "too many thrown buffers"); } static void free_thrown(struct tree_balance *tb) { int i; b_blocknr_t blocknr; for (i = 0; i < ARRAY_SIZE(tb->thrown); i++) { if (tb->thrown[i]) { blocknr = tb->thrown[i]->b_blocknr; if (buffer_dirty(tb->thrown[i])) reiserfs_warning(tb->tb_sb, "reiserfs-12322", "called with dirty buffer %d", blocknr); brelse(tb->thrown[i]); /* incremented in store_thrown */ reiserfs_free_block(tb->transaction_handle, NULL, blocknr, 0); } } } void reiserfs_invalidate_buffer(struct tree_balance *tb, struct buffer_head *bh) { struct block_head *blkh; blkh = B_BLK_HEAD(bh); set_blkh_level(blkh, FREE_LEVEL); set_blkh_nr_item(blkh, 0); clear_buffer_dirty(bh); store_thrown(tb, bh); } /* Replace n_dest'th key in buffer dest by n_src'th key of buffer src.*/ void replace_key(struct tree_balance *tb, struct buffer_head *dest, int n_dest, struct buffer_head *src, int n_src) { RFALSE(dest == NULL || src == NULL, "vs-12305: source or destination buffer is 0 (src=%p, dest=%p)", src, dest); RFALSE(!B_IS_KEYS_LEVEL(dest), "vs-12310: invalid level (%z) for destination buffer. dest must be leaf", dest); RFALSE(n_dest < 0 || n_src < 0, "vs-12315: src(%d) or dest(%d) key number < 0", n_src, n_dest); RFALSE(n_dest >= B_NR_ITEMS(dest) || n_src >= B_NR_ITEMS(src), "vs-12320: src(%d(%d)) or dest(%d(%d)) key number is too big", n_src, B_NR_ITEMS(src), n_dest, B_NR_ITEMS(dest)); if (B_IS_ITEMS_LEVEL(src)) /* source buffer contains leaf node */ memcpy(internal_key(dest, n_dest), item_head(src, n_src), KEY_SIZE); else memcpy(internal_key(dest, n_dest), internal_key(src, n_src), KEY_SIZE); do_balance_mark_internal_dirty(tb, dest, 0); } int get_left_neighbor_position(struct tree_balance *tb, int h) { int Sh_position = PATH_H_POSITION(tb->tb_path, h + 1); RFALSE(PATH_H_PPARENT(tb->tb_path, h) == NULL || tb->FL[h] == NULL, "vs-12325: FL[%d](%p) or F[%d](%p) does not exist", h, tb->FL[h], h, PATH_H_PPARENT(tb->tb_path, h)); if (Sh_position == 0) return B_NR_ITEMS(tb->FL[h]); else return Sh_position - 1; } int get_right_neighbor_position(struct tree_balance *tb, int h) { int Sh_position = PATH_H_POSITION(tb->tb_path, h + 1); RFALSE(PATH_H_PPARENT(tb->tb_path, h) == NULL || tb->FR[h] == NULL, "vs-12330: F[%d](%p) or FR[%d](%p) does not exist", h, PATH_H_PPARENT(tb->tb_path, h), h, tb->FR[h]); if (Sh_position == B_NR_ITEMS(PATH_H_PPARENT(tb->tb_path, h))) return 0; else return Sh_position + 1; } #ifdef CONFIG_REISERFS_CHECK int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value); static void check_internal_node(struct super_block *s, struct buffer_head *bh, char *mes) { struct disk_child *dc; int i; RFALSE(!bh, "PAP-12336: bh == 0"); if (!bh || !B_IS_IN_TREE(bh)) return; RFALSE(!buffer_dirty(bh) && !(buffer_journaled(bh) || buffer_journal_dirty(bh)), "PAP-12337: buffer (%b) must be dirty", bh); dc = B_N_CHILD(bh, 0); for (i = 0; i <= B_NR_ITEMS(bh); i++, dc++) { if (!is_reusable(s, dc_block_number(dc), 1)) { print_cur_tb(mes); reiserfs_panic(s, "PAP-12338", "invalid child pointer %y in %b", dc, bh); } } } static int locked_or_not_in_tree(struct tree_balance *tb, struct buffer_head *bh, char *which) { if ((!buffer_journal_prepared(bh) && buffer_locked(bh)) || !B_IS_IN_TREE(bh)) { reiserfs_warning(tb->tb_sb, "vs-12339", "%s (%b)", which, bh); return 1; } return 0; } static int check_before_balancing(struct tree_balance *tb) { int retval = 0; if (REISERFS_SB(tb->tb_sb)->cur_tb) { reiserfs_panic(tb->tb_sb, "vs-12335", "suspect that schedule " "occurred based on cur_tb not being null at " "this point in code. do_balance cannot properly " "handle concurrent tree accesses on a same " "mount point."); } /* * double check that buffers that we will modify are unlocked. * (fix_nodes should already have prepped all of these for us). */ if (tb->lnum[0]) { retval |= locked_or_not_in_tree(tb, tb->L[0], "L[0]"); retval |= locked_or_not_in_tree(tb, tb->FL[0], "FL[0]"); retval |= locked_or_not_in_tree(tb, tb->CFL[0], "CFL[0]"); check_leaf(tb->L[0]); } if (tb->rnum[0]) { retval |= locked_or_not_in_tree(tb, tb->R[0], "R[0]"); retval |= locked_or_not_in_tree(tb, tb->FR[0], "FR[0]"); retval |= locked_or_not_in_tree(tb, tb->CFR[0], "CFR[0]"); check_leaf(tb->R[0]); } retval |= locked_or_not_in_tree(tb, PATH_PLAST_BUFFER(tb->tb_path), "S[0]"); check_leaf(PATH_PLAST_BUFFER(tb->tb_path)); return retval; } static void check_after_balance_leaf(struct tree_balance *tb) { if (tb->lnum[0]) { if (B_FREE_SPACE(tb->L[0]) != MAX_CHILD_SIZE(tb->L[0]) - dc_size(B_N_CHILD (tb->FL[0], get_left_neighbor_position(tb, 0)))) { print_cur_tb("12221"); reiserfs_panic(tb->tb_sb, "PAP-12355", "shift to left was incorrect"); } } if (tb->rnum[0]) { if (B_FREE_SPACE(tb->R[0]) != MAX_CHILD_SIZE(tb->R[0]) - dc_size(B_N_CHILD (tb->FR[0], get_right_neighbor_position(tb, 0)))) { print_cur_tb("12222"); reiserfs_panic(tb->tb_sb, "PAP-12360", "shift to right was incorrect"); } } if (PATH_H_PBUFFER(tb->tb_path, 1) && (B_FREE_SPACE(PATH_H_PBUFFER(tb->tb_path, 0)) != (MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, 0)) - dc_size(B_N_CHILD(PATH_H_PBUFFER(tb->tb_path, 1), PATH_H_POSITION(tb->tb_path, 1)))))) { int left = B_FREE_SPACE(PATH_H_PBUFFER(tb->tb_path, 0)); int right = (MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, 0)) - dc_size(B_N_CHILD(PATH_H_PBUFFER(tb->tb_path, 1), PATH_H_POSITION(tb->tb_path, 1)))); print_cur_tb("12223"); reiserfs_warning(tb->tb_sb, "reiserfs-12363", "B_FREE_SPACE (PATH_H_PBUFFER(tb->tb_path,0)) = %d; " "MAX_CHILD_SIZE (%d) - dc_size( %y, %d ) [%d] = %d", left, MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, 0)), PATH_H_PBUFFER(tb->tb_path, 1), PATH_H_POSITION(tb->tb_path, 1), dc_size(B_N_CHILD (PATH_H_PBUFFER(tb->tb_path, 1), PATH_H_POSITION(tb->tb_path, 1))), right); reiserfs_panic(tb->tb_sb, "PAP-12365", "S is incorrect"); } } static void check_leaf_level(struct tree_balance *tb) { check_leaf(tb->L[0]); check_leaf(tb->R[0]); check_leaf(PATH_PLAST_BUFFER(tb->tb_path)); } static void check_internal_levels(struct tree_balance *tb) { int h; /* check all internal nodes */ for (h = 1; tb->insert_size[h]; h++) { check_internal_node(tb->tb_sb, PATH_H_PBUFFER(tb->tb_path, h), "BAD BUFFER ON PATH"); if (tb->lnum[h]) check_internal_node(tb->tb_sb, tb->L[h], "BAD L"); if (tb->rnum[h]) check_internal_node(tb->tb_sb, tb->R[h], "BAD R"); } } #endif /* * Now we have all of the buffers that must be used in balancing of * the tree. We rely on the assumption that schedule() will not occur * while do_balance works. ( Only interrupt handlers are acceptable.) * We balance the tree according to the analysis made before this, * using buffers already obtained. For SMP support it will someday be * necessary to add ordered locking of tb. */ /* * Some interesting rules of balancing: * we delete a maximum of two nodes per level per balancing: we never * delete R, when we delete two of three nodes L, S, R then we move * them into R. * * we only delete L if we are deleting two nodes, if we delete only * one node we delete S * * if we shift leaves then we shift as much as we can: this is a * deliberate policy of extremism in node packing which results in * higher average utilization after repeated random balance operations * at the cost of more memory copies and more balancing as a result of * small insertions to full nodes. * * if we shift internal nodes we try to evenly balance the node * utilization, with consequent less balancing at the cost of lower * utilization. * * one could argue that the policy for directories in leaves should be * that of internal nodes, but we will wait until another day to * evaluate this.... It would be nice to someday measure and prove * these assumptions as to what is optimal.... */ static inline void do_balance_starts(struct tree_balance *tb) { /* use print_cur_tb() to see initial state of struct tree_balance */ /* store_print_tb (tb); */ /* do not delete, just comment it out */ /* print_tb(flag, PATH_LAST_POSITION(tb->tb_path), tb->tb_path->pos_in_item, tb, "check"); */ RFALSE(check_before_balancing(tb), "PAP-12340: locked buffers in TB"); #ifdef CONFIG_REISERFS_CHECK REISERFS_SB(tb->tb_sb)->cur_tb = tb; #endif } static inline void do_balance_completed(struct tree_balance *tb) { #ifdef CONFIG_REISERFS_CHECK check_leaf_level(tb); check_internal_levels(tb); REISERFS_SB(tb->tb_sb)->cur_tb = NULL; #endif /* * reiserfs_free_block is no longer schedule safe. So, we need to * put the buffers we want freed on the thrown list during do_balance, * and then free them now */ REISERFS_SB(tb->tb_sb)->s_do_balance++; /* release all nodes hold to perform the balancing */ unfix_nodes(tb); free_thrown(tb); } /* * do_balance - balance the tree * * @tb: tree_balance structure * @ih: item header of inserted item * @body: body of inserted item or bytes to paste * @flag: 'i' - insert, 'd' - delete, 'c' - cut, 'p' paste * * Cut means delete part of an item (includes removing an entry from a * directory). * * Delete means delete whole item. * * Insert means add a new item into the tree. * * Paste means to append to the end of an existing file or to * insert a directory entry. */ void do_balance(struct tree_balance *tb, struct item_head *ih, const char *body, int flag) { int child_pos; /* position of a child node in its parent */ int h; /* level of the tree being processed */ /* * in our processing of one level we sometimes determine what * must be inserted into the next higher level. This insertion * consists of a key or two keys and their corresponding * pointers */ struct item_head insert_key[2]; /* inserted node-ptrs for the next level */ struct buffer_head *insert_ptr[2]; tb->tb_mode = flag; tb->need_balance_dirty = 0; if (FILESYSTEM_CHANGED_TB(tb)) { reiserfs_panic(tb->tb_sb, "clm-6000", "fs generation has " "changed"); } /* if we have no real work to do */ if (!tb->insert_size[0]) { reiserfs_warning(tb->tb_sb, "PAP-12350", "insert_size == 0, mode == %c", flag); unfix_nodes(tb); return; } atomic_inc(&fs_generation(tb->tb_sb)); do_balance_starts(tb); /* * balance_leaf returns 0 except if combining L R and S into * one node. see balance_internal() for explanation of this * line of code. */ child_pos = PATH_H_B_ITEM_ORDER(tb->tb_path, 0) + balance_leaf(tb, ih, body, flag, insert_key, insert_ptr); #ifdef CONFIG_REISERFS_CHECK check_after_balance_leaf(tb); #endif /* Balance internal level of the tree. */ for (h = 1; h < MAX_HEIGHT && tb->insert_size[h]; h++) child_pos = balance_internal(tb, h, child_pos, insert_key, insert_ptr); do_balance_completed(tb); }