/* Freezer declarations */ #ifndef FREEZER_H_INCLUDED #define FREEZER_H_INCLUDED #include <linux/sched.h> #ifdef CONFIG_PM_SLEEP /* * Check if a process has been frozen */ static inline int frozen(struct task_struct *p) { return p->flags & PF_FROZEN; } /* * Check if there is a request to freeze a process */ static inline int freezing(struct task_struct *p) { return test_tsk_thread_flag(p, TIF_FREEZE); } /* * Request that a process be frozen */ static inline void set_freeze_flag(struct task_struct *p) { set_tsk_thread_flag(p, TIF_FREEZE); } /* * Sometimes we may need to cancel the previous 'freeze' request */ static inline void clear_freeze_flag(struct task_struct *p) { clear_tsk_thread_flag(p, TIF_FREEZE); } /* * Wake up a frozen process * * task_lock() is taken to prevent the race with refrigerator() which may * occur if the freezing of tasks fails. Namely, without the lock, if the * freezing of tasks failed, thaw_tasks() might have run before a task in * refrigerator() could call frozen_process(), in which case the task would be * frozen and no one would thaw it. */ static inline int thaw_process(struct task_struct *p) { task_lock(p); if (frozen(p)) { p->flags &= ~PF_FROZEN; task_unlock(p); wake_up_process(p); return 1; } clear_freeze_flag(p); task_unlock(p); return 0; } extern void refrigerator(void); extern int freeze_processes(void); extern void thaw_processes(void); static inline int try_to_freeze(void) { if (freezing(current)) { refrigerator(); return 1; } else return 0; } /* * The PF_FREEZER_SKIP flag should be set by a vfork parent right before it * calls wait_for_completion(&vfork) and reset right after it returns from this * function. Next, the parent should call try_to_freeze() to freeze itself * appropriately in case the child has exited before the freezing of tasks is * complete. However, we don't want kernel threads to be frozen in unexpected * places, so we allow them to block freeze_processes() instead or to set * PF_NOFREEZE if needed and PF_FREEZER_SKIP is only set for userland vfork * parents. Fortunately, in the ____call_usermodehelper() case the parent won't * really block freeze_processes(), since ____call_usermodehelper() (the child) * does a little before exec/exit and it can't be frozen before waking up the * parent. */ /* * If the current task is a user space one, tell the freezer not to count it as * freezable. */ static inline void freezer_do_not_count(void) { if (current->mm) current->flags |= PF_FREEZER_SKIP; } /* * If the current task is a user space one, tell the freezer to count it as * freezable again and try to freeze it. */ static inline void freezer_count(void) { if (current->mm) { current->flags &= ~PF_FREEZER_SKIP; try_to_freeze(); } } /* * Check if the task should be counted as freezeable by the freezer */ static inline int freezer_should_skip(struct task_struct *p) { return !!(p->flags & PF_FREEZER_SKIP); } /* * Tell the freezer that the current task should be frozen by it */ static inline void set_freezable(void) { current->flags &= ~PF_NOFREEZE; } #else /* !CONFIG_PM_SLEEP */ static inline int frozen(struct task_struct *p) { return 0; } static inline int freezing(struct task_struct *p) { return 0; } static inline void set_freeze_flag(struct task_struct *p) {} static inline void clear_freeze_flag(struct task_struct *p) {} static inline int thaw_process(struct task_struct *p) { return 1; } static inline void refrigerator(void) {} static inline int freeze_processes(void) { BUG(); return 0; } static inline void thaw_processes(void) {} static inline int try_to_freeze(void) { return 0; } static inline void freezer_do_not_count(void) {} static inline void freezer_count(void) {} static inline int freezer_should_skip(struct task_struct *p) { return 0; } static inline void set_freezable(void) {} #endif /* !CONFIG_PM_SLEEP */ #endif /* FREEZER_H_INCLUDED */