/* linux/include/linux/clockchips.h * * This file contains the structure definitions for clockchips. * * If you are not a clockchip, or the time of day code, you should * not be including this file! */ #ifndef _LINUX_CLOCKCHIPS_H #define _LINUX_CLOCKCHIPS_H /* Clock event notification values */ enum clock_event_nofitiers { CLOCK_EVT_NOTIFY_ADD, CLOCK_EVT_NOTIFY_BROADCAST_ON, CLOCK_EVT_NOTIFY_BROADCAST_OFF, CLOCK_EVT_NOTIFY_BROADCAST_FORCE, CLOCK_EVT_NOTIFY_BROADCAST_ENTER, CLOCK_EVT_NOTIFY_BROADCAST_EXIT, CLOCK_EVT_NOTIFY_SUSPEND, CLOCK_EVT_NOTIFY_RESUME, CLOCK_EVT_NOTIFY_CPU_DYING, CLOCK_EVT_NOTIFY_CPU_DEAD, }; #ifdef CONFIG_GENERIC_CLOCKEVENTS_BUILD #include #include #include #include struct clock_event_device; /* Clock event mode commands */ enum clock_event_mode { CLOCK_EVT_MODE_UNUSED = 0, CLOCK_EVT_MODE_SHUTDOWN, CLOCK_EVT_MODE_PERIODIC, CLOCK_EVT_MODE_ONESHOT, CLOCK_EVT_MODE_RESUME, }; /* * Clock event features */ #define CLOCK_EVT_FEAT_PERIODIC 0x000001 #define CLOCK_EVT_FEAT_ONESHOT 0x000002 #define CLOCK_EVT_FEAT_KTIME 0x000004 /* * x86(64) specific misfeatures: * * - Clockevent source stops in C3 State and needs broadcast support. * - Local APIC timer is used as a dummy device. */ #define CLOCK_EVT_FEAT_C3STOP 0x000008 #define CLOCK_EVT_FEAT_DUMMY 0x000010 /** * struct clock_event_device - clock event device descriptor * @event_handler: Assigned by the framework to be called by the low * level handler of the event source * @set_next_event: set next event function using a clocksource delta * @set_next_ktime: set next event function using a direct ktime value * @next_event: local storage for the next event in oneshot mode * @max_delta_ns: maximum delta value in ns * @min_delta_ns: minimum delta value in ns * @mult: nanosecond to cycles multiplier * @shift: nanoseconds to cycles divisor (power of two) * @mode: operating mode assigned by the management code * @features: features * @retries: number of forced programming retries * @set_mode: set mode function * @broadcast: function to broadcast events * @min_delta_ticks: minimum delta value in ticks stored for reconfiguration * @max_delta_ticks: maximum delta value in ticks stored for reconfiguration * @name: ptr to clock event name * @rating: variable to rate clock event devices * @irq: IRQ number (only for non CPU local devices) * @cpumask: cpumask to indicate for which CPUs this device works * @list: list head for the management code */ struct clock_event_device { void (*event_handler)(struct clock_event_device *); int (*set_next_event)(unsigned long evt, struct clock_event_device *); int (*set_next_ktime)(ktime_t expires, struct clock_event_device *); ktime_t next_event; u64 max_delta_ns; u64 min_delta_ns; u32 mult; u32 shift; enum clock_event_mode mode; unsigned int features; unsigned long retries; void (*broadcast)(const struct cpumask *mask); void (*set_mode)(enum clock_event_mode mode, struct clock_event_device *); void (*suspend)(struct clock_event_device *); void (*resume)(struct clock_event_device *); unsigned long min_delta_ticks; unsigned long max_delta_ticks; const char *name; int rating; int irq; const struct cpumask *cpumask; struct list_head list; } ____cacheline_aligned; /* * Calculate a multiplication factor for scaled math, which is used to convert * nanoseconds based values to clock ticks: * * clock_ticks = (nanoseconds * factor) >> shift. * * div_sc is the rearranged equation to calculate a factor from a given clock * ticks / nanoseconds ratio: * * factor = (clock_ticks << shift) / nanoseconds */ static inline unsigned long div_sc(unsigned long ticks, unsigned long nsec, int shift) { uint64_t tmp = ((uint64_t)ticks) << shift; do_div(tmp, nsec); return (unsigned long) tmp; } /* Clock event layer functions */ extern u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt); extern void clockevents_register_device(struct clock_event_device *dev); extern void clockevents_config(struct clock_event_device *dev, u32 freq); extern void clockevents_config_and_register(struct clock_event_device *dev, u32 freq, unsigned long min_delta, unsigned long max_delta); extern int clockevents_update_freq(struct clock_event_device *ce, u32 freq); extern void clockevents_exchange_device(struct clock_event_device *old, struct clock_event_device *new); extern void clockevents_set_mode(struct clock_event_device *dev, enum clock_event_mode mode); extern int clockevents_register_notifier(struct notifier_block *nb); extern int clockevents_program_event(struct clock_event_device *dev, ktime_t expires, bool force); extern void clockevents_handle_noop(struct clock_event_device *dev); static inline void clockevents_calc_mult_shift(struct clock_event_device *ce, u32 freq, u32 minsec) { return clocks_calc_mult_shift(&ce->mult, &ce->shift, NSEC_PER_SEC, freq, minsec); } extern void clockevents_suspend(void); extern void clockevents_resume(void); #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST #ifdef CONFIG_ARCH_HAS_TICK_BROADCAST extern void tick_broadcast(const struct cpumask *mask); #else #define tick_broadcast NULL #endif extern int tick_receive_broadcast(void); #endif #ifdef CONFIG_GENERIC_CLOCKEVENTS extern void clockevents_notify(unsigned long reason, void *arg); #else static inline void clockevents_notify(unsigned long reason, void *arg) {} #endif #else /* CONFIG_GENERIC_CLOCKEVENTS_BUILD */ static inline void clockevents_suspend(void) {} static inline void clockevents_resume(void) {} static inline void clockevents_notify(unsigned long reason, void *arg) {} #endif #endif