/* * linux/kernel/acct.c * * BSD Process Accounting for Linux * * Author: Marco van Wieringen <mvw@planets.elm.net> * * Some code based on ideas and code from: * Thomas K. Dyas <tdyas@eden.rutgers.edu> * * This file implements BSD-style process accounting. Whenever any * process exits, an accounting record of type "struct acct" is * written to the file specified with the acct() system call. It is * up to user-level programs to do useful things with the accounting * log. The kernel just provides the raw accounting information. * * (C) Copyright 1995 - 1997 Marco van Wieringen - ELM Consultancy B.V. * * Plugged two leaks. 1) It didn't return acct_file into the free_filps if * the file happened to be read-only. 2) If the accounting was suspended * due to the lack of space it happily allowed to reopen it and completely * lost the old acct_file. 3/10/98, Al Viro. * * Now we silently close acct_file on attempt to reopen. Cleaned sys_acct(). * XTerms and EMACS are manifestations of pure evil. 21/10/98, AV. * * Fixed a nasty interaction with with sys_umount(). If the accointing * was suspeneded we failed to stop it on umount(). Messy. * Another one: remount to readonly didn't stop accounting. * Question: what should we do if we have CAP_SYS_ADMIN but not * CAP_SYS_PACCT? Current code does the following: umount returns -EBUSY * unless we are messing with the root. In that case we are getting a * real mess with do_remount_sb(). 9/11/98, AV. * * Fixed a bunch of races (and pair of leaks). Probably not the best way, * but this one obviously doesn't introduce deadlocks. Later. BTW, found * one race (and leak) in BSD implementation. * OK, that's better. ANOTHER race and leak in BSD variant. There always * is one more bug... 10/11/98, AV. * * Oh, fsck... Oopsable SMP race in do_process_acct() - we must hold * ->mmap_sem to walk the vma list of current->mm. Nasty, since it leaks * a struct file opened for write. Fixed. 2/6/2000, AV. */ #include <linux/config.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/acct.h> #include <linux/file.h> #include <linux/tty.h> #include <linux/security.h> #include <linux/vfs.h> #include <linux/jiffies.h> #include <linux/times.h> #include <linux/syscalls.h> #include <linux/mount.h> #include <asm/uaccess.h> #include <asm/div64.h> #include <linux/blkdev.h> /* sector_div */ /* * These constants control the amount of freespace that suspend and * resume the process accounting system, and the time delay between * each check. * Turned into sysctl-controllable parameters. AV, 12/11/98 */ int acct_parm[3] = {4, 2, 30}; #define RESUME (acct_parm[0]) /* >foo% free space - resume */ #define SUSPEND (acct_parm[1]) /* <foo% free space - suspend */ #define ACCT_TIMEOUT (acct_parm[2]) /* foo second timeout between checks */ /* * External references and all of the globals. */ static void do_acct_process(long, struct file *); /* * This structure is used so that all the data protected by lock * can be placed in the same cache line as the lock. This primes * the cache line to have the data after getting the lock. */ struct acct_glbs { spinlock_t lock; volatile int active; volatile int needcheck; struct file *file; struct timer_list timer; }; static struct acct_glbs acct_globals __cacheline_aligned = {SPIN_LOCK_UNLOCKED}; /* * Called whenever the timer says to check the free space. */ static void acct_timeout(unsigned long unused) { acct_globals.needcheck = 1; } /* * Check the amount of free space and suspend/resume accordingly. */ static int check_free_space(struct file *file) { struct kstatfs sbuf; int res; int act; sector_t resume; sector_t suspend; spin_lock(&acct_globals.lock); res = acct_globals.active; if (!file || !acct_globals.needcheck) goto out; spin_unlock(&acct_globals.lock); /* May block */ if (vfs_statfs(file->f_dentry->d_inode->i_sb, &sbuf)) return res; suspend = sbuf.f_blocks * SUSPEND; resume = sbuf.f_blocks * RESUME; sector_div(suspend, 100); sector_div(resume, 100); if (sbuf.f_bavail <= suspend) act = -1; else if (sbuf.f_bavail >= resume) act = 1; else act = 0; /* * If some joker switched acct_globals.file under us we'ld better be * silent and _not_ touch anything. */ spin_lock(&acct_globals.lock); if (file != acct_globals.file) { if (act) res = act>0; goto out; } if (acct_globals.active) { if (act < 0) { acct_globals.active = 0; printk(KERN_INFO "Process accounting paused\n"); } } else { if (act > 0) { acct_globals.active = 1; printk(KERN_INFO "Process accounting resumed\n"); } } del_timer(&acct_globals.timer); acct_globals.needcheck = 0; acct_globals.timer.expires = jiffies + ACCT_TIMEOUT*HZ; add_timer(&acct_globals.timer); res = acct_globals.active; out: spin_unlock(&acct_globals.lock); return res; } /* * Close the old accounting file (if currently open) and then replace * it with file (if non-NULL). * * NOTE: acct_globals.lock MUST be held on entry and exit. */ static void acct_file_reopen(struct file *file) { struct file *old_acct = NULL; if (acct_globals.file) { old_acct = acct_globals.file; del_timer(&acct_globals.timer); acct_globals.active = 0; acct_globals.needcheck = 0; acct_globals.file = NULL; } if (file) { acct_globals.file = file; acct_globals.needcheck = 0; acct_globals.active = 1; /* It's been deleted if it was used before so this is safe */ init_timer(&acct_globals.timer); acct_globals.timer.function = acct_timeout; acct_globals.timer.expires = jiffies + ACCT_TIMEOUT*HZ; add_timer(&acct_globals.timer); } if (old_acct) { mnt_unpin(old_acct->f_vfsmnt); spin_unlock(&acct_globals.lock); do_acct_process(0, old_acct); filp_close(old_acct, NULL); spin_lock(&acct_globals.lock); } } static int acct_on(char *name) { struct file *file; int error; /* Difference from BSD - they don't do O_APPEND */ file = filp_open(name, O_WRONLY|O_APPEND|O_LARGEFILE, 0); if (IS_ERR(file)) return PTR_ERR(file); if (!S_ISREG(file->f_dentry->d_inode->i_mode)) { filp_close(file, NULL); return -EACCES; } if (!file->f_op->write) { filp_close(file, NULL); return -EIO; } error = security_acct(file); if (error) { filp_close(file, NULL); return error; } spin_lock(&acct_globals.lock); mnt_pin(file->f_vfsmnt); acct_file_reopen(file); spin_unlock(&acct_globals.lock); mntput(file->f_vfsmnt); /* it's pinned, now give up active reference */ return 0; } /** * sys_acct - enable/disable process accounting * @name: file name for accounting records or NULL to shutdown accounting * * Returns 0 for success or negative errno values for failure. * * sys_acct() is the only system call needed to implement process * accounting. It takes the name of the file where accounting records * should be written. If the filename is NULL, accounting will be * shutdown. */ asmlinkage long sys_acct(const char __user *name) { int error; if (!capable(CAP_SYS_PACCT)) return -EPERM; if (name) { char *tmp = getname(name); if (IS_ERR(tmp)) return (PTR_ERR(tmp)); error = acct_on(tmp); putname(tmp); } else { error = security_acct(NULL); if (!error) { spin_lock(&acct_globals.lock); acct_file_reopen(NULL); spin_unlock(&acct_globals.lock); } } return error; } /** * acct_auto_close - turn off a filesystem's accounting if it is on * @m: vfsmount being shut down * * If the accounting is turned on for a file in the subtree pointed to * to by m, turn accounting off. Done when m is about to die. */ void acct_auto_close_mnt(struct vfsmount *m) { spin_lock(&acct_globals.lock); if (acct_globals.file && acct_globals.file->f_vfsmnt == m) acct_file_reopen(NULL); spin_unlock(&acct_globals.lock); } /** * acct_auto_close - turn off a filesystem's accounting if it is on * @sb: super block for the filesystem * * If the accounting is turned on for a file in the filesystem pointed * to by sb, turn accounting off. */ void acct_auto_close(struct super_block *sb) { spin_lock(&acct_globals.lock); if (acct_globals.file && acct_globals.file->f_vfsmnt->mnt_sb == sb) { acct_file_reopen(NULL); } spin_unlock(&acct_globals.lock); } /* * encode an unsigned long into a comp_t * * This routine has been adopted from the encode_comp_t() function in * the kern_acct.c file of the FreeBSD operating system. The encoding * is a 13-bit fraction with a 3-bit (base 8) exponent. */ #define MANTSIZE 13 /* 13 bit mantissa. */ #define EXPSIZE 3 /* Base 8 (3 bit) exponent. */ #define MAXFRACT ((1 << MANTSIZE) - 1) /* Maximum fractional value. */ static comp_t encode_comp_t(unsigned long value) { int exp, rnd; exp = rnd = 0; while (value > MAXFRACT) { rnd = value & (1 << (EXPSIZE - 1)); /* Round up? */ value >>= EXPSIZE; /* Base 8 exponent == 3 bit shift. */ exp++; } /* * If we need to round up, do it (and handle overflow correctly). */ if (rnd && (++value > MAXFRACT)) { value >>= EXPSIZE; exp++; } /* * Clean it up and polish it off. */ exp <<= MANTSIZE; /* Shift the exponent into place */ exp += value; /* and add on the mantissa. */ return exp; } #if ACCT_VERSION==1 || ACCT_VERSION==2 /* * encode an u64 into a comp2_t (24 bits) * * Format: 5 bit base 2 exponent, 20 bits mantissa. * The leading bit of the mantissa is not stored, but implied for * non-zero exponents. * Largest encodable value is 50 bits. */ #define MANTSIZE2 20 /* 20 bit mantissa. */ #define EXPSIZE2 5 /* 5 bit base 2 exponent. */ #define MAXFRACT2 ((1ul << MANTSIZE2) - 1) /* Maximum fractional value. */ #define MAXEXP2 ((1 <<EXPSIZE2) - 1) /* Maximum exponent. */ static comp2_t encode_comp2_t(u64 value) { int exp, rnd; exp = (value > (MAXFRACT2>>1)); rnd = 0; while (value > MAXFRACT2) { rnd = value & 1; value >>= 1; exp++; } /* * If we need to round up, do it (and handle overflow correctly). */ if (rnd && (++value > MAXFRACT2)) { value >>= 1; exp++; } if (exp > MAXEXP2) { /* Overflow. Return largest representable number instead. */ return (1ul << (MANTSIZE2+EXPSIZE2-1)) - 1; } else { return (value & (MAXFRACT2>>1)) | (exp << (MANTSIZE2-1)); } } #endif #if ACCT_VERSION==3 /* * encode an u64 into a 32 bit IEEE float */ static u32 encode_float(u64 value) { unsigned exp = 190; unsigned u; if (value==0) return 0; while ((s64)value > 0){ value <<= 1; exp--; } u = (u32)(value >> 40) & 0x7fffffu; return u | (exp << 23); } #endif /* * Write an accounting entry for an exiting process * * The acct_process() call is the workhorse of the process * accounting system. The struct acct is built here and then written * into the accounting file. This function should only be called from * do_exit(). */ /* * do_acct_process does all actual work. Caller holds the reference to file. */ static void do_acct_process(long exitcode, struct file *file) { acct_t ac; mm_segment_t fs; unsigned long vsize; unsigned long flim; u64 elapsed; u64 run_time; struct timespec uptime; /* * First check to see if there is enough free_space to continue * the process accounting system. */ if (!check_free_space(file)) return; /* * Fill the accounting struct with the needed info as recorded * by the different kernel functions. */ memset((caddr_t)&ac, 0, sizeof(acct_t)); ac.ac_version = ACCT_VERSION | ACCT_BYTEORDER; strlcpy(ac.ac_comm, current->comm, sizeof(ac.ac_comm)); /* calculate run_time in nsec*/ do_posix_clock_monotonic_gettime(&uptime); run_time = (u64)uptime.tv_sec*NSEC_PER_SEC + uptime.tv_nsec; run_time -= (u64)current->start_time.tv_sec*NSEC_PER_SEC + current->start_time.tv_nsec; /* convert nsec -> AHZ */ elapsed = nsec_to_AHZ(run_time); #if ACCT_VERSION==3 ac.ac_etime = encode_float(elapsed); #else ac.ac_etime = encode_comp_t(elapsed < (unsigned long) -1l ? (unsigned long) elapsed : (unsigned long) -1l); #endif #if ACCT_VERSION==1 || ACCT_VERSION==2 { /* new enlarged etime field */ comp2_t etime = encode_comp2_t(elapsed); ac.ac_etime_hi = etime >> 16; ac.ac_etime_lo = (u16) etime; } #endif do_div(elapsed, AHZ); ac.ac_btime = xtime.tv_sec - elapsed; ac.ac_utime = encode_comp_t(jiffies_to_AHZ( current->signal->utime + current->group_leader->utime)); ac.ac_stime = encode_comp_t(jiffies_to_AHZ( current->signal->stime + current->group_leader->stime)); /* we really need to bite the bullet and change layout */ ac.ac_uid = current->uid; ac.ac_gid = current->gid; #if ACCT_VERSION==2 ac.ac_ahz = AHZ; #endif #if ACCT_VERSION==1 || ACCT_VERSION==2 /* backward-compatible 16 bit fields */ ac.ac_uid16 = current->uid; ac.ac_gid16 = current->gid; #endif #if ACCT_VERSION==3 ac.ac_pid = current->tgid; ac.ac_ppid = current->parent->tgid; #endif read_lock(&tasklist_lock); /* pin current->signal */ ac.ac_tty = current->signal->tty ? old_encode_dev(tty_devnum(current->signal->tty)) : 0; read_unlock(&tasklist_lock); ac.ac_flag = 0; if (current->flags & PF_FORKNOEXEC) ac.ac_flag |= AFORK; if (current->flags & PF_SUPERPRIV) ac.ac_flag |= ASU; if (current->flags & PF_DUMPCORE) ac.ac_flag |= ACORE; if (current->flags & PF_SIGNALED) ac.ac_flag |= AXSIG; vsize = 0; if (current->mm) { struct vm_area_struct *vma; down_read(¤t->mm->mmap_sem); vma = current->mm->mmap; while (vma) { vsize += vma->vm_end - vma->vm_start; vma = vma->vm_next; } up_read(¤t->mm->mmap_sem); } vsize = vsize / 1024; ac.ac_mem = encode_comp_t(vsize); ac.ac_io = encode_comp_t(0 /* current->io_usage */); /* %% */ ac.ac_rw = encode_comp_t(ac.ac_io / 1024); ac.ac_minflt = encode_comp_t(current->signal->min_flt + current->group_leader->min_flt); ac.ac_majflt = encode_comp_t(current->signal->maj_flt + current->group_leader->maj_flt); ac.ac_swaps = encode_comp_t(0); ac.ac_exitcode = exitcode; /* * Kernel segment override to datasegment and write it * to the accounting file. */ fs = get_fs(); set_fs(KERNEL_DS); /* * Accounting records are not subject to resource limits. */ flim = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY; file->f_op->write(file, (char *)&ac, sizeof(acct_t), &file->f_pos); current->signal->rlim[RLIMIT_FSIZE].rlim_cur = flim; set_fs(fs); } /** * acct_process - now just a wrapper around do_acct_process * @exitcode: task exit code * * handles process accounting for an exiting task */ void acct_process(long exitcode) { struct file *file = NULL; /* * accelerate the common fastpath: */ if (!acct_globals.file) return; spin_lock(&acct_globals.lock); file = acct_globals.file; if (unlikely(!file)) { spin_unlock(&acct_globals.lock); return; } get_file(file); spin_unlock(&acct_globals.lock); do_acct_process(exitcode, file); fput(file); } /** * acct_update_integrals - update mm integral fields in task_struct * @tsk: task_struct for accounting */ void acct_update_integrals(struct task_struct *tsk) { if (likely(tsk->mm)) { long delta = tsk->stime - tsk->acct_stimexpd; if (delta == 0) return; tsk->acct_stimexpd = tsk->stime; tsk->acct_rss_mem1 += delta * get_mm_rss(tsk->mm); tsk->acct_vm_mem1 += delta * tsk->mm->total_vm; } } /** * acct_clear_integrals - clear the mm integral fields in task_struct * @tsk: task_struct whose accounting fields are cleared */ void acct_clear_integrals(struct task_struct *tsk) { if (tsk) { tsk->acct_stimexpd = 0; tsk->acct_rss_mem1 = 0; tsk->acct_vm_mem1 = 0; } }