/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_COMPILER_H #define __LINUX_COMPILER_H #include #ifndef __ASSEMBLY__ #ifdef __KERNEL__ /* * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code * to disable branch tracing on a per file basis. */ #if defined(CONFIG_TRACE_BRANCH_PROFILING) \ && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__) void ftrace_likely_update(struct ftrace_likely_data *f, int val, int expect, int is_constant); #define likely_notrace(x) __builtin_expect(!!(x), 1) #define unlikely_notrace(x) __builtin_expect(!!(x), 0) #define __branch_check__(x, expect, is_constant) ({ \ int ______r; \ static struct ftrace_likely_data \ __attribute__((__aligned__(4))) \ __attribute__((section("_ftrace_annotated_branch"))) \ ______f = { \ .data.func = __func__, \ .data.file = __FILE__, \ .data.line = __LINE__, \ }; \ ______r = __builtin_expect(!!(x), expect); \ ftrace_likely_update(&______f, ______r, \ expect, is_constant); \ ______r; \ }) /* * Using __builtin_constant_p(x) to ignore cases where the return * value is always the same. This idea is taken from a similar patch * written by Daniel Walker. */ # ifndef likely # define likely(x) (__branch_check__(x, 1, __builtin_constant_p(x))) # endif # ifndef unlikely # define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x))) # endif #ifdef CONFIG_PROFILE_ALL_BRANCHES /* * "Define 'is'", Bill Clinton * "Define 'if'", Steven Rostedt */ #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) ) #define __trace_if(cond) \ if (__builtin_constant_p(!!(cond)) ? !!(cond) : \ ({ \ int ______r; \ static struct ftrace_branch_data \ __attribute__((__aligned__(4))) \ __attribute__((section("_ftrace_branch"))) \ ______f = { \ .func = __func__, \ .file = __FILE__, \ .line = __LINE__, \ }; \ ______r = !!(cond); \ ______f.miss_hit[______r]++; \ ______r; \ })) #endif /* CONFIG_PROFILE_ALL_BRANCHES */ #else # define likely(x) __builtin_expect(!!(x), 1) # define unlikely(x) __builtin_expect(!!(x), 0) #endif /* Optimization barrier */ #ifndef barrier # define barrier() __memory_barrier() #endif #ifndef barrier_data # define barrier_data(ptr) barrier() #endif /* Unreachable code */ #ifdef CONFIG_STACK_VALIDATION #define annotate_reachable() ({ \ asm("%c0:\n\t" \ ".pushsection .discard.reachable\n\t" \ ".long %c0b - .\n\t" \ ".popsection\n\t" : : "i" (__COUNTER__)); \ }) #define annotate_unreachable() ({ \ asm("%c0:\n\t" \ ".pushsection .discard.unreachable\n\t" \ ".long %c0b - .\n\t" \ ".popsection\n\t" : : "i" (__COUNTER__)); \ }) #define ASM_UNREACHABLE \ "999:\n\t" \ ".pushsection .discard.unreachable\n\t" \ ".long 999b - .\n\t" \ ".popsection\n\t" #else #define annotate_reachable() #define annotate_unreachable() #endif #ifndef ASM_UNREACHABLE # define ASM_UNREACHABLE #endif #ifndef unreachable # define unreachable() do { annotate_reachable(); do { } while (1); } while (0) #endif /* * KENTRY - kernel entry point * This can be used to annotate symbols (functions or data) that are used * without their linker symbol being referenced explicitly. For example, * interrupt vector handlers, or functions in the kernel image that are found * programatically. * * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those * are handled in their own way (with KEEP() in linker scripts). * * KENTRY can be avoided if the symbols in question are marked as KEEP() in the * linker script. For example an architecture could KEEP() its entire * boot/exception vector code rather than annotate each function and data. */ #ifndef KENTRY # define KENTRY(sym) \ extern typeof(sym) sym; \ static const unsigned long __kentry_##sym \ __used \ __attribute__((section("___kentry" "+" #sym ), used)) \ = (unsigned long)&sym; #endif #ifndef RELOC_HIDE # define RELOC_HIDE(ptr, off) \ ({ unsigned long __ptr; \ __ptr = (unsigned long) (ptr); \ (typeof(ptr)) (__ptr + (off)); }) #endif #ifndef OPTIMIZER_HIDE_VAR #define OPTIMIZER_HIDE_VAR(var) barrier() #endif /* Not-quite-unique ID. */ #ifndef __UNIQUE_ID # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__) #endif #include #define __READ_ONCE_SIZE \ ({ \ switch (size) { \ case 1: *(__u8 *)res = *(volatile __u8 *)p; break; \ case 2: *(__u16 *)res = *(volatile __u16 *)p; break; \ case 4: *(__u32 *)res = *(volatile __u32 *)p; break; \ case 8: *(__u64 *)res = *(volatile __u64 *)p; break; \ default: \ barrier(); \ __builtin_memcpy((void *)res, (const void *)p, size); \ barrier(); \ } \ }) static __always_inline void __read_once_size(const volatile void *p, void *res, int size) { __READ_ONCE_SIZE; } #ifdef CONFIG_KASAN /* * This function is not 'inline' because __no_sanitize_address confilcts * with inlining. Attempt to inline it may cause a build failure. * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368 * '__maybe_unused' allows us to avoid defined-but-not-used warnings. */ static __no_sanitize_address __maybe_unused void __read_once_size_nocheck(const volatile void *p, void *res, int size) { __READ_ONCE_SIZE; } #else static __always_inline void __read_once_size_nocheck(const volatile void *p, void *res, int size) { __READ_ONCE_SIZE; } #endif static __always_inline void __write_once_size(volatile void *p, void *res, int size) { switch (size) { case 1: *(volatile __u8 *)p = *(__u8 *)res; break; case 2: *(volatile __u16 *)p = *(__u16 *)res; break; case 4: *(volatile __u32 *)p = *(__u32 *)res; break; case 8: *(volatile __u64 *)p = *(__u64 *)res; break; default: barrier(); __builtin_memcpy((void *)p, (const void *)res, size); barrier(); } } /* * Prevent the compiler from merging or refetching reads or writes. The * compiler is also forbidden from reordering successive instances of * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the * compiler is aware of some particular ordering. One way to make the * compiler aware of ordering is to put the two invocations of READ_ONCE, * WRITE_ONCE or ACCESS_ONCE() in different C statements. * * In contrast to ACCESS_ONCE these two macros will also work on aggregate * data types like structs or unions. If the size of the accessed data * type exceeds the word size of the machine (e.g., 32 bits or 64 bits) * READ_ONCE() and WRITE_ONCE() will fall back to memcpy(). There's at * least two memcpy()s: one for the __builtin_memcpy() and then one for * the macro doing the copy of variable - '__u' allocated on the stack. * * Their two major use cases are: (1) Mediating communication between * process-level code and irq/NMI handlers, all running on the same CPU, * and (2) Ensuring that the compiler does not fold, spindle, or otherwise * mutilate accesses that either do not require ordering or that interact * with an explicit memory barrier or atomic instruction that provides the * required ordering. */ #include #define __READ_ONCE(x, check) \ ({ \ union { typeof(x) __val; char __c[1]; } __u; \ if (check) \ __read_once_size(&(x), __u.__c, sizeof(x)); \ else \ __read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \ smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \ __u.__val; \ }) #define READ_ONCE(x) __READ_ONCE(x, 1) /* * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need * to hide memory access from KASAN. */ #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0) #define WRITE_ONCE(x, val) \ ({ \ union { typeof(x) __val; char __c[1]; } __u = \ { .__val = (__force typeof(x)) (val) }; \ __write_once_size(&(x), __u.__c, sizeof(x)); \ __u.__val; \ }) #endif /* __KERNEL__ */ #endif /* __ASSEMBLY__ */ /* Compile time object size, -1 for unknown */ #ifndef __compiletime_object_size # define __compiletime_object_size(obj) -1 #endif #ifndef __compiletime_warning # define __compiletime_warning(message) #endif #ifndef __compiletime_error # define __compiletime_error(message) /* * Sparse complains of variable sized arrays due to the temporary variable in * __compiletime_assert. Unfortunately we can't just expand it out to make * sparse see a constant array size without breaking compiletime_assert on old * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether. */ # ifndef __CHECKER__ # define __compiletime_error_fallback(condition) \ do { ((void)sizeof(char[1 - 2 * condition])); } while (0) # endif #endif #ifndef __compiletime_error_fallback # define __compiletime_error_fallback(condition) do { } while (0) #endif #ifdef __OPTIMIZE__ # define __compiletime_assert(condition, msg, prefix, suffix) \ do { \ bool __cond = !(condition); \ extern void prefix ## suffix(void) __compiletime_error(msg); \ if (__cond) \ prefix ## suffix(); \ __compiletime_error_fallback(__cond); \ } while (0) #else # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0) #endif #define _compiletime_assert(condition, msg, prefix, suffix) \ __compiletime_assert(condition, msg, prefix, suffix) /** * compiletime_assert - break build and emit msg if condition is false * @condition: a compile-time constant condition to check * @msg: a message to emit if condition is false * * In tradition of POSIX assert, this macro will break the build if the * supplied condition is *false*, emitting the supplied error message if the * compiler has support to do so. */ #define compiletime_assert(condition, msg) \ _compiletime_assert(condition, msg, __compiletime_assert_, __LINE__) #define compiletime_assert_atomic_type(t) \ compiletime_assert(__native_word(t), \ "Need native word sized stores/loads for atomicity.") /* * Prevent the compiler from merging or refetching accesses. The compiler * is also forbidden from reordering successive instances of ACCESS_ONCE(), * but only when the compiler is aware of some particular ordering. One way * to make the compiler aware of ordering is to put the two invocations of * ACCESS_ONCE() in different C statements. * * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE * on a union member will work as long as the size of the member matches the * size of the union and the size is smaller than word size. * * The major use cases of ACCESS_ONCE used to be (1) Mediating communication * between process-level code and irq/NMI handlers, all running on the same CPU, * and (2) Ensuring that the compiler does not fold, spindle, or otherwise * mutilate accesses that either do not require ordering or that interact * with an explicit memory barrier or atomic instruction that provides the * required ordering. * * If possible use READ_ONCE()/WRITE_ONCE() instead. */ #define __ACCESS_ONCE(x) ({ \ __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \ (volatile typeof(x) *)&(x); }) #define ACCESS_ONCE(x) (*__ACCESS_ONCE(x)) /** * lockless_dereference() - safely load a pointer for later dereference * @p: The pointer to load * * Similar to rcu_dereference(), but for situations where the pointed-to * object's lifetime is managed by something other than RCU. That * "something other" might be reference counting or simple immortality. * * The seemingly unused variable ___typecheck_p validates that @p is * indeed a pointer type by using a pointer to typeof(*p) as the type. * Taking a pointer to typeof(*p) again is needed in case p is void *. */ #define lockless_dereference(p) \ ({ \ typeof(p) _________p1 = READ_ONCE(p); \ typeof(*(p)) *___typecheck_p __maybe_unused; \ smp_read_barrier_depends(); /* Dependency order vs. p above. */ \ (_________p1); \ }) #endif /* __LINUX_COMPILER_H */